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Summary. In this paper, we present a novel hexagon-based mesh generation
method which creates all-quadrilateral (all-quad) meshes with guaranteed angle
bounds and feature preservation for arbitrary planar domains. Given any planar
curves, an adaptive hexagon-tree structure is constructed by using the curvature of
the boundaries and narrow regions. Then a buffer zone and a hexagonal core mesh
are created by removing elements outside or around the boundary. To guarantee the
mesh quality, boundary edges of the core mesh are adjusted to improve their formed
angles facing the boundary, and two layers of quad elements are inserted in the buffer
zone. For any curve with sharp features, a corresponding smooth curve is firstly con-
structed and meshed, and then another layer of elements is inserted to match the
smooth curve with the original one. It is proved that for any planar smooth curve
all the element angles are within [60◦-ε, 120◦+ε] (ε ≤ 5◦). We also prove that the
scaled Jacobians defined by two edge vectors are in the range of [sin(60◦-ε), sin90◦],
or [0.82, 1.0]. Furthermore, the same angle range can be guaranteed for curves with
sharp features, with the exception of small angles in the input curve. In addition, all
the elements in the final mesh are grouped into five types, and most elements only
need a few flops to construct the stiffness matrix for finite element analysis. This
will significantly reduce the computational time and the required memory during the
stiffness matrix construction. We have applied our algorithm to a set of complicated
geometries, including the Lake Superior map, and a three-component air foil with
sharp features.

Key words: Quadrilateral mesh, guaranteed angle bound, hexagon-tree, sharp fea-
ture, narrow region.

1 Introduction

A fully automatic and robust mesh generator is always desired by the community
of finite element analysis and computer graphics. Although provably good-quality
triangular mesh generation methods have been well developed for planar and curved
surfaces, many analysts prefer to use quadrilateral (quad) elements because of their
superior performance in various applications. Only a few algorithms exist in litera-
ture addressing provable angle bounds for all-quad mesh generation [4, 1], but none
of them guarantee a good angle range with both lower and upper bounds. As early
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Fig. 1. The Lake Superior map. (a) An all-quad mesh with all angles ∈ [57◦, 122◦];
and (b-c) Zoom-in pictures of (a).

as in 1991, Bishop [5] had theoretically proved that any planar n-gon can be meshed
by O(n) quads with all the angles bounded between 45◦-ε and 135◦+ε, where ε
is a small perturbation. However, there was no algorithm that can generate such
guaranteed-quality all-quad meshes until in 2009 a quadtree-based method [11] was
firstly developed to construct all-quad meshes for any given point clouds or planar
smooth curves, with a guaranteed angle range of [45◦-ε, 135◦+ε] (ε ≤ 5◦). Inspired
by [17, 18], we find that an adaptive hexagonal subdivision scheme can also be used
for all-quad mesh generation, with the advantages of not creating any hanging nodes
and providing better angle bounds as compared to using the quadtree. In this pa-
per, we improve the algorithm described in [11] by using the hexagon-tree structure,
which results in a better guaranteed angle range, [60◦-ε, 120◦+ε] (ε ≤ 5◦), for any
complicated smooth curves (e.g., the Lake Superior map in Fig. 1). Moreover, this
angle range can also be guaranteed even for geometries with sharp features, except
small angles in the input geometry.

For any planar smooth curves, six steps are developed to construct all-quad
meshes with guaranteed angle bounds. Firstly, each curve is decomposed into a
set of line segments based on its curvature. Secondly, a strongly balanced adaptive
hexagon-tree structure is constructed without creating any hanging nodes. The el-
ement size is controlled by the boundary curvature and narrow regions. Thirdly,
elements outside and around the boundary are removed to create a hexagonal core
mesh and a buffer zone. Next, a group of templates are designed to adjust the
boundary edges and improve their formed angles facing the boundary in the core
mesh. Then angular bisectors are used to construct the first buffer layer. Finally, the
points generated in the first layer are projected to the boundary and form the second
buffer layer. It is proved that for any planar smooth curves, all the angles in the
constructed mesh are within [60◦-ε, 120◦+ε] (ε ≤ 5◦), and all the scaled Jacobians
defined by two edge vectors are within [sin(60◦-ε), sin90◦], or [0.82, 1.0]. If a given
curve contains sharp features, the corresponding smooth curve is firstly constructed
and guaranteed-quality quads are created through the above six steps. Then four
cases are introduced to match the smooth curve to the original one while preserving
the angle range, with the exception of small angles in the input curve.
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We have tested our algorithm with several complicated geometries, including
the Lake Superior map, and a three-component air foil with sharp features. Our
algorithm efficiently deals with curves in large-scale size, and generates meshes with
guaranteed angle bounds while minimizing the number of elements. Additionally,
we categorize all the quad elements in the generated meshes into five element types.
In finite element analysis, the stiffness matrices of element types 1-4 can be pre-
computed which can significantly reduce the computational time, save memory, and
provide more precise results.

The remainder of this paper is organized as follows: Section 2 reviews the related
work. Section 3 explains the detailed algorithm for guaranteed-quality mesh gener-
ation of smooth curves. Section 4 talks about sharp feature and boundary layer.
Section 5 shows some results. Section 6 introduces five element types and explains
the advantages of our algorithm in terms of stiffness matrix construction. Finally,
Section 7 presents our conclusion and discussion.

