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Abstract. A general-purpose algorithm for mesh optimization via node-
movement, known as the Target-Matrix Paradigm, is introduced. The algo-
rithm is general purpose in that it can be applied to a wide variety of mesh
and element types, and to various commonly recurring mesh optimization
problems such as shape improvement, and to more unusual problems like
boundary-layer preservation with sliver removal, high-order mesh improve-
ment, and edge-length equalization. The algorithm can be considered to be a
direct optimization method in which weights are automatically constructed to
enable definitions of application-specific mesh quality. The high-level concepts
of the paradigm have been implemented in the Mesquite mesh-improvement
library, along with a number of concrete algorithms that address mesh quality
issues such as those shown in the examples of the present paper.

1 Motivation

A significant fraction of modeling and simulation software provides nu-
merical solutions to partial differential equations via discretization methods.
Not only do the equations themselves need to be discretized, but so does
the domain on which the problem is defined. PDE software often uses mesh
generation for this task. Sometimes the meshes are generated off-line before
the PDE simulation and sometimes the meshes are generated dynamically or
adaptively as the calculation proceeds. In either case, the quality of the mesh
is an important consideration because poor quality can impact accuracy, effi-
ciency, and in the worst case, can invalidate or prematurely terminate the cal-
culation. There are a variety of mesh generation methods, some giving better
quality than others, depending upon the circumstances. Unstructured hexahe-
dral mesh generation is probably the least successful in terms of guaranteeing
quality, but tetrahedral and structured methods can also create meshes with
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quality issues. As a result, a considerable number of post-processing tech-
niques have been devised to improve the quality of an existing mesh. Some
of these methods change mesh topology, some change mesh vertex positions,
and some change both. Because the methods for changing mesh topology and
for changing vertex positions are quite different, it is wise, in the interest of
progress, to investigate the best possible technologies in each of these areas,
both separately and together. In the present work, a new paradigm for chang-
ing mesh vertex coordinates via numerical optimization is described.

The Target-matrix Paradigm has evolved gradually over the past four
years; forerunners of the paradigm can be found in [25], [26], and [27]. With
funding provided by DOE’s Office of Science, the Paradigm has in the last four
years been formalized and has undergone rapid elaboration to ensure that it
is well-formulated, complete, and powerful. Unfortunately, there is not space
in this paper to describe all of the mathematical details in the Paradigm;
this is done elsewhere in a series of reports spanning over two hundred pages
[16]-[24].1 Development of the Paradigm is on-going, with additional emphasis
now on demonstrations of its capabilities [28]. Our purpose in this paper is to
acquaint the reader with the basic motivation for the Target-matrix Paradigm
(this section) and with the high-level concepts it entails (next section). To il-
lustrate the potential of the paradigm, this paper ends with some examples
of canonical problems to which it has been applied, with some success.

Our research into mesh quality optimization takes into account several
aspects of the mesh quality problem, beginning with the fact that the node-
movement algorithms are intended to be permanent fixtures in the Mesquite
mesh quality software library [1]. Since Mesquite must be able to deal with
a wide variety of mesh types (e.g., structured, unstructured, 2D, 3D, surface,
simplicial, non-simplicial, hybrid, meshes with hanging nodes, polygonal or
polyhedral elements, and/or high-order nodes), we seek algorithms that are
largely independent of mesh type. This avoids having to write a lot of special
case code.

Moreover, Mesquite must also be able to handle a wide variety of meshing
contexts (e.g., as a stand-alone post-processor, as a library linked to either
mesh generation software or to a physics application code, both serial and
parallel mesh optimization, meshes with or without associated geometry, and
so on). It is thus desirable that the optimization algorithms be transparent to
these contexts, as far as possible.

