
A Study on Using Hierarchical Basis Error
Estimates in Anisotropic Mesh Adaptation
for the Finite Element Method

Lennard Kamenski

Department of Mathematics, The University of Kansas, lkamenski@math.ku.edu

Summary. A common approach for generating an anisotropic mesh is the M -
uniform mesh approach where an adaptive mesh is generated as a uniform one
in the metric specified by a given tensor M . A key component is the determination
of an appropriate metric which is often based on some type of Hessian recovery. This
study discusses the use of a hierarchical basis error estimator for the development
of an anisotropic metric tensor needed for the adaptive finite element solution. A
global hierarchical basis error estimator is employed to obtain reliable directional
information. Numerical results for a selection of different applications show that the
method performs comparable with existing metric tensors based on Hessian recovery
and can provide even better adaptation to the solution if applied to problems with
gradient jumps and steep boundary layers.
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1 Introduction

A common approach for generating an anisotropic mesh is the M -uniform
mesh approach based on generation of a quasi-uniform mesh in the metric
space defined by a symmetric and strictly positive definite metric tensor M .
A scalar metric tensor will lead to an isotropic mesh while a full metric tensor
will generally result in an anisotropic mesh. In this sense, the mesh generation
procedure is the same for both isotropic and anisotropic mesh generation. A
key component of the approach is the determination of an appropriate metric
often based on some type of error estimates.

Typically, the appropriate metric tensor depends on the Hessian of the
exact solution of the underlying problem, which is often unavailable in practi-
cal computation, thus requiring the recovery of an approximate Hessian from
the computed solution. A number of recovery techniques are used for this
purpose, for example the gradient recovery technique by Zienkiewicz and Zhu
[34, 35], the technique based on the variational formulation by Doleǰśı [17], or
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the quadratic least squares fitting (QLS) proposed by Zhang and Naga [33].
Generally speaking, Hessian recovery methods work well when exact nodal
function values are provided (e.g. interpolation problems), but unfortunately
they do not provide an accurate recovery when applied to linear finite element
approximations on non-uniform meshes, as pointed out by the author in [28].
Recently, conditions for asymptotically exact gradient and convergent Hessian
recovery from a hierarchical basis error estimator have been given by Ovall
[31]. His result is based on superconvergence results by Bank and Xu [7, 8],
which require the mesh to be uniform or almost uniform: assumptions which
are usually violated by adaptive meshes.

Hence, a convergence of adaptive algorithms based explicitly on the Hes-
sian recovery cannot be proved in a direct way, even if their application is quite
successful in practical computations [17, 26, 29]. This explains the recent in-
terest in anisotropic adaptation strategies based on some type of a posteriori
error estimates. For example, Cao et al. [12] studied two a posteriori error es-
timation strategies for computing scalar monitor functions for use in adaptive
mesh movement; Apel et al. [5] investigated a number of a posteriori strategies
for computing error gradients used for directional refinement; and Agouzal et
al. [1, 2, 3] and Agouzal and Vassilevski [4] proposed a new method for com-
puting metric tensors to minimize the interpolation error provided that an
edge-based error estimate is given.

Recently, Huang et al. [24] presented a mesh adaptation method based on
hierarchical basis error estimates (HBEE). The new framework is developed
for the linear finite element solution of a boundary value problem of a second-
order elliptic partial differential equation (PDE), but it is quite general and
can easily be adopted to other problems. A key idea in the new approach is
the use of the globally defined HBEE for the reliable directional information:
globally defined error estimators have the advantage that they contain more
directional information of the solution; error estimation based on solving lo-
cal error problems, despite its success in isotropic mesh adaptation, do not
contain enough directional information, which is global in nature; moreover,
Dobrowolski et al. [16] have pointed out that local error estimates can be
inaccurate on anisotropic meshes.

The objective of this article is to study the application of this new
anisotropic adaptation method to different problems. A brief description of
the method is provided in Sect. 2. An example of its application to a bound-
ary value problem of a second-order elliptic PDE is given in Sect. 3 for heat
conduction in a thermal battery with large and orthotropic jumps in the ma-
terial coefficients.1 Section 4 presents an anisotropic metric tensor for general
variational problems developed by Huang et al. [25] using the HBEE and
the underlying variational formulation and gives a numerical example for a
non-quadratic variational problem. The metric tensor is completely a posteri-
ori : it is based solely on the residual, edge jumps, and the a posteriori error

1A Sandia National Laboratories benchmark problem.
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estimate. The third example is an anisotropic diffusion problem. The exact
solution of this problem satisfies the maximum principle and it is desirable
for the numerical solution to fulfill its discrete counterpart: the discrete maxi-
mum principle (DMP). Recently, Li and Huang [29] developed an anisotropic
metric tensor based on the anisotropic non-obtuse angle condition, which pro-
vides both mesh adaptation and DMP satisfaction for the numerical solution:
the mesh alignment is determined by the main diffusion drag direction, i.e.
by the underlying PDE, and the Hessian of the exact solution determines the
optimal mesh density. In Sect. 5, the Hessian of the exact solution is replaced
with the Hessian of the hierarchical error estimator to obtain a new, com-
pletely a posteriori, metric tensor accounting for both DMP satisfaction and
mesh adaptation. Concluding remarks on the numerical examples and some
key components of the hierarchical basis error estimator are given in Sect. 6.