2 Previous Work

Quadrilateral Mesh Generation: For unstructured quad mesh generation [13],
there are three direct methods: advancing front, domain decomposition, and grid-
based. For practical purposes, the advancing front method generally gives high qual-
ity and reliable mesh generation. In [25], two triangles are firstly created using the
traditional advancing front method and then combined to a single quad. A paving
algorithm places a complete row of quads next to the front toward the interior
[6]. The robustness of the paving algorithm is enhanced in [20] through creating
individual quads rather than a complete row. However, the closure algorithms for
the interior are still unstable. Heuristic decisions are made which usually generate
elements with poor quality. Domain decomposition can be achieved by various tech-
niques. Tam and Armstrong [19] introduced medial axis decomposition. Quadros
et al. [15] introduced an algorithm that couples medial axis decomposition with an
advancing front method. In general, these methods produce high quality meshes but
they are not robust and may require a great deal of user interaction especially when
the domain has non-manifold boundaries. For grid-based methods, Baehmann et
al. [2] modified a balanced quadtree to generate a quad mesh for an arbitrary do-
main. Schneiders et al. [16] used an isomorphism technique to conform an adaptive
octree structure to the object boundaries. Zhang et al. developed an octree-based
isocontouring method to generate adaptive quadrilateral and hexahedral meshes
for manifold and non-manifold domains [14, 21, 22, 24]. Grid-based algorithms are
robust but often generate poor quality elements at the boundary.

Quality Improvement: In finite element analysis, elements with small angles
and angles close to 180◦ inside the mesh usually lead to ill-conditioned linear sys-
tems. Therefore, a post-procedure is crucial to improving the overall quality of the
elements. Smoothing and clean-up methods are the two main categories of mesh
improvement. Smoothing methods relocate vertices without changing the connec-
tivity. Although simple and easy to implement, Laplacian smoothing is heuristic
and unstable and sometimes inverts or degrades the local elements. Optimization-
based smoothing methods were then proposed [7, 9], which relocate each node to the
optimum location based on the local gradient of the surrounding element quality.
Optimization-based methods provide much better mesh quality but they need exces-
sive amounts of computations. For this reason such methods are usually combined
with a Laplacian smoothing technique [8]. Surface feature preservation represents
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another challenging problem. Methods based on local curvature [3] and volume pre-
serving geometric flows [23] were developed to identify and preserve the main surface
features. Clean-up methods for quad meshes [10] were utilized to improve the node
valence and topology. Pillowing [12] was used to ensure that any two adjacent quads
share at most one edge.

However, none of the above meshing and quality improvement techniques can
guarantee any bounds for the element angles. Last year, we developed a quadtree-
based method which creates all-quad meshes for any planar smooth curves with a
guaranteed angle range of [45◦-ε, 135◦+ε] (ε ≤ 5◦). In this paper, we will present a
novel hexagon-based approach that constructs all-quad meshes with a better guar-
anteed angle range, [60◦-ε, 120◦+ε].

3 Guaranteed-Quality Meshing of Smooth Curves

Given a planar domain Ω and closed smooth curves C represented by cubic splines,
we aim to generate an all-quad mesh for the regions enclosed by C with a good
guaranteed angle range. Six steps are designed as shown in Fig. 2, including (1) curve
decomposition, (2) adaptive hexagon-tree construction, (3) buffer zone clearance, (4)
template implementation, (5) first buffer layer construction, and (6) second buffer
layer construction.

3.1 Curve Decomposition

Given any closed smooth curves C represented by cubic splines, we firstly decompose
C into a set of piecewise-linear line segments, considering the curve local curvature.
Two requirements need to be satisfied: the angle ε formed by two neighboring lines
is ≤ 5◦; and, the approximation error δ of each line segment is less than a given
threshold. As a result, we obtain non-uniform sampling points X, see Fig. 2(a).

(a) (b) (c)

(d) (e) (f)

Fig. 2. Flow chart of all-quad mesh generation. (a) Curve decomposition; (b) Adap-
tive hexagon-tree construction; (c) Buffer zone clearance; (d) Template implemen-
tation; (e-f) First and second buffer layer construction.
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3.2 Adaptive Hexagon-Tree Construction

Instead of using the quadtree, here we construct an adaptive hexagon-tree because it
does not induce any hanging nodes and provides a better angle range. The hexagon-
tree construction is based on the sampling points X obtained from curve decom-
position, see Fig. 2(b). Firstly, we define the size function as si = min(dij), where
dij is the distance between two points i and j (i, j ∈ X and i 6= j). Then a large
hexagon Ω is generated to enclose all the points X, as shown in Fig. 3(a). Ω corre-
sponds to the root of the hexagon-tree, marked as Level 0. Then each cell c in the
hexagon-tree is recursively refined using two refinement templates in Fig. 3(b-c),
unless the cell size is smaller than the size function of any point inside this cell.
After that, each pair of semi-hexagons is grouped into one hexagon if possible, see
Fig. 3(d). For each refinement or grouping, we update the corresponding cell levels.
Similar to [18], hexagons are always marked in even levels and semi-hexagons are
always marked in odd levels. We also apply the strongly balanced criterion to the
hexagon-tree, which means the level difference around each cell c is at most one. For
those cells not satisfying this criterion, we split and group them as shown in Fig.
3(e). As a final step, we split each hexagon to two semi-hexagons to obtain all-quad
meshes. Local mesh refinement and mesh coarsening are supported in our algorithm
by using refinement (Fig. 3(b-c)) and grouping (Fig. 3(d)).