It is not claimed that the present algorithms (or the Mesquite software)
have fully addressed all these mesh types and contexts as yet, but rather
that these requirements have been kept in mind during the course of the re-
search and that this has already enabled mesh optimization in a wider variety
of contexts than has been previously achieved. Example 3.4, given later in
the paper shows, for instance, that it is possible using the new approach to

1Eventually these reports will become either archive journal papers or part of a
monograph on mesh optimization.
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smooth meshes consisting of quadratic finite elements. The draw-back to all
this flexibility, of course, is that the implementations in the Mesquite code,
while efficient, are not as efficient as they could be if they were to address
only a single mesh type or a single context. However, flexibility is consistent
with Mesquite’s dual mission to serve both as a vehicle for mesh optimization
research and as a mesh improvement service for applications. In the latter
case, it is convenient to have Mesquite available so that potential solutions
can be tried quickly. If a Mesquite algorithm proves successful on the appli-
cation problem, one can either accept the inefficiency and move forward (this
happens surprisingly often), or, one can re-code the particular algorithm in
their own code, in a more efficient, but less flexible manner (this is possible
since Mesquite is open source and because many of its algorithms are or will
be documented in various publications).

Because meshes are used in many different physical applications such as
heat transfer, fluid dynamics, structural mechanics, electro-magnetics, and
many others, mesh quality issues can arise within each of these areas. Thus,
mesh optimization is a cross-cutting technology in the sense that it can be
applied to all of these areas, often with good effect. At the same time, mesh
optimization is not a monolithic technology in the sense that there is only
one mesh quality issue or only one issue that can potentially be addressed.
In fact, mesh optimization can and has addressed a variety of mesh quality
issues, either separately or together. For example, while each of the applica-
tions mentioned above may benefit from ‘shape improvement,’ they may also
benefit from mesh optimization algorithms having different purposes such as
‘smoothness’, size-adaptivity, anisotropic-adaptivity, mesh updating on de-
forming geometric domains, ALE rezoning, sweep-smoothing, and other such
canonical mesh quality issues. Thus, a second aspect of mesh quality that this
research considers is how to address the wide variety of canonical mesh quality
issues via mesh optimization techniques, within a unified paradigm.

Finally, it is evident from the previous paragraphs that to address all of
these mesh types, contexts, and canonical problems within a single code such
as Mesquite could potentially create a disparate collection of algorithms and
data structures, resulting in both a maintenance headache and considerable
conceptual uncertainty as to how the algorithms are related, not to mention
whether they are all well-posed. The third aspect of this research is thus to al-
leviate this problem by developing and analyzing a mathematical framework
for mesh optimization that develops this subject systematically, and in full
generality, so that one has a coherent way of thinking about many of these con-
texts and problems. Moreover, the framework should enable relatively rapid
delivery of solid new algorithms as they are needed. The framework that we
propose is called the Target-Matrix (Optimization) Paradigm (or TMOP for
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short)2 As one might guess from the name, certain matrices called ’targets’
play a central role in the theory.

The Target-Matrix Paradigm is closely related to the class of mesh opti-
mization methods known as ’direct methods’. A ’direct optimization’ method
is one in which the formulation is made directly in terms of quantities repre-
senting mesh entities: length of edges, area/volume of elements, angles, and so
on. Examples of other direct methods include [2], [3], [4], [5], and [6], among
others. In contrast, indirect mesh optimization methods are formulated in the
continuum, such as variational grid generation and partial differential equa-
tion methods (e.g., [7], [8], [9], [10]). There are some advantages to the direct
methods which have attracted our attention to this approach. In practice,
meshes are never taken to the limit of the continuum; one is always working
with entities in a finite dimensional space. This suggests that one construct
mesh optimization theories in the space in which the mesh itself lives. More-
over, finite dimensional spaces are much easier to deal with in mathematics
than with infinite dimensional spaces; therefore theoretical progress can some-
times be much faster in the former case. As another consideration, while some
indirect methods have associated proofs that show the solutions to the con-
tinuum equations give mappings which are everywhere invertible (and this is
an excellent result) it does not necessarily mean in practice that the finite di-
mensional meshes that one works with will be non-inverted, because the proof
only holds in the asymptotic limit [11]. On the other hand, if an analogous
result were to be proved in a finite dimensional space, such as that provided
by direct methods, then it would apply to the meshes that are used in prac-
tice. Although TMOP can be classified as a direct method, it differs strongly
from other direct methods in that it aims at the full spectrum of mesh types,
contexts, and canonical problems. As will be seen in the next section, to ad-
dress this need for flexibility, TMOP has a number of unique features.

