
EBMesh: An Embedded Boundary Meshing Tool

Hong-Jun Kim
1
 and Timothy J. Tautges

2

1
Argonne National Laboratory, Argonne, IL, U.S.A hongjun@mcs.anl.gov

2
Argonne National Laboratory, Argonne, IL, U.S.A tautges@mcs.anl.gov

Summary. This paper describes a method for constructing Cartesian
meshes for embedded boundary algorithms by using a ray-tracing tech-

nique. In this approach, each mesh cell is distinguished as being inside,

outside, or on the boundary of the input geometry, which is determined by
firing rays parallel to x/y/z coordinates. The most expensive process of the

embedded boundary mesh generation, an edge-geometry intersection test,

is performed for the group of edges on a fired ray line together, which de-
creases the computational complexity of the whole method significantly.

Produced boundary cells also have edge-cut fraction information and vo-

lume cut fraction information for each material. This work is implemented
to be enable to directly import various CAD-based solid model formats

and as an open-source code to be used easily in many engineering simula-

tion fields.

Key words: Embedded boundary mesh, cut-cell, ray-tracing

1 Introduction

The Finite Element (FE), Finite Difference (FD), and Finite Volume (FV)
methods solve Partial Differential Equations (PDEs) by using different

types of discretization for the spatial domain. FE and FV methods are pop-
ular because they can resolve complicated geometric domains through the

use of body-fitted grids. FD methods are straightforward to implement,

and can achieve higher-order approximations of derivatives on structured
grids, at the cost of those grids being difficult to generate for complex do-

mains. Another class of simulations, based on the Embedded Boundary

method, splits the difference between these by using structured grids on
domain interior, and unstructured polyhedral cells or volume fraction ap-

proximation for cells intersecting the domain boundary [1] [2] [3] [4]. For

this method, the mesh generation challenge is in generating such “Embed-
ded Boundary” grids.

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo
kgruda
Rectangle

2 Hong-Jun Kim1 and Timothy J. Tautges2

Previous methods for generating EB grids rely on computing the intersec-

tion of each cell from a structured Cartesian grid with geometric model
boundaries. Various approaches are used, depending on the representation

of the geometric model boundaries. In the method by Aftosmis et al. [1],

surface triangles of component-based geometries are preprocessed to re-
move interior triangle pairs and break intersected triangles to smaller ones.

Remaining boundary triangles are stored in a special tree structure to re-

duce the time to compute cell-boundary intersections. Cartesian cells
found to intersect this boundary are converted to polygons using intersec-

tion points along cell edges.

With no optimization, the cost for whole triangle-cell intersection test,
which is usually most expensive task, will be approximately ANtN

3
, where

Nt is the number of triangles on the boundary, N is the number of divisions

on each side of the entire Cartesian mesh block. Aftosmis et al. uses opti-
mization to reduce this time; Alternating Digital Tree (ADT) [5] gives a

list of intersection candidate triangles for each cell in logNt time and the

intersection test is performed for the candidate triangles. However, since
the tree search is performed for all N

3
 cells, the approximate scaling beha-

vior of intersection test for the method will be AN
3
logNt.

Colella et al. [2] generate EB meshes by using implicit functions to
represent geometric boundaries of a solid. Interior and exterior regions are

indicated by negative and positive values of this implicit function φ, re-

spectively; the function value is zero on the boundary. Colella et al. incor-
porate the definition of this implicit surface into PDE terms that evaluate

fluxes over cell surfaces (or over the boundary, for cells intersecting the

boundary). Although not explicitly stated, they use recursive subdivision
of the Cartesian space to determine which cell is boundary out of N

3
 cells

and the implicit surface evaluations are performed to them. Therefore, it

appears that the scaling for the whole intersection test is AN
3
logN where

each search is performed in logN time.

In summary, both approaches reviewed here are bounded below by AN
3
,

with the term either logN or logNt. Aftosmis et al.’s implementation is
available under license from NASA, but it is not free for non-government

use. Colella et al.’s method is available as part of the Chombo package [6];

however, the user is responsible for providing an implicit surface defini-
tion based on their definition of the surface boundary. In addition, it ap-

pears that neither method is able to handle domains with multiple mate-

rials, though this feature may be straightforward to implement with either
method.