(a) (b) (c)

(d) (e)

Fig. 3. Operations used in adaptive hexagon-tree construction. (a) Hexagonal
bounding box; (b-c) Two refinement templates; (d) Grouping; and (e) Strongly
balanced tree construction. The numbers represent the corresponding cell levels.
Hexagons are in even levels, and semi-hexagons are in odd levels.

Narrow region is another important feature of the input geometry C. A region
is defined as narrow if it contains no more than two elements in one direction after
the adaptive hexagon-tree construction. The detected narrow region will be refined
until all directions contain more than two elements, which guarantees the correct
topology during mesh generation.

3.3 Buffer Zone Clearance

In order to conform the hexagon-tree mesh to the boundary, we delete elements
outside or near the boundary curves so that later we have enough spaces to generate
quads with provable good angles. We call such a procedure buffer zone clearance.
Similar definitions in [11] are utilized here, see Fig. 4(a). A buffer zone is a zonal
area that serves the purpose of keeping the quad mesh distant from boundaries. A
boundary edge is an edge contained in only one element of the hexagonal core mesh,
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(a) (b)

Fig. 4. Definitions and Criterion 3 in Buffer Zone Clearance. (a) The red curve is
the boundary. A, B, C and D are boundary points. AB, BC and CD are boundary
edges. α and β are boundary angles. ψ is a boundary edge angle; and (b) An example
of applying Criterion 3.

e.g., AB, BC and CD. One boundary edge consists of two boundary points, two
neighboring boundary edges form a boundary angle, and a boundary edge angle is
the angle formed from the boundary edge to the boundary which cannot cross other
edges. E.g., α and β are two boundary angles, and ψ is a boundary edge angle.

Three criteria are applied to adaptive hexagon-tree construction, and then a
hexagonal core mesh and a buffer zone are created, see Fig. 2(c). The buffer zone is
filled with quads with all angles within [60◦-ε, 120◦+ε]. These three criteria are:

1) Any elements outside the regions to be meshed are deleted;
2) Any elements intersecting with the given curves C are deleted;
3) If the shortest distance from any vertex to the boundary is less than a pre-

defined threshold εs, all elements sharing this vertex are deleted. Here we choose
εs = 1

2
max(si), where si is the size of the ith element sharing this vertex. Fig. 4(b)

shows an example of applying Criterion 3.

3.4 Template Implementation
After buffer zone clearance, the boundary angles of the core mesh are among
{60◦, 120◦, 180◦, 240◦, 300◦}, and the boundary edge angles are within [0◦, 180◦].
In order to generate good-quality elements around the boundary, we design the fol-
lowing three operations to improve the boundary angles and boundary edge angles.

Boundary angle improvement: For any boundary angle 60◦, we delete the
larger element sharing this boundary angle. For any boundary angle 300◦, we delete
the element containing this boundary angle. Finally, for any two neighboring bound-
ary angles 240◦-240◦, we delete the element containing them. Now the boundary
angles are among {120◦, 180◦, 240◦}.

Self-intersection avoidance: In the following first buffer layer construction, we
will use angular bisectors of the boundary angles to construct new elements. To avoid
element self-intersection, we check all the possible combinations among the improved
boundary angles {120◦, 180◦, 240◦}. For a pair of boundary angles, there are 32=9
combinations in total. However, 120◦-240◦, 180◦-180◦ and 180◦-240◦ never cause
self-intersections as shown in Fig 5, and 240◦-240◦ has been removed in Operation
1 (boundary angle improvement). Considering symmetry and complementary of the
boundary angles, only 120◦-120◦ and 120◦-180◦ are left. For each of them, we divide
it into two groups since we will implement different templates on them. Therefore,
there are a total of four combinations which may introduce self-intersections: 120◦-
120◦-120◦, 120◦-120◦-(180◦ or 240◦), 120◦-180◦-120◦, and 120◦-180◦-(180◦ or 240◦).
The developed templates for these four combinations are shown in Fig. 6. In Fig.
6(d), if |CC′| > 2|BC|, we add a parallelogram ABCD to avoid self-intersections.
From Fig. 6, it is obvious to observe that all the newly generated edges are parallel
to the existing ones. Therefore, the boundary angles and boundary edge angles are
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(a) 120◦-240◦ (b) 180◦-180◦ (c) 180◦-240◦

Fig. 5. Three combinations that never cause self-intersection in our algorithm. Dash
lines are angular bisectors.

(a) 120◦-120◦-120◦ (b) 120◦-120◦-(180◦ or 240◦)

(c) 120◦-180◦-120◦ (d) 120◦-180◦-(180◦ or 240◦)

Fig. 6. Four templates to avoid self-intersections.

still among {120◦, 180◦, 240◦} and [0◦, 180◦], respectively. Note that the boundary
angle pair 120◦-120◦ is eliminated, see Fig. 6(a-b).

