Hexagon-Based All-Quadrilateral Mesh
Generation with Guaranteed Angle Bounds

Xinghua Liang and Yongjie Zhang*

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

Summary. In this paper, we present a novel hexagon-based mesh generation
method which creates all-quadrilateral (all-quad) meshes with guaranteed angle
bounds and feature preservation for arbitrary planar domains. Given any planar
curves, an adaptive hexagon-tree structure is constructed by using the curvature of
the boundaries and narrow regions. Then a buffer zone and a hexagonal core mesh
are created by removing elements outside or around the boundary. To guarantee the
mesh quality, boundary edges of the core mesh are adjusted to improve their formed
angles facing the boundary, and two layers of quad elements are inserted in the buffer
zone. For any curve with sharp features, a corresponding smooth curve is firstly con-
structed and meshed, and then another layer of elements is inserted to match the
smooth curve with the original one. It is proved that for any planar smooth curve
all the element angles are within [60°-¢, 120°+¢] (¢ < 5°). We also prove that the
scaled Jacobians defined by two edge vectors are in the range of [sin(60°-¢), sin90°],
or [0.82, 1.0]. Furthermore, the same angle range can be guaranteed for curves with
sharp features, with the exception of small angles in the input curve. In addition, all
the elements in the final mesh are grouped into five types, and most elements only
need a few flops to construct the stiffness matrix for finite element analysis. This
will significantly reduce the computational time and the required memory during the
stiffness matrix construction. We have applied our algorithm to a set of complicated
geometries, including the Lake Superior map, and a three-component air foil with
sharp features.

Key words: Quadrilateral mesh, guaranteed angle bound, hexagon-tree, sharp fea-
ture, narrow region.

1 Introduction

A fully automatic and robust mesh generator is always desired by the community
of finite element analysis and computer graphics. Although provably good-quality
triangular mesh generation methods have been well developed for planar and curved
surfaces, many analysts prefer to use quadrilateral (quad) elements because of their
superior performance in various applications. Only a few algorithms exist in litera-
ture addressing provable angle bounds for all-quad mesh generation [4, 1], but none
of them guarantee a good angle range with both lower and upper bounds. As early

*Corresponding author. Tel: (412) 268-5332; Fax: (412) 268-3348; Email:
jessicaz@andrew.cmu.edu (Y. Zhang).

2 Xinghua Liang and Yongjie Zhang

RNV).
ST AN

& GURA;
:‘ﬁnﬁnﬂri =0

=
)

VI=A:

A\ RS i’
ARERAERN /) NEG=N2LTNE:
= aln=zANmD= o Sz,
e KA
Zosd
0

(a)

Fig. 1. The Lake Superior map. (a) An all-quad mesh with all angles € [57°,122°];
and (b-c) Zoom-in pictures of (a).

as in 1991, Bishop [5] had theoretically proved that any planar n-gon can be meshed
by O(n) quads with all the angles bounded between 45°-¢ and 135°+-¢, where ¢
is a small perturbation. However, there was no algorithm that can generate such
guaranteed-quality all-quad meshes until in 2009 a quadtree-based method [11] was
firstly developed to construct all-quad meshes for any given point clouds or planar
smooth curves, with a guaranteed angle range of [45°-g, 135°+¢] (¢ < 5°). Inspired
by [17, 18], we find that an adaptive hexagonal subdivision scheme can also be used
for all-quad mesh generation, with the advantages of not creating any hanging nodes
and providing better angle bounds as compared to using the quadtree. In this pa-
per, we improve the algorithm described in [11] by using the hexagon-tree structure,
which results in a better guaranteed angle range, [60°-¢, 120°+¢] (¢ < 5°), for any
complicated smooth curves (e.g., the Lake Superior map in Fig. 1). Moreover, this
angle range can also be guaranteed even for geometries with sharp features, except
small angles in the input geometry.