In this paper, we propose a new EB mesh generation method, with contri-

butions in several aspects. First, our algorithm achieves AN2logNt scaling
performance of cell-triangle intersection test; this reduces the constant fac-

EBMesh: An Embedded Boundary Meshing Tool 3

tor from previous results. Second, our method handles multi-volume as-

sembly models without modification, without repeating cell-surface inter-
sections for surfaces shared by multiple volumes. Third, our method sup-

ports EB mesh generation not only for faceted or triangle-based surfaces,

but also directly from CAD geometries. We demonstrate the robustness of
the method using a variety of geometric models from several simulation

applications.

The remainder of this paper is organized as follows. Section 2 describes
our ray-tracing technique and how it is accelerated to get better perfor-

mance. Section 3 describes the overall procedures for constructing EB

meshes using our ray tracing method. Section 4 shows performance results
of the proposed method with several examples. Section 5 concludes this

paper and suggests further future research.

2 Ray-Tracing Using Hierarchical OBB Trees

Triangle-based ray tracing is widely used in graphics applications, since
most surfaces are visualized as sets of triangular facets. Recently, we have

also used triangle-based ray tracing to support Monte Carlo radiation

transport [7], where radiation is tracked as individual particles propagating
through absorbing media. Our EB meshing procedure is based on the same

ray tracing procedure described in Ref. [7]. This procedure is summarized

below.
The input to our method is a non-manifold geometric model. The model is

specified in the form of a Boundary Representation (Brep), as a collection

of Vertices, Faces, Edges, and Regions, with topological relations between
those entities. Models are accessed through the Common Geometry Mod-

ule (CGM) [8], which is the same modeling interface used by the CUBIT

mesh generation toolkit [9]. We read the facet-based description of the
geometric model, including the topological relationships between the orig-

inal geometric model entities (represented as groups of facets), into the

MOAB mesh database [10]. Ray tracing is implemented in the DagMC li-
brary provided with MOAB.

Since ray tracing accounts for the overwhelming majority of execution

time in Monte Carlo radiation transport, a great deal of effort has been
made to optimize that computation. This work has been reported in [7],

and is summarized below.

Construction of recursive space subdivision structure could be used to op-
timize ray-triangle intersections. However, axis-aligned boxes would have

large volumes for any collection of facets not aligned with coordinate axes,

4 Hong-Jun Kim1 and Timothy J. Tautges2

increasing the likelihood of rays intersecting those boxes. In contrast, box-

es oriented to minimize the extent in at least one box dimension are much
less likely to be hit by a given ray, at the cost of having to transform the

ray into the oriented box coordinate system. We have found that in practice

the savings in ray-box intersections is well worth the cost of ray transfor-
mations.

The advantage of the oriented bounding box for ray-tracing is amplified

when it is combined with hierarchical tree structure, referred to as an OBB
tree. An OBB tree is a binary tree of oriented bounding boxes of polygons.

OBB trees were originally developed to accelerate collision detection

problem in robot motion planning [11]. Tree construction starts from the
root bounding box node encompassing a collection of polygons. The set of

polygons is divided geometrically into two subsets, and a bounding box is

formed for each subset of polygons. The process is repeated until each leaf
box encloses a specified number of polygons. Figure 1 shows an example

OBB tree.

Fig. 1. OBB tree construction

In MOAB's OBBTree representation, the collection of facets for each orig-

inal geometric surface forms the starting point of the OBBTree subdivi-

sion. Once the OBBTree has been formed for the facets from each geome-
tric surface, the root nodes for all surfaces bounding each geometric region

are combined, leaving one OBBTree for each Region in the original geo-

metric model.
Ray tracing on a Region is performed by firing the ray first at the root box

in the tree, first transforming the ray into the coordinate system of that

node. If the ray hits a given node, the procedure is repeated down the tree,
transforming the ray in the process. If any leaf nodes are intersected, the

ray is tested against all triangles in that node. Valid ray-triangle intersec-

tions are returned in order of increasing distance from the ray starting
point.

