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Summary

A two-dimensional unstructured elliptic smoothing method is described where the Winslow
equations are discretized using a finite volume approach. Virtual control volumes for each node
are constructed with element shapes that are nearly ideal. Green-Gauss theorem is used to
formulate gradients over an element or a collection of elements for a node, which ultimately leads
to a coupled non-linear system of equations. Modifications enable the scheme to reproduce results
similar to structured mesh schemes. Results are included that demonstrate basic mesh smoothing
and boundary motion. In addition, layers of quadrilateral elements can be added to selected
boundaries and the interior point positions are determined via elliptic smoothing.

Keywords: Unstructured elliptic smoothing, Winslow smoothing, Finite-volume control
volume, Mesh quality improvement

1. Introduction

Elliptic smoothing has been routinely used with structured meshes for many years [1]. It is a
very mature technology that allows mesh generation practitioners to create smooth structured
meshes. Forcing functions have been developed that can influence the grid spacing and grid line
angularity to meet the specific needs of the analysis tool [2, 3, 4]. This technology has been
mostly unavailable to the unstructured mesh community, due to the lack of a global mapping
from physical space to computational space. Knupp described an approach for smoothing two-
dimensional unstructured meshes using a finite difference method where the local logical space
was created using trigonometric functions [5]. Finite difference formulae were then derived using
Taylor series expansions about the central node. Results in his article show quadrilateral meshes,
although the derivation includes an arbitrary number of neighboring nodes, which could be part
of triangles and quadrilaterals. Knupp also refers to a proprietary publication by Tipton that is an
extension of the method to three dimensions using a finite element approach [6]. Karman et. al
described a finite-volume method in two and three dimensions for unstructured meshes comprised
of mixed elements [7]. In the finite-volume approach elliptic smoothing of unstructured meshes
was possible if an existing valid mesh is available to serve as the computational domain. Virtual
control volumes were then introduced where a local computational space for each node is
constructed that is independent from a neighboring node’s computational space [8]. These virtual
control volumes are the key component of the method and the current paper describes in detail the
construction and use of these virtual control volumes for meshes comprised of quadrilaterals and


http://www.a-pdf.com/?product-split-demo
kgruda
Rectangle


2 Steve L. Karman Jr.

triangles. Aspects of the discretization strategy are explored to allow for the same type of grid
control afforded to the structured community. Results for smoothing of static and dynamic
problems are included. The cases include hybrid meshes where the quadrilateral elements are
added to existing meshes with the points positioned using elliptic smoothing.

2. Winslow Smoothing on Structured Meshes

Most elliptic smoothing methods utilize the Winslow equations as the governing equations for
mesh distribution [1]. These equations are derived from a Laplacian operator or Poisson operator
applied to the computational coordinates. The Laplacian operator form is shown in equations (1).
When satisfied, these relationships describe a smooth distribution of computational coordinates
(§,m) in physical space (X, Y).

2
ViE=E + oy =0
Vn=n,+n, =0

Theoretically the Laplace equations satisfy the max-min property, which states that the
parameter on the interior of the domain will not exceed the values on the boundary. For mesh
generation this means the grid lines will not cross. The known variables are the computational
coordinates § and 1. The unknown variables are x and y. So a transformation is necessary to cast
the equations in computational space, resulting in the Winslow equations given in equations (2).

(1)
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Winslow smoothing is not the same as Laplacian smoothing. Many researchers will perform
Laplacian smoothing, which is based on the Laplacian operator in equation (1) cast in
computational space, shown in equation (3).

2
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Laplacian smoothing for structured meshes is essentially an averaging of surrounding nodes
physical coordinates. The same is true when implemented for unstructured meshes. It does not
contain the cross derivative term of the Winslow equations and can result in grid crossing,
especially for non-convex domains.

Finite Difference

For structured meshes the Winslow equations are typically solved on an equally spaced
Cartesian grid in computational space. The stencil typically used to discretize the first and second
derivative terms is shown in Figure 1. The numerical formulae for the first and second derivatives
for x in § and v directions is shown in equations (4). These are centered difference formulae for
the central node. Notice that the derivatives in the § direction use only nodes on a constant j line
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and the derivatives in the m direction using only nodes on a constant i line, while the cross
derivative formula uses only the corner nodes. Figure 2 shows the resulting mesh for a spike case
where the center of the bottom boundary protrudes into the middle of the domain. The boundary
nodes are fixed in position. Winslow smoothing produces a mesh without crossing at the spike.
This illustrates that the max-min property of the underlying Laplacian operator is being enforced.
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Figure 1. Finite difference stencil. Figure 2. Structured mesh Winslow solution for

spike case.