Boundary edge angle improvement: To improve the boundary edge an-
gles, we first check two boundary angles 120◦ and 240◦. For each boundary angle
120◦ as shown in Fig. 7(a), if |AA′| > |BB′| or |CC′| > |BB′|, we add a paral-
lelogram ABCD. Similarly, for each boundary angle 240◦ as shown in Fig. 7(b), if
|AA′| < |BB′| or |CC′| < |BB′|, we add a parallelogram BCDE. We keep doing this
until these two cases vanish at the boundary of the core mesh. After that, Operation 2
(self-intersection avoidance) may be applied again to remove self-intersections. Since
the newly generated edges are parallel to the existing ones, the boundary angle at
Point C is also 120◦, see Fig. 7(a). Then we have |CC′| ≥ |DD′| & |CC′| ≥ |EE′|.
The worst boundary edge angle happens when |CC′| = |DD′| or |CC′| = |EE′|,
which results in a 60◦ angle for the boundary edge CD or CE. Similarly for the
boundary angle 240◦ in Fig. 7(b), the worst boundary edge angle is also 60◦. The
boundary angle 180◦ performs as a straight line, which finally connects to either the
boundary angle 120◦ or the boundary angle 240◦, so its worst boundary edge angle
is the same, 60◦. Therefore after template implementation, the boundary edge angle
range is improved from [0◦, 180◦] to [0◦, 60◦].

Remark: In summary, all the element angles in the hexagonal core mesh are either
60◦ or 120◦. After template implementation, all the boundary angles are among
{120◦, 180◦, 240◦}, and all the boundary edge angles are within [0◦, 60◦].
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(a) 120◦ (b) 240◦

Fig. 7. Boundary edge angle improvement.

3.5 First Buffer Layer Construction

To fill the buffer zone with guaranteed-quality quads, we firstly generate the first
buffer layer. For each boundary point in the core mesh, we use angular bisectors to
calculate a corresponding point inside the buffer zone called the first buffer point.
Then, each pair of neighboring boundary points and their first buffer points construct
a quad. All these new quads form the first buffer layer as shown in Fig. 2(e).

Here is the algorithm to calculate the first buffer points. As shown in Fig. 8(a),
the boundary point B is shared by two boundary edges AB and BC with corre-
sponding boundary edge angles. We choose the larger boundary edge angle ψ, and
draw its angular bisector. We also draw an angular bisector of the boundary angle
at B. These two angular bisectors intersect at B′ which is the first buffer point of B.
If the larger boundary edge angle ψ is small (e.g. ≤ 10◦), then we just project point
B to the boundary, and choose the middle as B′. Using all the boundary points and
their first buffer points, we form the first buffer layer inside the buffer zone.

Lemma 1: All the element angles in the first buffer layer are within [60◦-ε, 120◦+ε],
where ε ≤ 5◦. After the first buffer layer construction, the boundary edge angle range
becomes [0◦, 30◦].

Proof: To simplify the proof, we first assume that the boundary curve around each
boundary edge is a straight line. In Fig. 8(a), A′ and B′ are the first buffer points
corresponding to the boundary points A and B, the boundary angles at A and B
are 2α and 2β, and the boundary edge angle of AB is ψ. Suppose A′ and B′ are on
the angular bisector of ψ. After template implementation, the boundary edge angle
ψ ∈ [0◦, 60◦], and the boundary angle combinations of 120◦-120◦ and 240◦-240◦ are
eliminated. Therefore suppose α ≤ β, we have 2α ∈ {120◦, 180◦} or α ∈ [60◦, 90◦],
2β ∈ {180◦, 240◦} or β ∈ [90◦, 120◦], and ϕ = ψ/2 ∈ [0◦, 30◦]. Then, we can get
θ = 180◦ − α − ϕ ∈ [60◦, 120◦], and γ = ϕ + (180◦ − β) ∈ [60◦, 120◦]. In summary,
all the angles of the quad ABB′A′ are within [60◦, 120◦]. However, considering that
the boundary curve has a small perturbation ε ≤ 5◦, we relax the angle range to
[60◦-ε, 120◦+ε]. Finally, after the first buffer layer construction, the new boundary
edge angle range becomes half of the original one, [0◦, 30◦]. �

(a) (b)

Fig. 8. Two buffer layers. (a) First buffer layer; and (b) Second buffer layer.
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3.6 Second Buffer Layer Construction

The second buffer layer construction is straightforward. As shown in Fig. 8(b), we
project all the second buffer points to the boundary and obtain the corresponding
second buffer points. Then the second buffer layer is generated, see Fig. 2(f). We
use Lemma 2 to prove its angle bounds.

Lemma 2: All the element angles in the second buffer layer are within [60◦-
ε, 120◦+ε], where ε ≤ 5◦.

Proof: We still assume that the boundary curve is a straight line around each bound-
ary edge. In Fig. 8(b), A′ and B′ are the first buffer points, A′′ and B′′ are the second
buffer points. Obviously, γ = θ = 90◦. From Lemma 1, we have the boundary edge
angle ψ ∈ [0◦, 30◦]. Therefore, α = 90◦−ψ ∈ [60◦, 90◦] and β = 90◦+ψ ∈ [90◦, 120◦].
Considering the boundary curve may have a small perturbation ε ≤ 5◦, the angle
range is relaxed to [60◦-ε, 120◦+ε]. �

Remark: After applying the designed six steps in Fig. 2, the element angles in
the core mesh, the first and the second buffer layers are all within [60◦-ε, 120◦+ε]
(ε ≤ 5◦). As proven in [11], the scaled Jacobian defined by two edge vectors [21, 23]
is a sine function of the element angle. For example, if we denote the scaled Jacobian
as J , the two normalized edge vectors as e1 and e2, and the angle formed by them
as θ, then J = |e1 × e2| = |e1||e2|sinθ = sinθ because |e1| = |e2| = 1. Therefore
our algorithm also guarantees that all the scaled Jacobians in the constructed mesh
are in the range of [sin(60◦-ε), sin90◦] (ε ≤ 5◦), or [0.82, 1.0].