EBMesh: An Embedded Boundary Meshing Tool 5

3 Embedded Boundary Mesh by Ray-Tracing

Given a facet-based geometric model, and the ability to compute ray-
tracing on that model, it is straightforward to construct an EB mesh gen-

eration algorithm. This algorithm consists of the following steps:

 Initialize the geometric model and hierarchical OBBTree for ray-tracing

 Find the Cartesian box that surrounds all Regions of the model, and its

subdivisions in cells

 Use ray-tracing along cell edges to find cell intersections with geometric

boundaries

 Store the EB mesh on Cartesian cells

These steps are described in the following sub-sections.

3.1 Initializing Geometric Model and Hierarchical OBBTree

Geometric models are imported by using the Common Geometry Module

(CGM) [8]. CGM provides a common interface for interacting with models
stored in a variety of underlying solid modeling engines, including ACIS

[12] and OpenCASCADE [13]. Both these engines support import and

cleanup of IGES and STEP model exchange formats. CGM provides facet-
based representations for each Edge and Face in the geometric model, and

functions for evaluating overall model topology.

The MOAB mesh library [10] uses a data model consisting of mesh enti-
ties (vertices, triangles, etc.), entity sets (arbitrary collections of entities

and other sets), the databased instance, and tags (a named datum assigned

to the previous three data types). Entity sets can have parent/child relations
with other entity sets; these are distinct from the “contains” relations de-

scribed earlier.

We import the facet-based geometric model from CGM into MOAB,
representing each geometric entity using an entity set, and topological rela-

tions between geometric entities using parent/child relations between the

corresponding entity sets. This representation provides the basis for ray-
tracing on the facet-based model.

A hierarchical OBB tree is constructed on the facet-based model in

MOAB, with one tree for each geometric Region set. For simplicity, a sin-
gle tree node is inserted at the top, and linked to the root node for all Re-

gions. The OBB tree provides ray-tracing functions and the coordinates of

a box surrounding the entire OBB tree.

6 Hong-Jun Kim1 and Timothy J. Tautges2

3.2 Building a Cartesian Mesh

After constructing the OBB tree, the coordinates of the top-level box indi-

cate the geometric extents of the model. These coordinates are used to
create a Cartesian mesh encompassing the whole model. The number of

divisions of that mesh in each coordinate direction is computed by using

the number of facets and the box size, or from user input1. The Cartesian
mesh is stored in MOAB’s structured mesh representation [10]; this repre-

sentation requires only about 24MB per million elements in the box, based

on double-precision storage of vertex coordinates.

3.3 Firing Rays

In order to find intersections between cells and the model Faces, rays are
fired along edges of the cells. Since we use an axis-aligned Cartesian

mesh, edges in a column of cells line up into straight lines. A ray trace is

performed along each of these lines, with the starting position of the ray at
the surface of the Cartesian mesh; intersections with the model are re-

turned as distances along that line and surfaces in the model that are inter-

sected. Since we use equal spacing of elements in the Cartesian grid, these
distances can be converted to fractional distances along edges in the grid.

The surfaces intersected are used to assign the model Regions to sections

of edges between intersections, starting with a designation of “outside”,
since the ray begins on the boundary of the Cartesian mesh outside any

model Regions.

Rays are traced in the three coordinate directions, at each interior node on
the corresponding coordinate plane. This process results in ray traces along

all interior edges of cells in the mesh. If the number of divisions on each

side of the box is N, then only a total of 3(N-1)
2
 ray tracing operations is

performed, each operation returning all Face intersections along the ray

(Fig. 2). The second figure in Fig 2 shows ray-tracing covers N edge inter-

section test with a ray.

1
 Scaling numbers discussed in this paper assume a single number of

divisions on all sides for simplicity only.

EBMesh: An Embedded Boundary Meshing Tool 7

Fig. 2. Rays fired in three directions along cell edges, A ray covers N edges

If the intersection test is performed edge (cell) by edge (cell) like in other

methods, abundant tree searching has to be performed to the non-boundary

edges as in Fig 3. The search in the Fig 3 is not stopped until SS (Spatial
Search) 4 block dose not have any facet triangles inside and conform that

the edge is not on the boundary.