3. Virtual Control Volumes for Unstructured Meshes

In order to solve the Winslow equations on unstructured meshes a computational domain must
be created. A global computational domain is possible if one uses an existing valid mesh.
However, this will not provide any real benefit, since a valid mesh already exists. Instead, it is
possible to construct a computational domain for each node. These “virtual control volumes”
were first introduced in References [8] and [9]. Under the premise that a local computational
domain comprised of nearest neighbors is necessary to assemble the global system of equations, it
is possible to construct nearly ideal computational stencils for each node. This does assume that
the valid global mesh connectivity does exist. These stencils are comprised of the elements
connected to the central node. However, instead of using the physical coordinates for each node
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in the stencil, computational coordinates are constructed. These computational elements can be
created to have nearly ideal shape quality or can be manipulated to reflect a desired stretching or
clustering, corresponding to a viscous layer distribution or an adaptation spacing field.

The creation of these computational stencils in two dimensions is relatively straightforward.
The stencil for each node will have an arbitrary number of surrounding elements and neighboring
nodes; information that is contained in the global mesh connectivity. The process involves
distributing directly connected nodes on the unit circle and then positioning any secondarily
connected nodes to produced ideal element shapes. Directly connected nodes are those nodes that
share an edge with the central node. Secondarily connected nodes do not share an edge with the
central nodes, such as the opposite corner of a quadrilateral element. Figure 3 shows a region of a
hybrid mesh containing triangular and quadrilateral elements. Figure 4 shows a sample virtual
control volume for a node at the edge of the quadrilateral layers (any of the 4 nodes in the center
region of the plot with the same element connectivity).
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Figure 3. Physical mesh containing triangles and Figure 4. Sample virtual control volume for node at
quadrilaterals. edge of quadrilateral layers in Figure 3.

The central node is labeled ‘0’. The surrounding nodes are numbered 1 through 7, in order. The
directly connected nodes are 1, 2, 3, 4, and 6. The secondarily connected nodes are 5 and 7. The
first directly connected node is positioned on the unit circle in a direction that corresponds to the
direction of the physical node, although this is not necessary. It could be positioned at
computational coordinate (1, 0). The remaining directly connected nodes are then distributed on
the unit circle according to the angle distributions, 6,, and 6,. These angles are determined based
on the number of triangles (nt) and the number of quadrilaterals (nq) connected to the central
node, given in equations (5). The goal is to produce angles and computational coordinates that
reflect the desired element shapes in physical space.
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The secondarily connected nodes are then placed opposite the central node using a vector
emanating from the central node in the direction of the midpoint of the diagonal edge of the
connected nodes, shown in Figure 4 as edge 4 — 6. That vector is copied to the midpoint of the
diagonal edge and the secondarily connected node, node 5 in the figure, is positioned at the end of

the vector. The length of that vector is the minimum of the original vector length and ‘Eé times
the length of the diagonal edge. This will result in perfect squares for the quadrilateral elements
when the number of quadrilaterals is equal to 1, 2 or 4. Otherwise, the outer portion of the
quadrilateral will be an equilateral triangle. Examples of virtual control volumes for all-triangular
stencils and all-quadrilateral stencils are shown in Figure 5.

Figure 5. Examples of virtual control volumes for different numbers of triangles and an all-quadrilateral
stencil.

Triangles in these virtual control volume will be equilateral only when the triangle angle, 0,, is
equal to /3, which occurs with 6 triangles in an all-triangular stencil or 3 triangles in a hybrid
stencil, such as the one shown in Figure 4. Changing the lengths of the edges emanating from the
central node does not alter the angle relationships. These are the “best” control volumes possible
and the physical mesh will attempt to mimic the shapes of these virtual elements.