4 Sharp Feature and Boundary Layer

If the input geometry contains sharp features, we need an extra buffer layer, called
sharp feature layer, to preserve the sharp features and also guarantee the angle
bounds. For each input curve C, we first generate a smooth curve C′ inside the
region to be meshed with a distance d. To achieve this, we consider three cases as
shown in Fig. 9: (1) smooth parts of the curve; (2) sharp feature with an angle
∈ (0◦, 180◦]; and (3) sharp feature with an angle ∈ (180◦, 360◦).

For the smooth part, we simply move the curve inside with a distance d. Then,
for each sharp angle ∈ (0◦, 180◦), as shown in Fig. 9(b), we draw the angular bisector
of this angle, and choose a point O such that |OC| = (r+ d)/cos(ψ/2). Taking O as
the circle center, we obtain an arc with the radius r between the two projection lines

(a) (b) (c)

Fig. 9. Smooth curve generation from the curves with sharp features. (a) Smooth
parts; (b) Sharp angles ∈ (0◦, 180◦); and (c) Sharp angles ∈ (180◦, 360◦).
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OA and OE. Here the radius r can be arbitrary. For each sharp angle ∈ (180◦, 360◦),
as shown in Fig. 9(c), we also draw the angular bisector of this angle, but choose
a point O such that |OC| = (r − d)/cos(ψ/2). Taking O as the circle center, we
again obtain an arc with the radius r between the two projection lines OA′ and
OE′. However, to guarantee the arc is inside the region to be meshed, we require
|OC| < r, or r < d/(1− cos(ψ/2)).

As soon as the smooth curve C′ is constructed, it can be meshed using the six
steps in Section 3. Now we need to connect the resulting mesh to the original curve
C. For each smooth part, as shown in Fig. 9(a), we directly project all the second
buffer points to the curve C, and construct corresponding quads. For each part with
a sharp angle, as shown in Fig. 9(b-c), we draw lines from the center O to each
second buffer point. These lines intersect with the curve C at a set of boundary
points. Then these boundary points and the second buffer points are used to form
quads. By doing that, the curve C is completely meshed with guaranteed-quality
quads, except elements near the sharp features. Then the final step is to improve
these elements. Noticing that we enforce a second buffer point C′ to locate on the
angular bisector of the sharp angle. We also have the following Lemma 3.

Lemma 3: For smooth parts and sharp angles within [120◦, 180◦) or (180◦, 240◦],
the constructed quads in the sharp feature region are always ∈ [60◦, 120◦].

Proof: For the smooth parts, all the element angles are obviously close to 90◦, as
shown in Fig. 9(a). For any sharp angle ∈ [120◦, 180◦), quads containing the sharp
point have the worst angle range, see Fig. 9(b). Thus we only need to prove the angle
range of BCC′B′ is good. Since CC′ is the angular bisector, α ∈ [60◦, 90◦). B′ and
C′ are on the arc, so β = γ = 90◦+ϕ/2. Then θ = 180◦−ϕ−α ∈ (90◦−ϕ, 120◦−ϕ].
From Section 3.1, ϕ = ε ≤ 5◦. Therefore, all the four element angles of BCC′B′

are within [60◦, 120◦). Similarly, for any sharp angle ∈ (180◦, 240◦], as shown in Fig.
9(c), we only need to prove the angle range of BCC′B′ is good. β ∈ (90◦, 120◦] be-
cause CC′ is the angular bisector. Since B′ and C′ are on the arc, α = θ = 90◦−ϕ/2.
Then γ = 180◦ − β + ϕ ∈ [60◦ + ϕ, 90◦ + ϕ], where ϕ = ε ≤ 5◦. Therefore, all the
four element angles of BCC′B′ are within (60◦, 120◦]. �

For sharp angles within (0◦, 120◦) or (240◦, 360◦), the angle bounds of the con-
structed quads may not be good. Here we explain how to improve the angle bounds
for these two cases. When the sharp angle α ∈ (0◦, 120◦) as shown in Fig. 10(a), for
each boundary point X (X = {A,B,C,G,H, I}), if ∠X ′XE > 120◦, we rotate the
edge X ′X such that ∠X ′XE = 120◦. Finally, we delete the edge E′E and add two
other edges E′D and E′F such that β = θ = 120◦, γ = 120◦−α when α ∈ (0◦, 60◦],
or γ = α, β = θ = 180◦ − α when α ∈ (60◦, 120◦). In this way, we guarantee all the
angles ∈ [60◦, 120◦] except the sharp angle α in the input curve.

With the sharp angle ∈ (240◦, 360◦), we use a different method as shown in Fig.
10(b). Here the green region and the blue region are symmetric w.r.t. the angular
bisector AA′. The green region is generated by connecting O with each second buffer
point, and the blue region is improved by inserting another layer of elements locally.
In the blue region, Point B is removed, and two new points B′′ and C′′ are added
such that β = β′ = β′′ = 120◦ and θ = 60◦. Before we reach a rectangle element,
we continue to add new points D′′ and E′′ using the angular bisectors of ∠C′C′′C
and ∠D′D′′D. If η or ζ < 60◦, we adjust D or E to make it equal to 60◦. Then the
edge F ′F is rotated to have ∠FF ′E′ = 120◦. Finally, two new points F ′′ and G′′
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(a) (b)

Fig. 10. Quality improvement of elements around sharp features. (a) Sharp angle
∈ (0◦, 120◦); and (b) Sharp angle ∈ (240◦, 360◦).

are added to split the original quad EE′F ′F to three new quads, where F ′F ′′ is an
angular bisector, E′′F ′′//EF and F ′′G′′//FF ′. Then we use Lemma 4 to prove the
angle bounds of quad elements in these two cases.