Fig. 3. Spatial search is performed for non-boundary edge

Ray-firing function of our implementation returns intersected triangles and

distances from ray starting point. Since OBB tree is constructed for geo-
metry surfaces, it also returns which surface is hit. With these information

and previous edge status, each edge and element is easily determined if it

is inside, outside or boundary to geometry and edge cut fraction informa-
tion can be obtained for boundary elements. To avoid cell by cell job such

as setting all element status, element status default value is set and only the

elements near intersections are considered to the status determination and
have real values.

In rare cases, ray tracing fails to find correct intersections with surfaces

that they should. This failure is due to the use of non-watertight faceting
returned by CGM and precision issues detecting ray-triangle intersections.

8 Hong-Jun Kim1 and Timothy J. Tautges2

Modifying the faceting of a non-watertight geometric model is outside the

scope of this paper, but is reported elsewhere [14] [15]. If the precision is-
sues are detected such that ray intersect triangle edges or vertices, the ray

is displaced slightly and the ray trace is repeated. This strategy fixes all

examples we have seen of this problem. The intersection along this mod-
ified ray is moved to the original edge at the appropriate position, with that

offset very small relative to the cell edge length.

3.4 Storing Information

MOAB allows applications to assign tag values to the entities in a mesh.

Tags are uniquely identified by a name, and are referenced by a tag handle

for efficiency. MOAB provides tags of three storage types: “sparse” tags,
stored in (entity handle, tag value) tuples; “dense” tags, stored as an array

of tag values for contiguous sequences of entity handles; and “bit” tags, in

which each tag value is a user-defined number of bits. Dense tags are more
memory-efficient when assigning a tag to many entities in a mesh. Tags of

all three storage types can be created with default values; for cases where

the majority of entities will be assigned the same value for a given tag (e.g.
all cells on the interior of a solid), a default value eliminates the storage for

this value on those entities.

Fig. 4. An example of edge cut fraction tag information on boundary cell.

The EB mesh generation method described here stores two types of infor-

mation. First, each cell in the Cartesian mesh is marked as inside (0), out-

side (1), or boundary (2), using the 2-bit tag ELEM_STATUS_TAG.

EBMesh: An Embedded Boundary Meshing Tool 9

Second, for cells marked as boundary, the position of intersection along

each edge of the cell must be marked. Although each cell is bounded by 12
edges, only three edges for each cell must be marked, corresponding to the

left, bottom, and front edges; the other edges are marked by neighboring

cells. Edge fractions are measured from the left, front and bottom corner of
boundary cell to x/y/z directions as in Fig. 4.

If a ray hits the boundary from inside to outside, the fraction value is

stored with a negative sign. In contrast, for the case of a ray intersection
from outside to inside, the value is marked as positive. Since multiple in-

tersections can exist in each direction, the

EDGE_CUT_FRAC_LENGTH_TAG is created to store the numbers of
edge fraction values on the x, y, and z edges connected to the bot-

tom/left/front corner of each cell. The EDGE_CUT_FRAC_TAG stores an

arbitrary number of double precision values, listing all the intersection
points along the x, then y, then z edges of a cell. Edges that are completely

outside (inside) the Region are designated with zero (one) for edge inter-

section fractions.
All tags except ELEM_STATUS_TAG are sparse tags, whose default val-

ues are chosen to indicate an interior cell. This tag is assigned explicitly to

boundary and exterior cells. This approach saves substantial amounts of
memory when there is a majority of interior cells, which is usually the case

(since the Cartesian box is chosen to fit the geometric model tightly).

3.5 Calculating the Volume Fraction

Multiple material compositions are required in each mesh cell for many

simulation analyses, such as deterministic radiation transport. As an

approximation to volume fractions within a cell, we use a method similar
to that of Riper [16] [17], where ray tracing is performed on a subdivision

grid over the cell. The volume fraction for a given Region intersected by

the cell is equal to the total ray traversal length in that Region, summed
over all rays fired over the subdivided cell, normalized by the total ray

traversal length over the cell. The volume fraction calculation is performed

by firing sub-rays to 3 directions parallel to x/y/z coordinates in boundary
cell. All ray lengths inside each material geometry are summed and

divided by all fired ray length sum as in equation (1) [17].