The term ’paradigm’ is used here in the sense that a certain world-view

or way-of-thinking about mesh optimization is taken that involves the use of
Target-matrices to describe the optimal mesh. This approach is considerably
different from other direct node-movement methods which, for the most part,
have failed to fully exploit the idea of target or weighting functions.3 However,
there are other optimization methods which can be considered paradigms in
the same sense as we use here. Most of these other paradigms come from
early papers on the Indirect Methods. Prime examples of other mesh opti-
mization paradigms include Harmonic Maps [13], the elliptic grid generators
[14], and Laplace-Beltrami systems [15]. The idea in each of these paradigms
is the same: address a variety of canonical mesh quality issues within a sin-

2Regrettably, the natural acronym for the Target-matrix Paradigm is TMP,
which has the connotation of temporariness, which we hope is not the future of
this method.

3There also exist methods of mesh adaptation via mesh modification which use
metric tensor weightings (see [12] for a general discussion).
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gle theory, through the use of weighting functions, scalars, and/or matrices.
The emphasis in all these paradigms is not on quality metrics (they primar-
ily use only one metric), but on the construction of the weighting functions.
TMOP uses the same idea, but differs from these other paradigms in several
respects. First, TMOP is a direct method, so that the results hold on discrete
meshes, not just in the asymptotic limit. Second, the method is transparent to
mesh type. Third, the theory of target-matrix construction is well-developed
in TMOP and contains some new ideas on how to do the constructions. Since
many of the older paradigms were proposed prior to unstructured meshing,
and prior to advances in computer science, they are somewhat out of date
with respect to current meshes, contexts, and canonical problems. In con-
trast, TMOP addresses many mesh quality issues in a modern setting.

2 Review of the Target-matrix Paradigm

The present section constitutes an introduction to the high-level concepts
of TMOP, their purpose, how they are related, and how they meet the need
for flexibility.

As in the Finite Element Method, one begins the theory by defining a set
of local mappings from points Ξ in the master element(s) to points X(Ξ)
belonging to the elements of the mesh that is to be optimized (the latter is
called the active mesh). The mappings are most commonly those from linear
finite elements, but can be more general if needed. If the active mesh consists
of only one element type, then the mappings can all have the same functional
form, e.g., the bilinear map from a square to a quadrilateral. If the active
mesh contains more than one element type (e.g., triangles and quadrilater-
als) then more than one mapping form is required. Although the form of the
mapping may be the same from one element to another, the exact mapping
on each element can differ because the mapping depends on the coordinates
of the vertices which define the particular element. Non-linear mappings are
also allowed, for example, in the case of high-order finite elements. Thus, every
element in the mesh has an associated mapping; in Mesquite these mappings
are defined by default so that usually the user has very little work to do. The
fact that TMOP most often uses finite element mappings to measure and con-
trol mesh quality does not mean that the application must be a finite element
calculation.

In addition to the mappings, TMOP requires that a set of sample points

within the master element(s) be defined. Let the sample points within the
master element be denoted by {Ξk}, k = 0, 1, . . . ,K − 1. The corresponding
points in the active mesh elements are {Xk} where Xk = X(Ξk). Typically,
the sample points are located at the corners of the master element if the ele-
ment is linear, otherwise they may also be located, for example, at mid-edges,
mid-faces, and/or mid-elements. TMOP thus requires that, in the formulation



6 Patrick Knupp

stage of the optimization, one define a set of mappings and sample points over
all the elements of the mesh. This is not as daunting as it sounds because the
mappings are usually of the same form for each element in the mesh (unless
it contains more than one element type) and thus there is only one master
element that is used for every element in the active mesh. The sample points
are usually located at the corners of the master element if the mapping is
linear, so most of the time, there is little need for user input here.

The mappings are required to be differentiable so that their Jacobian ma-
trix ∂X/∂Ξ exists at the sample points. For short-hand, we denote this Jaco-
bian matrix by the symbol A, which refers to the Jacobian of the map from the
master element to an element in the active mesh. For non-simplicial elements,
the Jacobian matrix varies from point to point within the master element, as
a function of Ξ. We denote by Ak the Jacobian matrix evaluated at sample
point k; thus Ak = A(Ξk) is the active Jacobian matrix at a sample point.
The matrix is indirectly a function of the coordinates of the vertices which
define the mapping. The Jacobian matrix also varies from one element to the
next; for clarity, the element dependence has been suppressed in the notation
used above. Note that these matrices are very small; for a 2D mesh element,
the active matrix is just 2 × 2. Mappings, sample points, and the local Jaco-
bian matrix within TMOP are discussed more fully in [16].