2 Anisotropic mesh adaptation based on hierarchical
basis error estimator

Consider the solution of a variational problem: find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V (P )

where V is an appropriate Hilbert space of functions over a domain Ω ∈ R2,
a(·, ·) is a bilinear form defined on V × V , and F (·) is a continuous linear
functional on V . The linear finite element approximation uh of u is the solution
of the corresponding variational problem in a finite dimensional subspace Vh ⊂
V of piecewise linear functions: find uh ∈ Vh such that

a(uh, vh) = f(vh) ∀vh ∈ Vh. (Ph)

For the adaptive finite element solution, the mesh Th is generated according
to the behaviour of the error of the approximation uh. This study follows
the M -uniform mesh approach [23] which generates an adaptive mesh as a
uniform mesh in the metric specified by a symmetric and strictly positive
definite tensor M = M(x). Such a mesh is called an M -uniform mesh. Once
a metric tensor M has been chosen, a sequence of mesh and corresponding
finite element approximation are generated in an iterative fashion.

An adaptive algorithm starts with an initial mesh T (0)
h . On every mesh

T (i)
h the variational problem (Ph) with V (i)

h is solved and the obtained approx-
imation u

(i)
h is used to compute a new adaptive mesh for the next iteration

step. The new mesh T (i+1)
h is generated as a M -uniform mesh with a metric

tensor M (i)
h defined in terms of u(i)

h . This yields the sequence

(T (0)
h , V

(0)
h )→ u

(0)
h →M

(0)
h → (T (1)

h , V
(1)
h )→ u

(1)
h →M

(1)
h → . . .



4 Lennard Kamenski

The process is repeated until a good adaptation is achieved. In the compu-
tation, the mesh generation software bamg (bidimensional anisotropic mesh
generator developed by F. Hecht [21]) is used to generate new adaptive meshes.
The mesh adaptation quality is characterized by the alignment and equidis-
tribution quality measures introduced in [22]; more details can be found in
[24, Sect. 4.1].

2.1 Adaptation based on a posteriori error estimates

Typically, the metric tensor Mh depends on the Hessian of the exact solution
of the underlying problem [19, 23]. As mentioned in Sect. 1, it is not possible
to obtain an accurate Hessian recovery from a linear finite element solution in
general [28], so there is no way to prove a convergence of an adaptive algorithm
based on the Hessian recovery in a direct way, even if its application is quite
successful in practical computations [17, 26, 29].

An alternative approach developed in [24] employs an a posteriori error
estimator for defining and computing Mh. The brief idea is as follows.

Assume that an error estimate zh is reliable in the sense that

‖u− uh‖ ≤ C ‖zh‖ . (1)

for a given norm ‖·‖ and that it has the property

Πhzh ≡ 0 (2)

for some interpolation operator Πh. Then the finite element approximation
error is bounded by the (explicitly computable) interpolation error of the error
estimate zh, viz.,

‖u− uh‖ ≤ C ‖zh‖ = C ‖zh −Πhzh‖ . (3)

Now, it is known from the interpolation theory [27] that the interpolation
error for a given function v can be bounded by a term depending on the
triangulation Th and derivatives of v, i.e.,

‖v −Πhv‖ ≤ C E(Th, v),

where C is a constant independent of Th and v. Therefore, we can rewrite (3)
as

‖u− uh‖ ≤ C E(Th, zh).

In other words, up to a constant, the solution error is bounded by the in-
terpolation error of the error estimate. Thus, the metric tensor Mh can be
constructed to minimize the interpolation error of the zh and does not de-
pend on the Hessian of the exact solution.
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2.2 Hierarchical basis a posteriori error estimate

One possibility to achieve the property (2) is to use the hierarchical basis error
estimator. The general framework can be found among others in the work of
Bank and Smith [6] or Deuflhard et al. [15]. The approach is briefly explained
as follows.

Let eh = u− uh be the error of the linear finite element solution uh ∈ Vh.
Then for all v ∈ V we have

a(eh, v) = f(v)− a(uh, v). (E)

Let V̄h = Vh ⊕Wh be a space of piecewise quadratic functions, where Wh

is the linear span of the quadratic edge bubble functions (a quadratic edge
bubble function is defined as a product of the two linear nodal basis functions
corresponding to the edge endpoints). If Πh is defined as the vertex-based,
piecewise linear Lagrange interpolation then it satisfies (2) since the edge
bubble functions vanish at vertices.

The error estimate zh is then defined as the solution of the approximate
error problem: find zh ∈Wh such that

a(zh, wh) = f(wh)− a(uh, wh) ∀wh ∈Wh. (Eh)

The estimate zh can be viewed as a projection of the true error onto the
subspace Wh. Then, if assumption (1) holds, the finite element approximation
error can be controlled by minimizing the interpolation error of zh, i.e., the
right-hand side in (3).

