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1 Introduction to Cartesian Hierarchical Meshing

Cartesian hierarchical meshes are becoming a central focus of grid generation
research since they are rapid to generate [1], they can refine in pertinent
areas to a desired resolution [2], and they provide an excellent basis for mesh
adaptation [3]. More importantly, having a Cartesian hierarchical mesh allows
for the natural creation of a tree, often an Omni-tree or an Octree, which aids
in searching for elements as well as only needing to remesh certain branches
for dynamic meshing.

Generating a Cartesian hierarchical mesh requires the creation of a root
cell around the geometry to be meshed. Then, through recursive refinement,
the root cell volume is discretized by creating successively smaller volumes,
often utilizing some method of preserving spacing, such as Riemannian Metric
Tensors [4]. Finally, cells outside of the computational domain are turned off,
and a body conforming volume mesh, overset mesh, or immersed boundary
formulated mesh is created.

The basic building block for a Cartesian hierarchical mesh is a voxel [5].
Each voxel contains the index of its mother voxel, and the root voxel is the
only voxel without an initialized mother; it also contains a list of its children,
if they exist. A split variable may also be given in the structure (except in
the case of an Octree, since refinement is isotropic), wherein the direction of
refinement is stored for ease of tree traversal. Also, the physical coordinates
of the high and low corner points of the voxel are stored for construction of
the physical points after the mesh is generated and for relative tree traversal
purposes [6] .
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2 Utilizing the Split-Tree

Many Cartesian hierarchical mesh generation schemes use the Octree, which
makes it simple to keep track of neighbors and children since there is only one
type of refinement allowed (isotropic, seen in row three of Figure 1). However,
this limits the user to unit aspect ratio meshes, which create very high node
and element counts in the case of meshes with very small spacing needed to
resolve the flow. Another option is to use the Omni-tree technique, which
allows in a single step each type of refinement seen in Figure 1. While this is
very versatile, it requires multiple tests in order to appropriately traverse the
tree and it does not preserve tree integrity, which means that the same number
of refinements on any given root cell will yield cells of the same volume, since
each voxel may be refined in one, two, or three directions in one step. This
can be avoided by not adopting children of children while refining the mesh;
however, not refining each voxel to the fullest extent possible requires that
each voxel be visited at each step of the refinement process, even if it has
already been refined.

In Figure 1, the first row shows one directional refinement, which is used
to create the split-tree. While this allows for refinement in only one direc-
tion, isotropic refinement can still be achieved, just over multiple steps. This
method preserves tree integrity and makes tree-traversal and neighbor search-
ing rapid due to the fact that only one direction needs tested to determine
node placement and which branch to search based on the cut parameter of
the voxel. Since voxels can only be refined in one direction, there is no need to
adopt grandchildren and reshuffle parentage as voxels are refined differently
by different tensor specifications.

Fig. 1. Subdivision Refinement of a Cartesian Cell in Three Dimensions
– Refinement options in three dimensions. The choice used to create the split-tree
is one-directional refinement.
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3 Split-Tree Neighbor Search Algorithm

In order to effectively apply quality constraints and create distinct nodes,
neighbors must be determined. In order to save memory, deal with a constantly
changing list of elements, and best utilize the tree, a highly efficient neighbor
algorithm was developed. In many applications, an array which stores each of
six face neighbors is constructed, which not only is costly in terms of memory
but also in terms of computational time spent changing the hash table as the
mesh is generated and needing to remap elements. Instead, the choice was
made to do a point search tree traversal, thus assuring that the most updated
information is available at any given time, there is no need for remapping,
and no memory is used for a hash table.

As seen in Figure 2, a point is projected in the direction of the desired
neighbor, and then a tree traversal determines in which voxel the point lies.
While most neighbor constructs only consider the six face neighbors, seen in
the first row of Figure 3, the method devised here is able to find both caddy-
corner neighbors and vertex neighbors, as seen in the second row of Figure
3.

Fig. 2. Neighbor Searching – Neighbor search directions and points for a face of
a given voxel.

The algorithm recursively searches the tree by passing a coordinate down
child branches until the finest level in which it is contained is reached and
then returning the voxel found back up the stack. The coordinate (x, y, or z)
that is in the direction of the split of the voxel is tested for containment in the
correct child branch by a simple greater than or less than test. Since there is
a user defined minimum spacing for refinement, the tolerance applied to this
floating point calculation is 1/4th of the minimum spacing, and by simply
adding it or subtracting it (depending on which branch is being tested) from
the corresponding x, y, or z coordinate of the centroid, one is guaranteed to
be in the voxel that actually contains the point. In some situations, this leads
to a voxel with children being identified as the neighbor (specifically when a
face centroid or mid-edge node is used to search) and other times it returns a
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Fig. 3. Types of Neighbors – The red voxel in the center of each of the above
diagrams is the voxel which has neighbors being determined. The first row shows
the six face neighbors that are normally stored. The second row, left, shows four of
the twelve caddy-corner neighbors that exist. The second row, right, has four of the
eight vertex neighbors that exist displayed.

voxel without children (always in the case of the corner nodes being used to
search).

This algorithm is versatile and will find neighbors despite differing sizes
and levels of refinement since it is simply looking for containment. In cases like
that seen in Figure 4, one may find a face neighbor with children but actually
need to know which voxel at the finest level contains the given point and the
orientation of the children. In this case, the algorithm will create four nodes,
denoted in red in Figure 4, and filter the results of these searches to discern
how many children the neighbor has and in what positions. The nodes are
created to be 1/4th of the minimum spacing into the neighbor and 1/4th of
the minimum spacing in the given cardinal direction away from the face center
node. This results in a vector that is

√
2

4 times the minimum spacing, which
is larger than the 1/4th that the neighbor routine uses as a tolerance, thus
assuring that we get into the right voxel and get the appropriate neighbor.

4 Conclusions

Having a robust, recursive voxel search algorithm allows for hierarchical Carte-
sian mesh generation without the need to keep up with neighbor hash tables or
use a simple Octree to make neighbor creation automatic. Having a split-tree
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Fig. 4. Finding Children of Neighbors – The algorithm creates four nodes,
denoted in red in the above figure, and filters the results of these searches to discern
how many children the neighbor has and in what positions.

further speeds the process due to the fact that only one direction needs to be
checked to proceed down to the next branch, and having a constant tolerance
value due to the lack of general cutting assures correct determination of the
voxel in which the point is contained. This algorithm allows the user to find
not only face neighbors but caddy-corner and vertex neighbors in a simple
fashion, making it very general. Finally, the ability to discern the orientation
of neighbor children assures that even if a voxel is found that is not at the
finest level, regardless of how many more refinements have been performed on
the voxel, the proper children will be fetched.
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