FM = (Mj) / (DJ)

FM : fraction of material M in a cell

LMj : ray path length in material M for ray j

J : total number of rays

10 Hong-Jun Kim1 and Timothy J. Tautges2

D : sum of all ray lengths

(1)

The number of divisions in the subdivision of each boundary cell is equal

in our implementation and is assigned by the user.

To store these information for boundary cells, MAT_FRAC_ID_TAG and
VOL_FRAC_TAG are created as sparse tags for each material. Each tag

has an arbitrary number of material ids and volume fractions.

3.6 Export Meshes or Query Function as Library

The Cartesian grid, edge intersection data, and (optionally) volume frac-

tions stored on that grid, can be exported from MOAB in a variety of for-

mats. Alternatively, the data can be queried directly from MOAB by using
existing functions for accessing mesh and tag information.

In addition, in order to avoid the overhead of interacting through files, the

EB meshing method can be linked as a library directly to applications.
Along with functions for specifying the Cartesian box divisions and for re-

questing the generation of the EB mesh, there are several query functions

for retrieving cell inside/outside status, edge-cut fractions and volume frac-
tions of boundary cells. Currently, these functions are planned to be used

for electromagnetic analysis [18] and radiation transport simulation [19].

The API specification for these functions appears in the Appendix of this
paper.

4 Results

The algorithm described in Section 3 has been tested on several example

models of varying complexity. Performance data is measured by using a
Linux workstation with Xeon 3GHz CPU and 16GB of memory.

EBMesh: An Embedded Boundary Meshing Tool 11

Fig. 5. Example model and Cartesian meshes created from many primitives

An example model used to test the method for a model of moderate com-

plexity was created by combining many primitive geometries as in Fig. 5.
Cartesian mesh elements, distinguished as different colors by attached

element status tags, are also shown in the Fig. 5.

Cartesian meshes were produced with different mesh sizes; their computa-
tion times and maximum memory usages are plotted in Fig. 6. Mesh gen-

eration took 4.64 seconds including geometry importing time to produce

10.5 million elements with a maximum memory of 432 MB.

Fig. 6. Timing and memory usage results for multi-primitive model

The next examples are standard STL format files produced by 3D scan-
ning, which have complex boundary representations as in Fig. 7 [20].

12 Hong-Jun Kim1 and Timothy J. Tautges2

Fig. 7. STL 3D “statue” and “horse” models [20]

Figure 8. shows their Cartesian meshes produced by EBMesh.

Fig. 8. Cartesian mesh elements of 3D STL models

Some performance results are also plotted with different mesh sizes in Fig.

9. It takes 6 seconds to produce 11.8 million elements with a maximum

memory of 480 MB for the first statue model and 2.3 seconds for 8.8 mil-
lion elements with a maximum memory of 360 MB for the second horse

model.

EBMesh: An Embedded Boundary Meshing Tool 13

Fig. 9. Timing and memory usage results for “statue” and “horse” STL models

The last example is an accelerator cavity model for the International Linear
Collider (ILC), used to optimize electromagnetic performance of the cavi-

ties by adjustment of geometric design parameters [21]. In Fig. 10, the

model geometries are shown, including the complex higher-order mode
(HOM) coupler region.

14 Hong-Jun Kim1 and Timothy J. Tautges2

Fig. 10. Accelerator cavity models

Their meshed results are shown with different element status in Fig. 11.

Fig. 11. Cavity model mesh results

In Fig. 12, timing results and maximum memory usages are plotted with

different mesh sizes. Mesh generation time is 68.8 seconds for this model,
including geometry loading time for 10.7 million elements with a maxi-

mum memory of 582 MB. Since the cavity model is very complex, the

time for importing, faceting and tree construction takes large portions of
the overall computation time.