These two-dimensional control volumes are essentially equivalent to the local logical space
described by Knupp [5]. The adjacent nodes are ordered in a counter-clockwise fashion and the
computational coordinates are distributed on a unit circle. Knupp’s finite difference formulae
include cosine and sine functions, which can be computationally prohibitive. The current
approach computes and stores computational coordinates. The method could be extended to
include general polygons instead of just triangles and quadrilaterals.

4. Finite Volume Formulation of Winslow Equations

One approach to solving the Winslow equations is to consider the coefficients, o, 3, y as constant.
Then integrate the first equation from (2) over E-1) space.

o[ xed@-28[ x.,dQ+y [[ x,,d2=0 ©)
Q represents the area in two dimensions. Examine the first integral and define V such that
V=x1+0])
- @)
Vev=ux.

The divergence theorem can be used to convert the double integral to a line integral.
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I represents the boundary in two dimensions. Therefore, the first integral becomes

ffxgng = gﬁxgn%.dl“ 9)
A similar operation is used to convert the other double integrals terms. The resulting set of
integral equations become

af x.n.dl -2pP x, 7.dT+yP x, i, dT =0
agﬁygﬁng‘—ZﬁgﬁynﬁEdIW ygﬁynﬁndl“=0

The numerical representation of these surface integrals is given in equations (11). The
summation is over the surrounding elements. This is illustrated in Figure 6 for a hybrid node
surrounded by 3 triangles and 2 quadrilaterals for a total of 5 elements.

(10)
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ne ne ne (11)
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Figure 6. Control volume and external area vectors for a hybrid node.

The normal vectors, f, correspond to the normal vectors of the external edge of the
surrounding elements. The first derivative terms in (11) are replaced with a formula for the
corresponding component of a gradient calculation of each element using a Green-Gauss
formulation. For instance, the derivative of x with respect to § is given by (12).

E (xl ;xr) (ng)j

A

where A represents the area of the element. The subscripts / and r correspond to the left and
right node numbers for edge j. The & component of the normal vector for side j is (nE) ;- The

X (12)

summation is carried out over the number of sides of the element. A similar expression can be
developed for the 1 derivative.

Substituting for all the first derivative terms will result in a system of equations for node O
using nearest neighbor node information. Combining the equations from all nodes in the mesh
will result in a sparse matrix linear system of equations that can be solved for new physical
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coordinates (Xx,y) using techniques such as point-implicit scheme with under-relaxation. Since the
coefficients o, 3, and y were assumed frozen, but are actually functions of the physical locations,
an outer iteration loop is required to update these coefficient values. When a point-implicit
method is used an inner iteration loop is used to converge the linear system. Full convergence of
the inner iterations is not necessary. Convergence of the outer iterations is required.

Quadrilateral Case

A comparison of the finite volume approach with the structured, finite-difference approach is
instructive. The structured mesh from Figure 2 was converted to an unstructured collection of
quadrilaterals and solved using the finite volume methods described above. The control volume
for an interior node is shown in Figure 7. In this case, the first directly connected node is
positioned at computational coordinate (1, 0). The resulting unstructured Winslow solution in
Figure 8 is different from the structured mesh solution. There is grid crossing at the top of the
spike and some kinks in the mesh near the corners on the bottom boundary.
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Figure 7. Control volume for central node in Finite Figure 8. Result of Winslow smoothing using
Volume method. Finite Volume method.

An examination of first derivatives using the finite volume approach reveals differences with
the finite difference formulae. Assuming unit edge lengths in the control volume, equation (13)
shows influence from the corner nodes 2, 4, 6 and 8 in computing the derivative in the §
direction, whereas the structured finite difference formula uses only information corresponding to
nodes 3 and 7.

(x, +2x5+x,) = (x4 +2x5 + Xg)
£ 8

The finite volume numerical formula for the surface integral of term 1 in equation (10) is
shown below, equation (14). Clearly there is influence from all nodes on the top and bottom
edges of the control volume. This is in direct contrast to the finite difference formula for x. in

equations (4).

(13)

n X, =2X+Xx X, =2X +x
gﬁxgnng=M+x3—2xo+x7+M
2 o

14
> (14)



8 Steve L. Karman Jr.

[e)]
—
w
— >
D
T

1

YL W O I

AL

~N
w
i

77
7

s
7

|

—

—

Figure 9. Control volumes for modified Finite-

Volume method. Figure 10. Winslow solution using modified

control volumes.