For any planar smooth curves, six steps are developed to construct all-quad
meshes with guaranteed angle bounds. Firstly, each curve is decomposed into a
set of line segments based on its curvature. Secondly, a strongly balanced adaptive
hexagon-tree structure is constructed without creating any hanging nodes. The el-
ement size is controlled by the boundary curvature and narrow regions. Thirdly,
elements outside and around the boundary are removed to create a hexagonal core
mesh and a buffer zone. Next, a group of templates are designed to adjust the
boundary edges and improve their formed angles facing the boundary in the core
mesh. Then angular bisectors are used to construct the first buffer layer. Finally, the
points generated in the first layer are projected to the boundary and form the second
buffer layer. It is proved that for any planar smooth curves, all the angles in the
constructed mesh are within [60°-¢, 120°+¢] (¢ < 5°), and all the scaled Jacobians
defined by two edge vectors are within [sin(60°-¢), sin90°], or [0.82, 1.0]. If a given
curve contains sharp features, the corresponding smooth curve is firstly constructed
and guaranteed-quality quads are created through the above six steps. Then four
cases are introduced to match the smooth curve to the original one while preserving
the angle range, with the exception of small angles in the input curve.

Hexagon-Based All-Quad Mesh Generation 3

We have tested our algorithm with several complicated geometries, including
the Lake Superior map, and a three-component air foil with sharp features. Our
algorithm efficiently deals with curves in large-scale size, and generates meshes with
guaranteed angle bounds while minimizing the number of elements. Additionally,
we categorize all the quad elements in the generated meshes into five element types.
In finite element analysis, the stiffness matrices of element types 1-4 can be pre-
computed which can significantly reduce the computational time, save memory, and
provide more precise results.

The remainder of this paper is organized as follows: Section 2 reviews the related
work. Section 3 explains the detailed algorithm for guaranteed-quality mesh gener-
ation of smooth curves. Section 4 talks about sharp feature and boundary layer.
Section 5 shows some results. Section 6 introduces five element types and explains
the advantages of our algorithm in terms of stiffness matrix construction. Finally,
Section 7 presents our conclusion and discussion.

2 Previous Work

Quadrilateral Mesh Generation: For unstructured quad mesh generation [13],
there are three direct methods: advancing front, domain decomposition, and grid-
based. For practical purposes, the advancing front method generally gives high qual-
ity and reliable mesh generation. In [25], two triangles are firstly created using the
traditional advancing front method and then combined to a single quad. A paving
algorithm places a complete row of quads next to the front toward the interior
[6]. The robustness of the paving algorithm is enhanced in [20] through creating
individual quads rather than a complete row. However, the closure algorithms for
the interior are still unstable. Heuristic decisions are made which usually generate
elements with poor quality. Domain decomposition can be achieved by various tech-
niques. Tam and Armstrong [19] introduced medial axis decomposition. Quadros
et al. [15] introduced an algorithm that couples medial axis decomposition with an
advancing front method. In general, these methods produce high quality meshes but
they are not robust and may require a great deal of user interaction especially when
the domain has non-manifold boundaries. For grid-based methods, Baehmann et
al. [2] modified a balanced quadtree to generate a quad mesh for an arbitrary do-
main. Schneiders et al. [16] used an isomorphism technique to conform an adaptive
octree structure to the object boundaries. Zhang et al. developed an octree-based
isocontouring method to generate adaptive quadrilateral and hexahedral meshes
for manifold and non-manifold domains [14, 21, 22, 24]. Grid-based algorithms are
robust but often generate poor quality elements at the boundary.

Quality Improvement: In finite element analysis, elements with small angles
and angles close to 180° inside the mesh usually lead to ill-conditioned linear sys-
tems. Therefore, a post-procedure is crucial to improving the overall quality of the
elements. Smoothing and clean-up methods are the two main categories of mesh
improvement. Smoothing methods relocate vertices without changing the connec-
tivity. Although simple and easy to implement, Laplacian smoothing is heuristic
and unstable and sometimes inverts or degrades the local elements. Optimization-
based smoothing methods were then proposed [7, 9], which relocate each node to the
optimum location based on the local gradient of the surrounding element quality.
Optimization-based methods provide much better mesh quality but they need exces-
sive amounts of computations. For this reason such methods are usually combined
with a Laplacian smoothing technique [8]. Surface feature preservation represents

4 Xinghua Liang and Yongjie Zhang

another challenging problem. Methods based on local curvature [3] and volume pre-
serving geometric flows [23] were developed to identify and preserve the main surface
features. Clean-up methods for quad meshes [10] were utilized to improve the node
valence and topology. Pillowing [12] was used to ensure that any two adjacent quads
share at most one edge.