Fig. 12. Timing and memory usage results for ILC-coupler cavity model

The complexity of our algorithm is estimated to be scaled by N
2
, as dis-

cussed in Section 3. That is, total computation time can be expressed as T

= A1N
2
logNt + A2Nt + A3. The first term corresponds to the EB meshing

time. The second term is for triangle faceting and tree construction, and

depends mostly on geometric model complexity. The third term is for

EBMesh: An Embedded Boundary Meshing Tool 15

some constant-time jobs involved. When the same input geometry is used

for timing, the second and third terms are constant, with the remaining
time proportional to N

2
. Therefore, a log-log plot of N and meshing time

TM is expected to have slope 2. In Fig. 12, the meshing time for the ILC-

coupler model is plotted when N is increased; it has a slope of approx-
imately 2, as expected.

Fig. 13. Log-log plot of N and meshing time has a slope of 2

5 Conclusions and Future Work

We have presented an embedded boundary Cartesian mesh generation al-
gorithm that produces better performance than traditional EB approaches

for complex geometries. It reduces mesh computation time as much as of

1/N compared with the cell-by-cell method by checking intersections edge
line by line. As a result, all mesh elements are distinguished as being in-

side, outside, or on the boundary of the geometry model. Boundary cells

also have edge-cut information stored as a tag. Optionally, volume fraction
information about each material for boundary cells can be calculated. The

mesh and related information can be written to a variety of mesh file for-

mats or used directly by an analysis program. This work is implemented as
an open-source code in Ref [22].

We envisioned several avenues of future work. For example, it may be

useful to perform adaptive mesh refinement in the region of rapidly chang-
ing curvature geometry. The current volume fraction calculation function

is similar enough to the refinement that we can approach it as a start. With

16 Hong-Jun Kim1 and Timothy J. Tautges2

curvature information directly obtained from geometry, we will produce

better refinement meshes.
Another future activity is generating a hex-dominant mesh by making po-

lyhedral meshes instead of boundary hexes. Combined with OBB, which

makes meshes oriented to natural geometry direction, it may produce
good-quality meshes independent of geometry transformation.

Lastly, parallel implementation of EBMesh and actual CAD surface inter-

section test will be considered for faster and more accurate results.

Acknowledgements

This work was supported by the US Department of Energy’s Scientific

Discovery through Advanced Computing program under Contract DE-

AC02-06CH11357.

References

1. Aftosmis MJ, Berger MJ, Melton JE (1998) Robust and efficient Carte-

sian mesh generation for component-based geometry, AIAA Journal,

36(6), pp 952-960
2. Colella P, Graves D, Ligocki T, Trebotich D, Straalen BV (2008) Em-

bedded boundary algorithms and software for partial differential equa-

tions, SciDAC 2008, Journal of Physics, Conference Series 125
3. Nieter C, Cary JR, Werner GR, Smithe DN, Stolz PH (2009) Applica-

tion of Dey-Mittra conformal boundary algorithm to 3D electromagnetic

modeling, Journal of Computational Physics, 228(21), pp 7902-7916
4. Pattinson J (2006) A cut-cell, agglomerated-multigrid accelerated, Car-

tesian mesh method for compressible and incompressible flow, Ph.D.

thesis, University of Pretoria
5. Bonet J, Peraire J (1991) An Alternating Digital Tree (ADT) Algorithm

for Geometric Searching and Intersection Problems, Int. Journal of Nu-

merical Method and Engineering, 31, pp 1-17
6. Colella P et al. (2009) Chombo Software Package for AMR Applica-

tions Design Document, Applied Numerical Algorithm Group, Law-

rence Berkeley National Laboratory, Berkeley, CA, April
7. Tautges TJ, Wilson PPH, Kraftcheck JA, Simth BM, Henderson DL