Lemma 4: For sharp angles within (0◦, 120◦) or (240◦, 360◦), all the element angles
in the sharp feature layer are within [60◦-ε, 120◦+ε] (ε ≤ 5◦), except small sharp
angles in the given curve.

Proof: For any sharp angle α ∈ (0◦, 120◦) as shown in Fig. 10(a), it is obvious that
all the elements, except the element containing the sharp corner E, have the angle
range ∈ [60◦, 120◦] because we enforced the maximum element angle to be ≤ 120◦.
The only exception is the sharp angle when it is less than 60◦. Since this bad angle
is required by the input geometry, we just keep it.

For any sharp angle ∈ (240◦, 360◦) as shown in Fig. 10(b), we firstly check the
elements around the sharp corner A. We can easily obtain β = β′ = β′′ = 120◦,
γ′ = θ′ = 90◦−ϕ/2 and θ′′ = α′′ = 90◦−ψ/2. Then α′ = 360◦−γ′−θ′−β′ = 60◦+ϕ,
and γ′′ = 360◦ − θ′′ − α′′ − β′′ = 60◦ + ψ. Moreover, α = ∠A′AC − α′ =
(120◦−α′, 180◦−α′) ∈ (60◦−ϕ, 120◦−ϕ), γ = 360◦−α−β−θ ∈ (60◦+ψ, 120◦+ψ],
and θ = 60◦. From Section 3.1, ϕ = ψ = ε ≤ 5◦; therefore, the angle range of the
three elements sharing Point B′′ is [60◦ − ε, 120◦ + ε]. It is obvious that the angle
range of the other elements is [60◦, 120◦]. Therefore, all the angles generated in this
case are within [60◦-ε, 120◦+ε]. �

Remark: In summary, all the element angles in the sharp feature layer are within
[60◦-ε, 120◦+ε], where ε ≤ 5◦, except small sharp angles in the given curve.

As an example, we use the Delta Wing to test our algorithm for sharp feature
preservation. The meshing results are shown in Figs. 11 & 12. All the element angles
are of provable good quality. The lower angle bound in Fig. 11 is required by the
small sharp angle (31.75◦) in the given curve. Additionally, multiple boundary layers
are required in Computer Fluid Dynamics (CFD) simulations. Our algorithm can
conveniently construct boundary layers by splitting the elements in the second buffer



12 Xinghua Liang and Yongjie Zhang

Fig. 11. An interior mesh of Delta wing with sharp features. (a) All-quad mesh
with all angles ∈ [31.75◦, 120◦]. The lower bound corresponds to the small angle in
the geometry; and (b-d) Zoom-in pictures of (a).

Fig. 12. An exterior mesh of Delta wing with sharp features. (a) All-quad mesh with
all angles ∈ [60◦, 120◦] before boundary layer generation, and [42◦, 147◦] after gen-
erating a boundary layer; and (b-d) Zoom-in pictures of (a); (e-g) Three boundary
layer templates with one, two and three boundary points. Black points are boundary
points, and red points are new points.

layer or the sharp feature layer, see Fig. 12. Only three templates are needed, as
shown in Fig. 12(e-g). The black points are boundary points, the red points are
new points, and the blue quads are elements constructed for the boundary layer.
Obviously, all the angles are preserved in Fig. 12(f-g), but an angle is split in Fig.
12(e), resulting in a reduction of the angle range to [30◦ − ε, 150◦ + ε]. Fig. 12(e) is
needed only if there are sharp features > 240◦, and the angle range will be reduced
only once no matter how many boundary layers are constructed.

5 Results

We have applied our algorithm to three models: the Mouse in Fig. 13, the Lake
Superior map in Fig. 1, and a three-component air foil with sharp features in Fig.
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Fig. 13. The Mouse mesh. (a) An all-quad mesh with all angles ∈ [60◦, 120◦]; and
(b-e) Zoom-in pictures of (a).

14. Our results were computed on a PC equipped with a 2.4 GHz Intel Q6600 CPU
and 4GB of Memory.

Statistics of these three meshes are given in Table 1. The sampling points are
points obtained from the curve decomposition. The aspect ratio is defined as the
longest edge over the shortest edge in a single element. We can observe that our
algorithm generates meshes with all the angles ∈ [60◦-ε, 120◦+ε] (ε ≤ 5◦) and the
scaled Jacobians ∈ [sin(60◦-ε), sin90◦], or [0.82, 1.0]. Moreover, we can conclude
from Table 1 that the run time of our algorithm correlates with the geometry com-
plexity, e.g., the Lake Superior example takes more time than others due to its

Fig. 14. A three-component air foil with sharp features. (a) An all-quad mesh with
all angles ∈ [56◦, 120◦]; and (b-f) Zoom-in pictures of (a).
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complicated boundaries. Among the six steps in our algorithm, adaptive hexagon-
tree construction and buffer zone clearance are the two most time-consuming steps,
since they need to compare each element with its surrounding sampling points.

Table 1. Mesh statistics of three testing models.