However, none of the above meshing and quality improvement techniques can
guarantee any bounds for the element angles. Last year, we developed a quadtree-
based method which creates all-quad meshes for any planar smooth curves with a
guaranteed angle range of [45°-¢, 135°+¢] (¢ < 5°). In this paper, we will present a
novel hexagon-based approach that constructs all-quad meshes with a better guar-
anteed angle range, [60°-¢, 120°+<].

3 Guaranteed-Quality Meshing of Smooth Curves

Given a planar domain {2 and closed smooth curves C represented by cubic splines,
we aim to generate an all-quad mesh for the regions enclosed by C with a good
guaranteed angle range. Six steps are designed as shown in Fig. 2, including (1) curve
decomposition, (2) adaptive hexagon-tree construction, (3) buffer zone clearance, (4)
template implementation, (5) first buffer layer construction, and (6) second buffer
layer construction.

3.1 Curve Decomposition

Given any closed smooth curves C represented by cubic splines, we firstly decompose
C into a set of piecewise-linear line segments, considering the curve local curvature.
Two requirements need to be satisfied: the angle € formed by two neighboring lines
is < 5°; and, the approximation error § of each line segment is less than a given
threshold. As a result, we obtain non-uniform sampling points X, see Fig. 2(a).

Fig. 2. Flow chart of all-quad mesh generation. (a) Curve decomposition; (b) Adap-
tive hexagon-tree construction; (¢) Buffer zone clearance; (d) Template implemen-
tation; (e-f) First and second buffer layer construction.

Hexagon-Based All-Quad Mesh Generation 5

3.2 Adaptive Hexagon-Tree Construction

Instead of using the quadtree, here we construct an adaptive hexagon-tree because it
does not induce any hanging nodes and provides a better angle range. The hexagon-
tree construction is based on the sampling points X obtained from curve decom-
position, see Fig. 2(b). Firstly, we define the size function as s; = min(d;;), where
d;; is the distance between two points ¢ and j (7,7 € X and ¢ # j). Then a large
hexagon {2 is generated to enclose all the points X, as shown in Fig. 3(a). {2 corre-
sponds to the root of the hexagon-tree, marked as Level 0. Then each cell ¢ in the
hexagon-tree is recursively refined using two refinement templates in Fig. 3(b-c),
unless the cell size is smaller than the size function of any point inside this cell.
After that, each pair of semi-hexagons is grouped into one hexagon if possible, see
Fig. 3(d). For each refinement or grouping, we update the corresponding cell levels.
Similar to [18], hexagons are always marked in even levels and semi-hexagons are
always marked in odd levels. We also apply the strongly balanced criterion to the
hexagon-tree, which means the level difference around each cell ¢ is at most one. For
those cells not satisfying this criterion, we split and group them as shown in Fig.
3(e). As a final step, we split each hexagon to two semi-hexagons to obtain all-quad
meshes. Local mesh refinement and mesh coarsening are supported in our algorithm
by using refinement (Fig. 3(b-c)) and grouping (Fig. 3(d))

@ O0® ~m
(c)

3

E AL R

Fig. 3. Operations used in adaptive hexagon-tree construction. (a) Hexagonal
bounding box; (b-c) Two refinement templates; (d) Grouping; and (e) Strongly
balanced tree construction. The numbers represent the corresponding cell levels.
Hexagons are in even levels, and semi-hexagons are in odd levels.

(d)

Narrow region is another important feature of the input geometry C. A region
is defined as narrow if it contains no more than two elements in one direction after
the adaptive hexagon-tree construction. The detected narrow region will be refined
until all directions contain more than two elements, which guarantees the correct
topology during mesh generation.