This is a common problem associated with finite-volume solutions to diffusion type equations,

such as the Laplace equation. If the structured mesh result is considered “correct” and serves as a
guide then the finite volume scheme must be modified to exclude those corner nodes where
appropriate. In order to replicate the structured mesh result the control volumes used with the
terms involving o and y (the first and third integral) must be replaced with the collection of
triangles shown in blue in Figure 9. This is sometimes referred to as “cutting the corner” and it
ignores the influence of the opposite node in the quadrilateral. The first derivatives for the central
node, used to compute o, 3, and y, are also computed using this modified stencil. The finite
volume result for the second integral correctly uses only the corner nodes, so the full stencil
comprised of the 4 quadrilaterals is still used for the B term. The resulting smoothed mesh using
this hybrid stencil is shown in Figure 10, which is identical to the structured mesh result.
\ - B If the “cut the corner” stencil (blue
triangles) is used for all three integrals the
result is still valid, shown in Figure 11, but
different from the structured mesh result. The
main difference occurs at the spike. Clearly
the discretization strategy used for the § term
is influencing the result. In fact, for the
stencils comprised of the four blue triangles
shown in Figure 9 the B term computes to
exactly zero. This was verified by numerically
ignoring this term and the result was identical
to the mesh shown in Figure 11.

It is interesting to note that using the hybrid
stencil (cut-the-corner for the o and y terms
and full stencil for the B term), but rotating the
entire stencil by 45 degrees will also produce

Figure 11. Unstructured Winslow solution using all  the result shown in Figure 11. Apparently the

triangle stencils. hybrid stencil is not invariant to rotation. This

is not a desirable property. For nodes with

only four quadrilaterals it is easy to align the stencils with the computational coordinates. For

nodes with triangles and quadrilaterals or nodes with more than 4 quadrilaterals it may be
difficult to devise a strategy to align the stencil in the computational domain.
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Triangular Case

Diagonalizing, in a symmetric manner, the quadrilaterals from the initial transfinite
interpolation mesh for Figure 2 produces the mesh in Figure 12. Using the original finite volume
scheme described above produces the result in Figure 13.

1] = NN
2
Figure 12. Quadrilateral mesh diagonalized to Figure 13. Winslow smoothed triangle mesh for
produce all triangles. spike.

Everything appears valid until one examines the region near the top of the spike, shown in
Figure 14. The first interior node above the spike has been moved below the boundary, resulting
in grid crossing. The majority of the interior nodes contain six triangles. The virtual control
volume for those nodes is shown in Figure 15.

Figure 14. Magnified view of mesh near spike. Figure 15. Virtual control volume for most of the
interior nodes of the triangular spike mesh.

Rotating the stencil by 45 degrees does not change the outcome, so the original finite volume
scheme appears to be invariant to rotation. All derivatives are computed using a consistent Green-
Gauss derived formulation. As the stencil is rotated the gradient components are altered, but the
magnitude of the derivative stays constant.
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5. Augmented Stencil for Triangles

Since including the opposite corner node of quadrilaterals in the f term was helpful, it is
possible to expand the stencil for triangles to bring in more information. Figure 16 shows an
expanded stencil that includes the first neighboring triangle of each directly connected triangle.
Also shown in bold red is a quadrilateral comprised of a directly connected triangle and the
augmented neighbor. This will serve as the “quadrilateral” in the hybrid stencil described earlier.
This is similar to Knupp’s use of the opposite node of the quadrilateral when the number of
surrounding neighbor nodes was insufficient to determine the required finite-difference
derivatives. The o and vy terms will use only the directly connected triangles and the  term will
use the augmented quadrilaterals. For nodes containing a mix of triangles and quadrilaterals in the
original stencil, only the triangles will be augmented with neighboring triangles.

Figure 16. Augmented stencil for nodes with Figure 17. Triangle mesh with augmented stencils.
triangular elements.

The smoothed mesh using the augmented triangle stencils is shown in Figure 17. This is a valid
mesh with no grid crossing. However, it is not symmetric from left to right, as expected. The
cause is believed to be the augmented stencils near the boundary. One of the directly connected
triangles of these nodes cannot be augmented with a neighbor because a neighbor does not exist.
Instead the stencil will be unbalanced and the “first” node of the stencil may differ from node to
node, resulting in arbitrary alignment of the unbalanced-augmented stencil with respect to the
computational coordinate directions. Rotating all the stencils by 45 degrees results in a valid
mesh, however the asymmetry still exists but is flipped from right to left. If aligning node “1”
with the physical edge direction is used it requires constant adjustments to the stencil and still
does not produce a completely symmetric mesh.