Dataset Mouse Lake Superior Air Foil

Sampling Point 971 3921 329
Mesh Size (vertex, element) (24702, 22554) (63927, 59124) (5695, 5331)

Angle Range [min, max] [60◦, 120◦] [57◦, 122◦] [56◦, 120◦]
Scaled Jacobian [worst, best] [0.86, 1.0] [0.83, 1.0] [0.83, 1.0]

Aspect Ratio [best, worst] [1.0, 31.6] [1.0, 25.8] [1.0, 308.0]
Time (s) 26 213 4

6 Five Element Types

We can observe that most elements in the resulting meshes have similar shapes. To
take advantage of that, we categorize all the elements into five types as listed in Fig.
15. The percentage of each element type in the three meshes is listed in Table 2. For
element types 1-4, we can use the precomputed stiffness matrix templates to reduce
the computational time and the required memory for stiffness matrix construction
in finite element analysis.

Type 1 is an isosceles trapezoid with a 60◦ angle, where the top and bottom
edge lengths can be multiples of a, see Fig. 15(a). When n = 1, it is the dominant
element type, which occupies about 50% in the whole mesh. This is because during
the adaptive hexagon-tree construction, this kind of elements is widely used as the
transitional element, and each hexagonal element is finally split into two of this
type. For other elements with n = 2, 3, 4, they are only generated during template
implementation. Type 2 is a parallelogram with a 60◦ angle, where the top and
bottom edge lengths are also multiples of a, see Fig. 15(b). This type is generated
during template implementation, and only occupies a small portion of the whole
mesh. We can firstly calculate the element stiffness matrices for all the shapes of
Types 1-2 and store them as templates. When forming the global stiffness matrix,
for each element of Types 1-2, we can directly get the values from corresponding
stiffness matrix templates instead of recalculating them using the general method.
Therefore, we can significantly save the computational time and memory.

Type 3 is a trapezoid with a 60◦ angle and a 120◦ angle. This type is mainly
generated during the first buffer layer construction where we use angular bisectors
for the boundary angles 120◦ and 240◦. Type 4 is a trapezoid with two 90◦ angles.
Like Type 3, this type is mainly induced by the projection during the second buffer
layer construction. Different from Types 1-2, the stiffness matrix of Types 3-4 cannot
be stored with certain calculated values. However, the formula used in calculating
the stiffness matrix can be derived analytically and further simplified.

(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4 (e) Type 5

Fig. 15. Five element types.
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Table 2. Element percentage and flops for stiffness matrix construction.

Element type Mouse Lake Superior Air Foil Flops (1st) Flops

Type 1 56.5% 62.8% 63.0% 68 16
Type 2 5.5% 4.9% 2.6% 54 16
Type 3 8.9% 7.7% 3.8% 347 347
Type 4 24.3% 20.0% 22.9% 274 274
Type 5 4.8% 4.6% 7.7% 5,476∗/12,376∗∗ 5,476∗/12,376∗∗

Note: The 5th, 6th columns are the flops for the first computation and the rest, respectively.

Types 1-4 are calculated analytically using the corresponding equations in Appendix;

∗ Using 4 Gaussian integration points; ∗∗ Using 9 Gaussian integration points.

Type 5 is a general element. It mainly exists in the first buffer layer, but also
has a small amount in the second buffer layer. Since this element type is irregular,
we can only use the general way to calculate the stiffness matrix for each element,
which takes lots of time. However, as shown in Table 2, elements of Type 5 generally
occupy a small percentage (< 10%) in the final meshes.

Remark: As an instance, we treat all the five element types as 4-node bilinear quad
elements in the finite element analysis for a Laplace problem, and count the flops
used to form the element stiffness matrix for each element type. The results are
listed in Table 2, and the derived expressions for each type of stiffness matrix can be
found in the appendix. Compared to Type 5 which needs at least 5476 flops for each
element, Types 1 and 2 only need 16 flops to generate an element stiffness matrix
since the values of their stiffness matrices can be saved as templates, and Types 3
and 4 only need 347 and 274 flops for each element, respectively. We can conclude
that using Types 1-4 can save a great amount of computational flops (> 80%) in
constructing the stiffness matrix.

Usually, Gaussian integration is utilized to calculate the stiffness matrix of a
general element, it is inevitable to bring numerical errors. However, since we have
analytical expressions of the stiffness matrices for Types 1-4, the resulting stiffness
matrices are precise. This is another advantage of our algorithm.

Finally, besides speeding up the computation of forming the stiffness matrix, our
algorithm can also save lots of memory. As discussed above, the element stiffness
matrix of Types 1 and 2 can be stored as templates after the first time calculation,
we do not need to store the stiffness matrix for each element. From Table 2, we can
see that Types 1-2 elements occupy at least 50% of the final mesh, which means we
can at least save half memory during the stiffness matrix construction.

7 Conclusions and Discussion

In this paper, we present a novel hexagon-based meshing algorithm, which creates
all-quad meshes with provable angle bounds for arbitrary planar curves. It is proved
that all the elements are quads with angles ∈ [60◦-ε, 120◦+ε] (ε ≤ 5◦) and the
scaled Jacobians ∈ [sin(60◦-ε), sin90◦] or [0.82, 1.0], except small angles in the in-
put geometry. By categorizing elements into five types, we can significantly reduce
the computational time, save memory, and provide more precise results during stiff-
ness matrix construction. We have applied our algorithm to a set of complicated
geometries, including the Lake Superior map and an air foil with sharp features.