Target matrices play a critical role in TMOP because they define the de-

sired Jacobian matrices in the optimal mesh. Target matrices are not optional,
but must be constructed prior to the mesh optimization step in order to obtain
a well-posed problem. Targets force the user/customer to supply a high-level
definition of quality, derived from one of the canonical mesh quality issues
(like those mentioned in the previous section). For every sample point k in
the mesh, the target paradigm thus requires two matrices, forming a pair:
the Jacobian matrix Ak derived from the active mesh and the Target (or
reference-Jacobian) matrix Wk. Because every sample point can have a dif-
ferent Target-matrix, supplying this information would seem to constitute an
enormous burden on the user. However, TMOP describes various automatic
target construction algorithms that take the high-level quality definition and,
using other available data, create the low-level target-matrix datasets (see
[22]). This is possible, in part, due to the use of the QR-factorization, which
enables one to separate out quality into four matrix factors called Size, Orien-
tation, Angle, and Aspect Ratio. As with other mesh optimization paradigms,
construction of targets remains somewhat of an art, but in TMOP is made
more tractable for two reasons. First, the targets are based on the Jacobian
matrix of the desired optimal mesh and thus have a simple geometric inter-
pretation. Second, the target construction method can make partial use of
the initial mesh (the one to be optimized). The initial mesh is nearly always
available, and, in most other optimization methods, is ignored, even though
it often contains valuable information.

For clarity, the sample point indices are often suppressed in much of the
remainder of this presentation. Let A and W at some sample point be defined.
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Because the construction of targets is under our control, we can assume that,
for every target, det(W ) 6= 0 and thus W−1 exists. The weighted Jacobian

matrix T , defined by T = AW−1, is heavily used in TMOP because, if the
target matrix W has units of length (as does A), then T is non-dimensional
and provides a convenient scaling of A.

Next, a set of local quality metrics is needed. Let Md be the set of d × d
matrices with real numbers as elements. To this point the matrices A, W , and
T in the paradigm are either 2 × 2 or 3 × 3, reflecting the dimension of the
elements in the mesh. A local quality metric µ = µ(T ), which is a function
from Md to the non-negative numbers, measures the relationship between A
and W . Several particular relationships are of interest

• A = W or, equivalently, T = I. When the two Jacobian matrices satisfy
this relationship, the active matrix matches the target-matrix. In that case,
the Size, Shape (i.e., Angle and Aspect Ratio), and Orientation properties
of the Target-matrix also reside in the active-matrix. Local metrics which
attempt to enforce this relationship, such as µ = |T − I|2F , are thus called
Size+Shape+Orientation metrics.4 The relationship is enforced because
µ ≥ 0, so that µ = 0 is the ideal value. In fact, µ = 0 if and only if T = I.

• A = RW or, equivalently, T = R, with R a non-specified rotation ma-
trix. When the Jacobians satisfy this relationship, the Size and Shape
properties of the Target-matrix are also found in the active-matrix, while
the orientation is not in general. Local metrics which attempt to enforce
this relationship, such as µ = |T t T − I|2F + (det(T ) − 1)2, are thus called
Size+Shape metrics. The relationship is enforced because µ ≥ 0, so that
µ = 0 is the ideal value. In fact, µ = 0 if and only if T = R.

• A = sRW or, equivalently, T = sR, with R a non-specified rotation ma-
trix, and s is a non-specified positive scalar. When the Jacobians satisfy
this relationship, only the Shape properties of the Target-matrix reside
in the active matrix, while Size and Orientation may not. Local metrics
which attempt to enforce this relationship, such as µ = |T |F |T−1|F (con-
dition number), are thus called Shape metrics. The relationship is enforced
because µ ≥ d when T ∈ Md, so that µ = d is the ideal value. In fact,
µ = d if and only if T = sR.