Augmenting the stencils with adjacent triangles has provided valid meshes without grid
crossing for the spike case. The sensitivity to the rotation of the control volume is bothersome.
This is not a desirable trait and further research is required to fully understand the causes and
devise an appropriate modification to the discretization strategy. The goal should be to devise a
strategy that accurately models all three terms of the equations and is invariant to rotation in
computational space. An important point to be made, though, is the augmented stencil approach
does provide meshes without grid crossing. And this method can be turned on or off as needed.
Even without the augmented stencil the method seems to work extremely well for most cases.
The exceptions are cases with extreme sharp edges.

If the computational mesh for the structured case were rotated through any angle the original
finite-difference formulae would no longer be valid. Taylor series expansions could be re-derived
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for the new orientation or a least squares method could be used to compute the derivatives. But
modified difference formulae have already been used for a structured mesh. The modified scheme
described in the previous section was carefully constructed for the all-quadrilateral mesh in order
to reproduce the structured mesh result. All stencils were comprised of exactly four quadrilaterals
that were carefully aligned with the § and n directions. The finite-volume formulation is
equivalent to performing a Taylor series expansion about the central node if the higher order
terms are ignored. When those stencils were rotated 45 degrees the results were different, but still
valid. This demonstrates that the discretization strategy for structured meshes is also not invariant
to rotation.

6. Results

All cases shown below are computed without any manipulation of the control volumes to
account for viscous-type spacing or for solution based adaptation. Some cases are computed using
the original finite volume approach outlined in Section 4. For those cases, no augmented stencils
were used for the triangles and the “cut-the-corner” approach was used for quadrilaterals. Thus
the scheme is invariant to scaling, translation and rotation of the virtual control volumes. Other
cases used the augmented stencils to obtain valid meshes where sharp corners exist.

Rotating Circle

The first case is a simple geometry consisting of an outer circular boundary and an inner
circular boundary. The original mesh was created using Pointwise [10]. The mesh contains 2,415
nodes and 4,710 triangles. The inner and outer boundaries are comprised of two sections with 31
equally spaced points each for a total of 61 point for each circle. Views of the original mesh can
be seen in Figure 18 and Figure 20. The original finite volume scheme without augmented
stencils was used for this case. The Winslow smoothed mesh is shown in Figure 19 and Figure
21. The differences between the meshes are slightly more evident in the magnified views. The
original mesh is certainly valid and contains high quality triangles. Pointwise uses a Delaunay
method to triangulate the points and the distribution is very smooth. The Winslow smoothed
mesh does not attempt to enforce the Delaunay property. Winslow smoothing attempts to make
the physical mesh match the “ideal” element shapes in the virtual control volumes. No attempt is
made to declare one mesh better or worse than the other. This merely shows that Winslow
smoothing can be used with existing tessellations where the boundaries are held fixed. In cases
where the initial distribution of points was less smooth the Winslow method will show more
variation from the Delaunay-based result.
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Figure 20. Magnified view of original mesh near Figure 21. Winslow smoothed mesh near inner
inner boundary. boundary.

One of the major benefits Winslow smoothing provides is the ability to perform mesh
movement. So for the next demonstration the inner circle is rotated 90 degrees counterclockwise.
The inner boundary points are held fixed at the new location and the outer boundary points
remain in their original position. The global mesh is shown in Figure 22. The twisting of the
interior mesh is evident in the global view, but is less evident in the magnified view, Figure 23.
The shearing of the mesh is minimal for this rotation angle. Additional rotation of the inner
boundary is certainly possible and would increase the shearing, unless the points on the
boundaries were allowed to float.
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Figure 22. Global view of rotated circle mesh. Figure 23. Magnified view of inner boundary for
rotated circle mesh.