3.3 Buffer Zone Clearance

In order to conform the hexagon-tree mesh to the boundary, we delete elements
outside or near the boundary curves so that later we have enough spaces to generate
quads with provable good angles. We call such a procedure buffer zone clearance.
Similar definitions in [11] are utilized here, see Fig. 4(a). A buffer zone is a zonal
area that serves the purpose of keeping the quad mesh distant from boundaries. A
boundary edge is an edge contained in only one element of the hexagonal core mesh,

6 Xinghua Liang and Yongjie Zhang

=

(b)

Fig. 4. Definitions and Criterion 3 in Buffer Zone Clearance. (a) The red curve is
the boundary. A, B, C' and D are boundary points. AB, BC and C'D are boundary
edges. a and 8 are boundary angles. ¥ is a boundary edge angle; and (b) An example
of applying Criterion 3.

e.g., AB, BC and CD. One boundary edge consists of two boundary points, two
neighboring boundary edges form a boundary angle, and a boundary edge angle is
the angle formed from the boundary edge to the boundary which cannot cross other
edges. E.g., @ and (3 are two boundary angles, and v is a boundary edge angle.

Three criteria are applied to adaptive hexagon-tree construction, and then a
hexagonal core mesh and a buffer zone are created, see Fig. 2(c). The buffer zone is
filled with quads with all angles within [60°-¢, 120°+¢]. These three criteria are:

1) Any elements outside the regions to be meshed are deleted;

2) Any elements intersecting with the given curves C are deleted;

3) If the shortest distance from any vertex to the boundary is less than a pre-
defined threshold e, all elements sharing this vertex are deleted. Here we choose
s = smax(s;), where s; is the size of the i*" element sharing this vertex. Fig. 4(b)
shows an example of applying Criterion 3.

3.4 Template Implementation

After buffer zone clearance, the boundary angles of the core mesh are among
{60°,120°,180°,240°,300°}, and the boundary edge angles are within [0°,180°].
In order to generate good-quality elements around the boundary, we design the fol-
lowing three operations to improve the boundary angles and boundary edge angles.

Boundary angle improvement: For any boundary angle 60°, we delete the
larger element sharing this boundary angle. For any boundary angle 300°, we delete
the element containing this boundary angle. Finally, for any two neighboring bound-
ary angles 240°-240°, we delete the element containing them. Now the boundary
angles are among {120°,180°,240°}.

Self-intersection avoidance: In the following first buffer layer construction, we
will use angular bisectors of the boundary angles to construct new elements. To avoid
element self-intersection, we check all the possible combinations among the improved
boundary angles {120°,180°,240°}. For a pair of boundary angles, there are 32=9
combinations in total. However, 120°-240°, 180°-180° and 180°-240° never cause
self-intersections as shown in Fig 5, and 240°-240° has been removed in Operation
1 (boundary angle improvement). Considering symmetry and complementary of the
boundary angles, only 120°-120° and 120°-180° are left. For each of them, we divide
it into two groups since we will implement different templates on them. Therefore,
there are a total of four combinations which may introduce self-intersections: 120°-
120°-120°, 120°-120°-(180° or 240°), 120°-180°-120°, and 120°-180°-(180° or 240°).
The developed templates for these four combinations are shown in Fig. 6. In Fig.
6(d), if |CC’| > 2|BC|, we add a parallelogram ABCD to avoid self-intersections.
From Fig. 6, it is obvious to observe that all the newly generated edges are parallel
to the existing ones. Therefore, the boundary angles and boundary edge angles are

Hexagon-Based All-Quad Mesh Generation 7

180° 2407

(a) 120°-240° (b) 180°-180° (c) 180°-240°

Fig. 5. Three combinations that never cause self-intersection in our algorithm. Dash

lines are angular bisectors.
= A - A

o iy <

(a) 120°-120°-120°) 120°-120°-(180° or 240°)
a/120 0° 1_2%\ / | —\ \j\ \
a d
120° 180 120° h ; b \ ; E
‘ al=d

) 120°-180°-120° 120° 180°- 180O or 240°)

Fig. 6. Four templates to avoid self-intersections.

still among {120°,180°,240°} and [0°,180°], respectively. Note that the boundary
angle pair 120°-120° is eliminated, see Fig. 6(a-b).