Our algorithm provides a theoretical basis of guaranteed-quality all-quad mesh
generation. To guarantee the angle range, sometimes the algorithm needs aggressive
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refinement required by narrow regions, boundary curvatures and sharp features. This
restriction will force more elements in the final result, which may not be practical for
some applications. Moreover, we did not apply any quality improvement techniques
to our generated meshes because it would make the guarantee of angle bounds
unpredictable. For practical purposes, the application of smoothing and optimization
would further improve the overall mesh quality. Finally, since we use the hexagon-
tree in our algorithm, there is no 90◦ angles in the core mesh, and only 50 ∼
60% vertices are regular (with valence number 4). However, most elements near the
boundary are close to rectangles, which is suitable for CFD simulations.

Compared to the quadtree method in [11], the hexagon-tree approach results in
better angle bounds and no hanging nodes. For the same geometry, these two algo-
rithms generate meshes with similar mesh sizes. However, the hexagon-tree cannot
generate square elements in the core mesh while the quadtree can. During tem-
plate implementation, the templates based on the hexagon-tree are much simpler
than those in the quadtree method, because the combination of the boundary angles
{n×60◦|n = 1, 2, ..., 5} is less than that of {n×45◦|n = 1, 2, ..., 7}. Moreover, we use
a totally different method to preserve sharp features in this paper, the angle bounds
are strictly proven. In the current algorithm, the generated interior and exterior
meshes do not conform to each other. In the future, we will extend our algorithm
to interior and exterior mesh generation with conformal boundaries and guaranteed
angle bounds.
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Appendix

The following stiffness matrices are derived based on a 4-node bilinear quad element
for the Laplace equation. All of them are symmetric. The stiffness matrix for Types
1-4 are denoted as M1, M2, M3 and M4, respectively.

M1 = 1

3
√

3


m11 sym
m21 m22

m31 m32 m33

m41 m42 m43 m44

, where:

m11 = m22 = 3− 3n+ 5n2log((1 + n)/n),
m21 = [−3 + 12n− 10n2log((1 + n)/n)]/2,
m31 = m42 = −3− 6n+ 5n(1 + n)log((1 + n)/n),
m41 = m32 = [3 + 6n− 10n(1 + n)log((1 + n)/n)]/2,
m33 = m44 = −6− 3n+ 5(1 + n)2log((1 + n)/n),
m43 = [15 + 12n− 10(1 + n)2log((1 + n)/n)]/2 (n = 1, 2, 3, 4).

M2 =


4−3n+4n2

6
√

3n
sym

1−2n2

3
√

3n

4+3n+4n2

6
√

3n
−2+n2

3
√

3n

1−2n2

3
√

3n

4−3n+4n2

6
√

3n
1−2n2

3
√

3n

−2−3n−2n2

6
√

3n

−2+n2

3
√

3n

4+3n+4n2

6
√

3n

 (n = 1, 2, 3, 4)
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M3 = 1

3
√

3b(a−c)3


m11 sym
m21 m22

m31 m32 m33

m41 m42 m43 m44

, where:

m11 = 3(a− c)[a2(a− b− 3c)− c(3b2 + 3bc+ c2) + a(b2 + 3bc+ 3c2)]− c2∆,
m21 = 1

2
[3b(−a+ 2b+ c)(a2 − c2) + 2ac∆],

m22 = −3(a− c)[a2(a− 2b− 3c) + (3a− c)(b2 + bc+ c2)]− a2∆,
m31 = −3(a− c)[a2(a− b− 2c) + b2c+ a(b2 + bc+ c2)]− ac∆,
m32 = 1

2
{3(a− c)(a2(2a− 3b− 4c)− bc(2b+ c) + 2a(3b2 + 2bc+ c2)] + a2∆},

m33 = 3b(a− c)[a2 + bc− a(3b+ c)]− a2∆,
m41 = 1

2
{3(a− c)[a2(b+ 2c)− 2a(b2 + 2bc+ 2c2) + c(6b2 + 3bc+ 2c2)] + 2c2∆},

m42 = −3(a− c)[a2c+ a(b− 2c)(b+ c) + c(b2 + bc+ c2)]− ac∆,
m43 = 1

2
[3b(−a+ 2b+ c)(a2 − c2) + 2ac∆],

m44 = 3b(a− c)[a(b+ c)− c(3b+ c)]− c2∆,
∆ = (2a2 − 3ab+ 6b2 − 4ac+ 3bc+ 2c2)log(c/a).

M4 = 1
6b(a−c)3


m11 sym
m21 m22

m31 m32 m33

m41 m42 m43 m44

, where:

m11 = 3(a− c)[(a− 3c)(a2 + b2) + c2(3a− c)]− 2c2∆,
m21 = 3b2(a2 − c2) + 2ac∆,
m22 = 3(a− c)[a2(a− 3c) + (3a− c)(b2 + c2)] + 2a2∆,
m31 = −3(a− c)[a2(a− 2c) + b2c+ a(b2 + c2)]− 2ac∆,
m32 = 3(a− c)[a2(a− 2c)− b2c+ a(3b2 + c2)] + 2a2∆,
m33 = −3b2(3a2 − 4ac+ c2)− 2a2∆,
m41 = 3(a− c)[c(a2 + 3b2 + c2)− a(b2 + 2c2)] + 2ac∆,
m42 = −3(a− c)[ab2 + (a2 + b2)c− c2(2a− c)]− 2ac∆,
m43 = 3b2(a2 + c2) + 2ac∆,
m44 = 3b2(a− 3c)(a− c)− 2c2∆,
∆ = [3b2 + (a− c)2]log(c/a).
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