Depending on which of the canonical mesh quality issues one wants to ad-
dress, one may want to use a Shape Metric, a Size+Shape metric, or a
Size+Shape+Orientation metric. In any case, these are the main quality met-
rics used in TMOP, along with their barrier forms (which are used to enforce
positive Jacobian determinants). Thus TMOP focuses mainly on Target con-
struction and not so much on devising different quality metrics. Properties of
these local metrics, such as convexity, are studied in [17], [18], and [19].

Putting this all together, an objective function, typically of the form

4| · |F is the Frobenius matrix norm.
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F =
1

N

N
∑

n=1

µ(Tn)

(where n is the sample point index and N is the total number of sample
points), is minimized as a function of the coordinates of the free vertices to
find the optimal mesh. The optimization is often constrained by fixing the
position of some or all of the boundary vertices. In other cases, boundary
vertices may be moved in directions tangential to the under-lying geometric
curve or surface. The sum in the objective function can include all the sample
points in the global mesh or only those within a local patch (if one is doing
local patch smoothing).

A generalization of the objective function above, based on the Power Mean,
permits better scaling, as compared to using an `p norm [16]. Part of the gen-
eralization includes trade-off coefficients which can be used to emphasize local
quality in one location in the mesh more than in another [24].

Surface mesh optimization in TMOP requires special treatment since the
active Jacobian matrices are not square (they are 3x2) and thus lack determi-
nants, traces, and other properties used in the 2D and 3D element theories.
Research on this topic is found in [23].

The above optimization problem, applied to most meshes, cannot usu-
ally be solved without resorting to iterative numerical methods. For the most
part, standard methods for large-scale multi-variable optimization of contin-
uous variables are used to solve the TMOP optimization problem.

This completes the high-level description of the paradigm. Comparing
TMOP to other direct methods for mesh optimization, one sees that

1. The other methods do not use mappings or sample points. Therefore, they
cannot easily deal with the wide variety of mesh and element types, nor
can they avail themselves of the fundamental object in meshing, namely
the Jacobian matrix.

2. The other methods fail to make significant use of target-matrices or
weighting functions. Therefore, they cannot easily address more than one
canonical mesh quality issue. Most of the previous direct methods were
aimed at controlling mesh smoothness, area, and/or angles (or some com-
bination thereof) and cannot be applied to the examples shown in the
next section.

3. The other methods do not use matrices and thus cannot take advantage
of the extensive mathematical and numerical theories of matrices which
have been developed over the past two centuries. In contrast, TMOP uses
ideas from matrix factorizations, matrix norms and inequalities, inverses,
eigenpairs, special matrix types, and more.

4. The other methods fail to significantly use scaling methods to properly
scale their metrics and objective functions, whereas TMOP does this via
the Power Mean, the use of AW−1, and trade-off coefficients.
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5. While other direct methods must combine several objective functions to-
gether in order to achieve simultaneous control of length, area, and angles,
TMOP can do this using only one objective function because it controls
all these propoerties via a single target-matrix. Thus TMOP avoids the
need to determine the proper weighted combinations of the different ob-
jective functions (which remains an open question) in order to properly
scale the problem.

6. The other direct methods fail to use trade-off coefficients and thus cannot
trade off quality in one part of the mesh against another part.

7. The set of canonical mesh quality issues addressed by TMOP is much
broader than in the other direct methods. For example, while the latter
mainly focus on smoothness, area, and angles, TMOP can additionally
focus on mesh adaptivity, anisotropic smoothing, mesh alignment with
vector fields, ALE rezone, and considerably more.

Although the other direct methods can sometimes be well-suited to particular
problems, they are much less flexible and powerful than TMOP, as one would
expect since they do not use the concepts described in this section.

3 Selected Application Examples

In this section, numerical examples are given to illustrate some of the di-
versity of mesh quality issues that TMOP can address. One can also consult
[28] for an example involving deforming geometry.