The next modification to this rotated mesh is shown in Figure 24. Ten layers of quadrilateral
elements were added to the mesh connectivity at the inner boundary. The smoothed quadrilateral
elements show evidence of the shearing exhibited by the triangular elements in Figure 22. The
basic method was employed without any attempt at controlling mesh spacing or grid line
angularity. Winslow is attempting to make the physical mesh match the virtual control volume
shapes, which are nearly ideal.
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Figure 24. Quadrilateral layers added to rotated Figure 25. Hybrid mesh rotated back to original

mesh. position.

When the inner boundary is rotated back to the original position the shearing of the
quadrilateral elements disappears, shown in Figure 25. The sequence of smoothing, rotating and
adding layers of quadrilateral elements could have been performed in any order. The same mesh
would be produced had the rotation never taken place. And the creation of the quadrilateral
elements does not require one to distribute the points in the normal direction away from the
boundary. The physical points were actually initialized to be coincident with the original
boundary points. Winslow smoothing produced the final point distribution, attempting to make
the quadrilateral elements perfect squares.
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NACAO0012 Airfoil

The second case is the famous NACAO0O012 airfoil. The original triangular mesh, created in
Pointwise, contains 4,392 points and 8,424 triangles. The outer boundary is in two sections with
61 points per section, equally spaced. The airfoil boundary is also defined in two sections, upper
and lower, with 121 points per section. The points are clustered toward the leading and trailing
edges in a symmetric manner from top to bottom. The augmented stencils were used to smooth
this triangular mesh. The global mesh after Winslow smoothing is shown in Figure 26. A
magnified view of the region near the airfoil is shown in Figure 27.
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Figure 26. Global smoothed mesh for NACA0012 Figure 27. Magnified view of triangular mesh in
airfoil. region near airfoil.
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Figure 29. Magnified view of hybrid mesh near

trailing edge of airfoil.

Figure 28. Smoothed mesh with 10 quadrilateral
layers added near airfoil.

Ten quadrilateral element layers were added to the connectivity near the airfoil boundary. The
p term is discretized with the full quadrilateral and augmented triangle formulations. The
smoothed mesh is shown in Figure 28. At first it might seem like this is not the expected
outcome. But in fact it is because no grid spacing control is being applied. The virtual control
volumes for the quadrilateral elements are perfect squares and the physical mesh is attempting to
mimic that shape for the quadrilaterals. So where there is clustering at the leading and trailing
edge the local quadrilaterals (squares) are smaller. In the middle of the airfoil, shown in Figure
28, the point spacing along the surface is larger and the neighboring quadrilaterals are nearly
perfect squares there, as well. A view of the trailing edge region is shown in Figure 29.

Finally, this hybrid mesh is translated one unit in the positive X direction and one unit in the
positive Y and rotated 90 degrees. The smoothed mesh is shown in Figure 30. There was some
difficulty encountered converging the solution due to the skewing of the triangles in the far field.
The augmented triangles were turned off and the scheme was able to converge. The full
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quadrilateral formula was used for the 3 term in order to accurately handle the sharp trailing edge.
Figure 31 shows the magnified view of the trailing edge region. There are no negative areas or

skewed elements in the mesh.
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Figure 30. Airfoil translated in X and Y and rotated
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Figure 31. Magnified view of mesh near the trailing
edge.

The final case is a 3-element airfoil section known as 30P30N. The triangular mesh was
created using Pointwise and it consisted of 22,165 points and 42,743 triangles. The outer
boundary was defined in four sections with 21 points per section, equally spaced. The slat section
was divided into two sections with the sharp points of the section providing the demarcation. One
section contained 200 points while the other contained 150 points. The main element was defined
in three sections and had three sharp points that defined the sharp trailing edge and the cove
region. The largest section contained 600 points and the other two contained 100 points and 50
points. The flap was divided into 3 sections; an upper section with 200 points, a lower section
with 200 points and blunt trailing edge section with 7 points. The distributions on each section
were clustered toward the sharp points. This initial mesh was smoothed using the augmented
triangle stencils. Figure 32 shows the smoothed mesh with the three elements. The slat region is
shown in more detail in Figure 33 and the flap is detailed in Figure 34. The gap region between

the main airfoil element and the flap is magnified in Figure 35.
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Figure 32. Three-element airfoil mesh.
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The flap was rotated an additional 20 degrees downward and the slat an additional 10 degrees
downward. The smoothed meshes are shown in Figure 36 and Figure 37, compared to the meshes

in Figure 33 and Figure 34.