(2009) Acceleration Techniques for Direct Use of CAD-Based Geome-

tries in. Monte Carlo Radiation Transport, Proceedings of International

EBMesh: An Embedded Boundary Meshing Tool 17

Conference on Mathematics, Computational Methods & Reactor Phys-

ics, Saratoga Springs, NY, May 3-7
8. Tautges TJ (2005) CGM: A geometry interface for mesh generation,

analysis and other applications”, Engineering with Computers, 17, pp

486-490
9. Sjaardema GD, Tautges TJ, Wilson TJ, Owen SJ, Blacker TD, Bohnhoff

WJ, Edwards TL, Hipp JR, Lober RR, Mitchell SA (1994) CUBIT mesh

generation environment, Volume 1: Users manual, Sandia National La-
boratories, May

10. Tautges TJ, Meyers R, Merkley K, Stimpson C, Ernst C (2004)

MOAB: A Mesh-Oriented Database, Sandia National Laboratories
11. Gottschalk S, Lin MC, Manocah D (1996) OBBTree: a hierarchical

structure of rapid interference detection, Proceedings of the 23
rd

 annual

conference on Computer graphics and interactive techniques, pp 171-
180

12. ACIS 3D Modeling (2010), Spatial Technology Inc.,

http://www.spatial.com/products/3d-acis-modeling
13. OpenCASCADE Technology (2000-2010),

http://www.opencascade.org/

14. He XJ, Chen YH (2006) A Haptics-guided Hole-filling System Based
on Triangular Mesh, Computer-Aided Design & Applications, 3, (6), pp.

711-718

15. Boonma A (2006) Haptic-Based Sharp Edge Retaining and Gap
Bridging Algorithms for Computer Aided Design (CAD) and Reverse

Enineering (RE), Master. Thesis, North Carolina State University

16. Riper KAV (2003) Mesh and Volume Fraction Capabilities in Moritz,
KAV, Workshop on Common Tools and Interfaces for Deterministic

Radiation Transport, for Monte Carlo, and Hybrid Codes (3D-TRANS-

2003), 2003, Issy-les Moulineaux, France, pp 25–26, September
17. Riper KAV (2006), Moritz Geometry Tool,

http://www.whiterockscience.com/moritz.html

18. Stoltz P, Veitzer S, Niether C, Messmer P, Amys K, Cary J, Lebrun P,
Amundson J, Spentzouris P, Kim HJ, Tautges TJ (2010) Recent

Progress in Accelerator Physics Simulations with the VORPAL code,

SciDAC 2010, in preparation
19. Smith B, Wilson PPH, Sawan ME (2007) Three dimensional neutron-

ics analysis of the ITER first wall/shield module 13, 22
nd

 IEEE/NPSS

Symposium on Fusion Engineering-SOFE 07, Piscataway, NJ: Institute
of Electrical and Electronics Engineers Inc.

20. STL files (2000-2010), Jelsoft Enterprises Ltd.,

http://forum.carvewright.com/showthread.php?t=12452&page=2

http://www.spatial.com/products/3d-acis-modeling
http://www.opencascade.org/
http://www.whiterockscience.com/moritz.html
http://forum.carvewright.com/showthread.php?t=12452&page=2

18 Hong-Jun Kim1 and Timothy J. Tautges2

21. Ko K et al. (2005) Impact of SciDAC on Office of Science Accelera-

tors through Electromagnetic Modeling, SciDAC2005, June
22. EBMesh Tool, http://trac.mcs.anl.gov/projects/fathom/wiki/EBMesh

Appendix A

Presented here is the API specification for the query functions.

 bool get_grid_and_edges (

@return double boxMin[3] : entire grid box minimum

@ return double boxMax[3] : entire grid box x maximum

@ return int nDiv[3] : number of divisions
 @ return vector<int> cutCellIndices: boundary cell index vector

@ return vector<int> cutFracLength : number of edge cut fractions

for boundary cells
 @ return vector<double> cutFraction : edge cut fraction vector

);

 bool get_volume_fractions (

@ return vector<int> materialID : material id vector

@ return vector<int> boundaryCell : boundary cell vector

@ return vector<double> volumeFrac : volume fraction double vector
);

The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.

Department of Energy Office of Science laboratory, is operated under

Contract No. DE-AC02-06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up nonexclusive, irrevocable

worldwide license in said article to reproduce, prepare derivative works,

distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

http://trac.mcs.anl.gov/projects/fathom/wiki/EBMesh