3.1 Shape Smoothing of a Surface Mesh

One of the simplest applications of TMOP is that of improving the shape of
mesh elements, shape being a combination of element angles and aspect ratios.
The initial mesh shown on the left side of Figure 1, consists of triangular
elements on a sphere. The elements of the initial mesh vary in shape and
size. The shape-improvement goal is to make all of the elements as close to
equilateral as possible. This is accomplished in TMOP by (1) using a Shape
metric (such as condition number) and (2) constructing the Target-matrix
which represents an equilateral triangle.

W =

(

1 1
2

0
√

3
2

)

The target-matrix in this particular problem is the same at each sample point
of the mesh and the sample points are located at the centroid of each element.
The linear triangle map is used. Because the Shape metric is Size+Orientation
invariant, one needn’t consider scaling of the target to achieve any particular
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edge-length nor does one need to consider orientation. A series of transfor-
mations described in [23] converts the 3 × 2 Jacobian matrix A into a 2 × 2
matrix so that it can be combined with W2×2 in order to form T2×2. The
optimal mesh on the right in Figure 1 shows the result of optimization with
this target - the elements are nearly equilateral.

Fig. 1. Triangle Mesh Shape Improvement on a Sphere:

Initial Mesh (Left), Optimal Mesh (Right)

3.2 Sliver-removal for a viscous CFD Mesh

Figure 2 shows a tetrahedral mesh created by the VGRID code [29] for a CFD
problem involving a viscous boundary layer.5 A closeup showing the boundary
layer mesh is given on the right side of the picture. The mesh has good quality
in the boundary layer, but unfortunately contains sliver elements in the far-
field. The goal in this problem is to improve the shape of the sliver elements
while preserving the boundary layer mesh, and retaining the good elements in
the size-transition region between the boundary layer and far-field. Elements
in the optimal mesh should be non-inverted. Boundary vertices are permitted
to move while constrained to their geometry.

In this problem there are two goals, one to preserve part of the initial mesh
and one to create better-shaped elements in another part of the initial mesh.
Target-matrices for preserving the initial mesh are easy to construct: simply
set Wk = (Ak)initial and use the metric µ(T ) = |T − I|2F . Likewise, Target-
matrices corresponding to equilateral tetrahedra are easy to construct, and
these, along with a Shape metric will tend to create well-shaped tetrahedral
elements. The main optimization issue is then: how to blend these two different
sets of Target-matrices in various portions of the mesh? Our solution is not
to blend the matrices, but rather to blend two quality metrics. Thus, the
objective function in this problem was

5All figures in this example courtesy of Jan-Renee Carlson, NASA-Langley.
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F = F1 + F2

F1 =
∑

k

ck

( |T1|3F
3
√

3 det(T1)
− 1

)

F2 =
∑

k

(1 − ck) |T2 − I|2F

T1 = A(W1)
−1

T2 = A(W2)
−1

where F1 is the shape-improvement term and F2 is the preservation term.
W1 corresponds to the equilateral tetrahedron and W2 is based on the initial
mesh, as described above and ck is a trade-off (or blending) coefficient. To be
precise,

ck =
1

1 + e−0.4394(dk−135)

where dk is the maximum dihedral angle (in degrees) in the kth tetrahedral
element (and sample point) of the mesh.6 The trade-off coefficient forms a
logistic curve in the dihedral angle; it is nearly zero when the dihedral angle
is less than 135 degrees and nearly one when the dihedral angle is greater than
135. Thus, shape improvement will tend to be emphasized in elements with
large dihedral angles, while preservation will be emphasized on the others.
Figure 3 (left side) explains why this particular functional form was chosen:
a histogram plot showing the number of occurrences of the pair (maximum,
minimum) dihedral angle within the mesh was created by Carlson. Exam-
ination of this plot showed that sliver elements tended to occur when the
maximum dihedral angle exceeded 135 degrees, whereas the viscous elements
occurred for the combination of small minimum and small maximum dihedral
angle. Use of such a plot allowed us to avoid having to construct a blending
function based on spatial coordinates of the meshed regions (a considerably
more difficult endeavor).