Boundary edge angle improvement: To improve the boundary edge an-
gles, we first check two boundary angles 120° and 240°. For each boundary angle
120° as shown in Fig. 7(a), if |AA'| > |BB’| or |CC’| > |BB’|, we add a paral-
lelogram ABCD. Similarly, for each boundary angle 240° as shown in Fig. 7(b), if
|AA'| < |BB'| or |CC'| < |BB’|, we add a parallelogram BC' DE. We keep doing this
until these two cases vanish at the boundary of the core mesh. After that, Operation 2
(self-intersection avoidance) may be applied again to remove self-intersections. Since
the newly generated edges are parallel to the existing ones, the boundary angle at
Point C is also 120°, see Fig. 7(a). Then we have |CC’| > |DD’'| & |CC'| > |EE'|.
The worst boundary edge angle happens when |[CC’| = |DD’| or |CC’'| = |EE'|,
which results in a 60° angle for the boundary edge CD or CE. Similarly for the
boundary angle 240° in Fig. 7(b), the worst boundary edge angle is also 60°. The
boundary angle 180° performs as a straight line, which finally connects to either the
boundary angle 120° or the boundary angle 240°, so its worst boundary edge angle
is the same, 60°. Therefore after template implementation, the boundary edge angle
range is improved from [0°,180°] to [0°, 60°].

Remark: In summary, all the element angles in the hexagonal core mesh are either
60° or 120°. After template implementation, all the boundary angles are among
{120°,180°,240°}, and all the boundary edge angles are within [0°, 60°].

8 Xinghua Liang and Yongjie Zhang

i i
! 1 D, /
N -Am_al
\ | 1 /
120° 180 120°
B C B C E
(a) 120° (b) 240°

Fig. 7. Boundary edge angle improvement.

3.5 First Buffer Layer Construction

To fill the buffer zone with guaranteed-quality quads, we firstly generate the first
buffer layer. For each boundary point in the core mesh, we use angular bisectors to
calculate a corresponding point inside the buffer zone called the first buffer point.
Then, each pair of neighboring boundary points and their first buffer points construct
a quad. All these new quads form the first buffer layer as shown in Fig. 2(e).

Here is the algorithm to calculate the first buffer points. As shown in Fig. 8(a),
the boundary point B is shared by two boundary edges AB and BC with corre-
sponding boundary edge angles. We choose the larger boundary edge angle ¢, and
draw its angular bisector. We also draw an angular bisector of the boundary angle
at B. These two angular bisectors intersect at B’ which is the first buffer point of B.
If the larger boundary edge angle 1 is small (e.g. < 10°), then we just project point
B to the boundary, and choose the middle as B’. Using all the boundary points and
their first buffer points, we form the first buffer layer inside the buffer zone.

Lemma 1: All the element angles in the first buffer layer are within [60°-¢,120°+¢],
where € < 5°. After the first buffer layer construction, the boundary edge angle range
becomes [0°,30°].

Proof: To simplify the proof, we first assume that the boundary curve around each
boundary edge is a straight line. In Fig. 8(a), A" and B’ are the first buffer points
corresponding to the boundary points A and B, the boundary angles at A and B
are 2« and 283, and the boundary edge angle of AB is 1. Suppose A" and B’ are on
the angular bisector of ¥. After template implementation, the boundary edge angle
¥ € [0°,60°], and the boundary angle combinations of 120°-120° and 240°-240° are
eliminated. Therefore suppose o < 3, we have 2a € {120°,180°} or « € [60°,90°],
203 € {180°,240°} or B € [90°,120°], and ¢ = v /2 € [0°,30°]. Then, we can get
0 =180° — a — ¢ € [60°,120°], and v = ¢ + (180° — 3) € [60°,120°]. In summary,
all the angles of the quad ABB’A’ are within [60°, 120°]. However, considering that
the boundary curve has a small perturbation ¢ < 5°, we relax the angle range to
[60°-g,120°+¢]. Finally, after the first buffer layer construction, the new boundary
edge angle range becomes half of the original one, [0°,30°]. ¢

(a) (b)

Fig. 8. Two buffer layers. (a) First buffer layer; and (b) Second buffer layer.