AN
AR

X

SRR
NAVAVAU WAV AV
AV S
gm RVATAY AY)
Ay

ad
K
RRAK
AL
220

NSRERS
LIRS
VAN VAVAYS
SV

4%
VA

4
S
v

X

A

N
X

Y
SR
&

i

o
Wiy

AR
KPARRE
:"qy F%ﬂs
N R S,
RESSSLRIKIEL
SABERPEEIER
VSRR

5
W

BRI

KR

PR Vi
para VYAV 9 ‘V

e R PR SK <y,

Figure 36. Magnified view of slat rotated 10
degrees downward.

P

RAR
VAN,

R

R

Rk

\

o
<]

X

i

X
v
RO
N AT
PORANTROD
RS

VaV)

KR
R
SORBRANRA
v
XN
XA
gﬁ P

Va
KLt

VA
A
KK
NVAVAY
A"ﬁ}
B
ghv
LA

0\

K
7
NN
OQ
XK
W

VaV)
N/
KXY

7
v
57

<

K
v
X

/S
WS

A

R Re
%; /N ﬂ”gﬁkﬂh‘%,

S

NIPKRAPES
SRR

o5

K]
Figure 37. Magnified view of flap rotated 20 degrees
downward.

Some excessive stretching was encountered at the sharp trailing edge of the main airfoil
section, Figure 38. The augmented stencils were turned off to produce the mesh in Figure 39,

which shows slightly less skewing.

Figure 38. Main element trailing edge using
augmented triangle stencils.

Figure 39. Main element trailing edge without using
augmented triangle stencils.

With the flap rotating the elements in the gap are stretched. The elliptic smoothing is
attempting to restore the elements to the ideal shapes provided in the virtual control volumes. The



Virtual Control Volumes for Two-Dimensional Unstructured Elliptic Smoothing 17

augmented stencil and the  term carried the affect of the skewing around the trailing edge and on
to the topside of the airfoil section. Turning off the augmented stencil lessened the effect.

Five quadrilateral element layers were added to the original, un-rotated triangular mesh from
Figure 32. The smoothed mesh, computed without augmented triangle stencils and the “cut-the-
corner” approach for the quadrilaterals, is shown in Figure 40. A magnified view of the gap

between the slat and main element is shown in Figure 41. The mesh near the sharp tip of the slat
is smooth and contains no grid crossing.
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Figure 41. Magnified view of hybrid mesh in
between slat and main element.
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The mesh for the backward-facing step of the cove region is shown in Figure 42. The pulling
of the mesh out of the corner is typical for Winslow smoothing with structured meshes. Again, no
control of grid spacing was attempted, so this is an expected result. The mesh in the gap between
the main element and the flap, shown in Figure 43, shows some skewing at the sharp trailing
edge. The quadrilaterals at the sharp corner are skewed, with a slightly inverted corner, but the
areas are still positive. Grid spacing control is expected to lessen the skewing in this region since

there will be more room between the airfoil sections for the isotropic (triangle) portion of the
mesh.
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Conclusions

The development of a two-dimensional unstructured elliptic smoothing method has been
described. The Winslow equations are discretized using a finite volume approach. Individual
control volumes for each node are constructed in a virtual space where the element shapes are
nearly ideal. The baseline discretization uses Green-Gauss theorem to formulate gradients over an
element or a collection of elements for a node. As coded this formulation would not reproduce the
structured mesh elliptic smoothing behavior for a spike problem. A modification to the scheme
for quadrilateral elements was successful at producing structured mesh results for the spike
problem. The triangulated version of the spike mesh was smoothed resulting in one node near the
spike outside the domain. A second modification to the finite-volume method incorporated
additional triangles in the virtual control volume stencil that could serve as a basis for
incorporating the same discretization used for quadrilateral elements, resulting in a valid mesh for
the spike problem.

Results were shown for three additional cases. For each case basic smoothing was
demonstrated as well as boundary motion. The resulting meshes were smooth and contained no
invalid elements. The final demonstration for each case was to add layers of quadrilateral
elements to selected boundaries. The points were distributed via the Winslow smoothing. No
mesh spacing control was attempted and the resulting meshes were smooth, without grid crossing
or invalid elements. The three-dimensional extension has been completed and will be published in
the near future.
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