With this construction, F1 (shape-improvement) is emphasized on the
large max. dihedral angle elements, and F2 (preservation of initial mesh) else-
where. Figure 3 (right side) shows two scatter plots overlaid, one for the initial
mesh, and one for the optimal mesh. The plot shows that the sliver element
region is nearly vacant in the optimal mesh. Moreover, the boundary layer
mesh was preserved during the optimization. This solution was not hit upon
immediately, but the flexibility of TMOP allowed us to try out a number of
ideas fairly quickly as the described approach was developed. As this example
shows, choosing the blending functions is as much of an art as is constructing
target-matrices. Never-the-less, it was possible to find a suitable function after
a modest amount of experimentation.

6The constant 0.4394 was determined by requiring that ck = 0.9 when dk = 130
degrees.
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Fig. 2. Initial Tetrahedral CFD Mesh from VGRID:

Whole Domain (Left), Zoom to Boundary Layer Mesh (Right)

Fig. 3. Maximum vs. Minimum Dihedral Angle Scatter Plots:

Initial Mesh Showing Viscous and Sliver Regions (Left), Overlay of Initial and
Optimal Meshes (Right)

3.3 Optimizing the Quality of Higher-order Node Meshes

Higher-order finite elements are defined via nodes/vertices located not only
at the usual element corners, but also at mid-edge, mid-face, and mid-element
locations. The addition of these extra nodes enables the use of quadratic and
higher-order mappings that allow greater accuracy for the same number of
elements. In terms of mesh generation, higher-order finite element meshes are
frequently generated by first creating linear element meshes and subsequently
adding the extra nodes. For interior elements, the extra nodes are placed at
the geometric mid-point of an edge, face, or element. For boundary elements,
however, the extra nodes must conform to the under-lying geometry in order
to maintain higher-order accuracy. To do this, mesh generation codes often
’snap’ the extra nodes near the boundary to the geometry via a normal pro-
jection operation. Usually this works fine but, if the mesh is coarse compared
to the local geometric curvature, so-called ’inverted’ elements can be created
by the projection step. An example of this is shown in Figure 4 (left side):
all of the triangles have straight sides except those on the boundary. Some of
the boundary triangles have curved edges which cross the domain boundary
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and are thus inverted (see triangle on bottom boundary just to the right of
center). Such inverted elements must be removed or fixed before the finite
element simulation can proceed.

There are various ways to fix the inverted elements in higher-order meshes,
including re-meshing, refinement, node-insertion, and element-swapping (see,
for example, [30]). Missing from this list, until now, is mesh optimization via
higher-order node-movement. In this context, TMOP can attack this problem
via the use of sample points. In the example given here, sample points were
placed both at the three element corners and at the three mid-edge locations
of every element in order to control the active Jacobian matrix at these loca-
tions. The goal is to optimize the initial mesh via movement of the mesh node
and vertex coordinates at all of the sample points. The result, of course, will
be a triangle mesh having curved sides, even in the interior.

A two-stage optimization procedure was used. In the first stage we sought
to produce a non-inverted mesh. This was accomplished using a Target-
matrix corresponding to an equilateral triangle whose area was the same as
the area of a triangle in the initial mesh (they all have roughly the same
area). The local quality metric, corresponding to equal-area elements, was

µ(T ) = [det(T ) − 1]
2
. This metric can often, but not always, untangle a mesh.

Luckily, on this problem, the optimization in the first stage did produce a
non-inverted mesh (see Figure 4 - Center). The elements in the non-inverted
mesh have highly-curved edges and the mesh is probably unsuitable for a fi-
nite element calculation. However, since the mesh is non-inverted, this mesh
could be used as the input to the second stage of the optimization, in which
we used a barrier-based Shape metric (condition number) to improve shape
while keeping the mesh untangled. The result is shown on the Right of the
Figure. Elements in the optimal mesh in the second stage are well-shaped and
the mesh is non-inverted; element sides are slightly curved.

This example shows the potential of TMOP to play a role in improving
quadratic and higher-order finite element quality. More details on this work-
in-progress can be found in [31].

Fig. 4. Optimization of Triangle Meshes with Quadratic Finite Elements:

Left: Initial ’Inverted’; Center: ’Non-inverted’; Right: Well-shaped
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3.4 Rapid Delivery of a Custom-Built Smoother

The Target-matrix Paradigm contains a number of high-level concepts such as
active and target matrices, local quality metrics, objective functions and such,
that translate nicely into objects and classes within the Mesquite code. These
have been implemented in Mesquite without having to provide the low-level
details needed to complete any specific mesh optimization algorithm such as
the ones mentioned in the examples here. As a result, it is possible to create
new mesh optimization methods quite rapidly in response to requests from
different application groups. Here, an example is given which came from the
Cubit meshing group. Cubit frequently is used to create unstructured quadri-
lateral meshes via a paving algorithm (see initial mesh on the left of Figure 5).
Although this mesh has nice shape-quality, in which the elements are nearly
square, the application group complained that the mesh contained unneces-
sarily short edges. That is, some edges were about half as long as other edges.
Because the application group was using an explicit simulation code, these
short edges were determining the time-step that was used in the simulations
and thus, the time-step was needlessly small (the Courant condition, which
was used to determine the time-step, is proportional to the minimum edge-
length in the mesh). To fix this issue, Mesquite was asked to optimize the
initial mesh in such a way that these overly short edges were lengthened.

No such smoother was available in Mesquite at the time of the request.
What was clearly needed was a smoother that created equal-length edges in
the mesh (so none would be needlessly small) and, at the same time, main-
tained the near-square shape of the elements. TMOP was able to provide this
capability quite quickly by implementing a concrete target construction algo-
rithm that created the appropriate set of Target-matrices and by selecting the
right local quality metric. Sample points were located at the four corners of
each quadrilateral and the bilinear map applied. Because each quadrilateral
element in the optimal mesh was to be identical (except for orientation), the
set of Target-matrices needed to be the same at each sample point. To meet
the problem requirements, the Target was selected to have the form W = ΛI,
where I is the 2×2 identity matrix and Λ is a positive scalar. The identity ma-
trix represents an element whose aspect ratio (length/width) is 1.0 and whose
angles are ninety degrees; this corresponds to the shape of a square quadri-
lateral. The scalar Λ is related to edge-length in the theory of Target-matrix
construction (see [22]); by making it the same at all sample points, the opti-
mal mesh should have equal-length edges. Specifically, the scalar was set to
the average edge-length in the initial mesh (this computational capability was
already available in Mesquite). Finally, because we did not wish to control
the Orientation of the quadrilaterals in the mesh, we used an Orientation-
invariant quality metric, namely Size+Shape. A concrete target construction
algorithm was added, with minimal effort, to the Mesquite code to create a
target of this particular form. The optimal mesh resulting from these choices
is shown on the right side of the Figure; as one can see, the edge-lengths in the
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optimal mesh are nearly equal, the elements nearly square, and the mesh is
non-inverted. The new capability was delivered to the customer as a Mesquite
wrapper (called from the Cubit code) in a matter of two weeks (of course, it
won’t always be this easy).

Fig. 5. Optimization of Paved Mesh To Increase Time-Step:

Left: Initial Mesh with ’Short’ Edges; Right: Optimized Mesh with Equal Edges

4 Summary

The motivation for the Target-matrix paradigm is derived principally from
the desire to create a general purpose mesh optimization library known as
Mesquite. A general purpose mesh optimization library must be able to handle
the wide variety of mesh types one encounters in computational simulations.
It must also be able to provide solutions to the canonical problems in mesh
quality, for example, mesh untangling, shape-improvement, size-adaptation,
mesh alignment, and more. Without a general mesh optimization paradigm,
these requirements could only be met via an incompatible collection of algo-
rithms that might only be loosely related, resulting in a loss of flexibility and a
software maintenance challenge. The Target-matrix paradigm unifies many of
these requirements through the sample point concept (to handle mesh type)
and via the target-matrix concept (to address different canonical problems).
High-level concepts in TMOP were summarized. A rich mathematical theory
underlying these concepts is under development. The high-level concepts have
been clarified and made more precise, and many important details in target-
construction and the like are described in a series of reports. The numerical
examples given here illustrate the potential of TMOP to impact many canon-
ical problems in mesh quality improvement via node movement. Future work
will expand the list of canonical problems, mesh types, numerical examples,
concrete automatic target-construction algorithms, and the set of high-level
wrappers in Mesquite. Moreover, important extensions of the mathematical
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theory will be developed.
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