Note that this definition of the error estimate is global and its solution can
be costly. To avoid the expensive exact solution in numerical computation,
only a few sweeps of the symmetric Gauss-Seidel iteration are employed for
the resulting linear system, which proves to be sufficient for the purpose of
mesh adaptation (see [24] for more details).

3 Boundary value problem of a second-order elliptic
PDE

Consider two-dimensional heat conduction in a thermal battery with large
orthotropic jumps in the material coefficients. This is an example provided
in [24]; the mathematical model considered here is taken from [30, 32] and
described by {

∇ · (Dk∇u) = fk in Ω,

Dk∇u · n = gi − αiu on ∂Ω,
(4)

with Ω = (0, 8.4)× (0, 24) and

Dk =
[
Dk
x 0

0 Dk
y

]
.
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Region k Dk
x Dk

y fk

1 25 25 0
2 7 0.8 1
3 5 0.0001 1
4 0.2 0.2 0
5 0.05 0.05 0

Boundary i αi gi

1 0 0
2 1 3
3 2 2
4 3 0

Table 1: Heat conduction in a thermal battery: material coefficients Dk and
boundary conditions (clockwise starting with the left-hand side boundary).

k=1

k=2

k=4

k=3

k=5

k=2

k=5

(a) (b) (c)

Fig. 1: Heat conduction in a thermal battery: (a) device geometry, (b) contour
and (c) surface plots of a linear finite element solution.

Material coefficients Dk and the boundary conditions starting with the left-
hand side boundary and ordering them clockwise are provided in Table 1.
The analytical solution for this problem is unavailable, but the geometry and
the contour and surface plots of a numerical approximation obtained with
adaptive linear finite elements are given in Fig. 1.

For this problem, we follow the approach described in the previous section
and employ the metric tensor developed in [24] for a boundary value problem
of a second-order elliptic PDE. In two dimensions and for the error measured
in the L2-norm, the metric tensor MHB,K based on the HB error estimator is
given element-wise by

MHB,K = det
(
I +

1
αh
|HK(zh)|

)− 1
6
[
I +

1
αh
|HK(zh)|

]
, (5)
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(a) With interface edges.
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(b) Without interface edges.

Fig. 2: Heat conduction in a thermal battery: a comparison of the error esti-
mate for adaptive finite element solutions.

where HK(zh) is the Hessian of the quadratic hierarchical basis error estimate
zh on element K and αh is a regularization parameter to ensure that MHB is
strictly positive definite (see [24] for more details on the choice of αh).

Figure 2 shows global error estimates (obtained by solving exactly the ap-
proximate error problem (Eh)) for finite element solutions on adaptive meshes
controlled by the HBEE or quadratic least squares Hessian recovery (QLS)
and having all or no predefined interface edges. Both methods provide com-
parable results.

Typical adaptive meshes with predefined interface edges for the HBEE
and the QLS are shown in Fig. 3. When the mesh contains all the information
of the interface, the QLS-based method produces a mesh with strong element
concentration near all internal interfaces (Fig. 3a), whereas the HBEE leads
to a mesh (cf. Fig. 3b) that has higher element concentration in the corners of
the regions, has a proper element orientation near the interfaces between the
regions 2 and 3, and is almost uniform in regions where the solution is nearly
linear (cf. Fig. 1c for the surface plot of a computed solution). The maximum
aspect ratio2 of the mesh obtained by means of the HBEE is slightly larger.

When the interface edges are not present in the mesh, both methods pro-
vide similar results: the interfaces are recognized by both methods and the
obtained adaptive meshes are dense near the interfaces, in order to resolve the
gradient jumps.

This example result shows that Hessian recovery can lead to over-adaptation
for non-smooth solutions. HBEE-based method, on the other hand, produces
only necessary concentration and is also able to catch the directional infor-
mation of the solution required for proper mesh alignment. This example par-
ticularly demonstrates that the HBEE-based method can be advantageous if
applied to problems with jumping coefficients and strong anisotropic features.

2In this paper, aspect ratio is defined as the longest edge divided by the shortest
altitude. An equilateral triangle has an aspect ratio of

√
3/2 ≈ 0.87.
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(a) QLS Hessian recovery: 6781 trian-
gles, max. aspect ratio 39.2.

(b) HBEE: 6750 triangles, max. aspect
ratio 54.8.

Fig. 3: Heat conduction in a thermal battery: adaptive meshes obtained with
(a) quadratic least squares Hessian recovery and (b) the HBEE.
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4 Variational problems

While it has attracted considerable attention from many researchers and been
successfully applied to the numerical solution of PDEs, anisotropic mesh adap-
tation has rarely been employed for variational problems, especially when
combined with a posteriori error estimates. Often, a variational problem can
be transformed into a boundary value problem of partial differential equa-
tions (PDEs) and solved by methods designed for PDEs. Unfortunately, these
methods do not take structural advantage of variational problems and many
researchers argue that the variational formulation should be used as a natural
optimality criterion for mesh adaptation. Recently, Huang and Li [26] devel-
oped a metric tensor for the adaptive finite element solution of variational
problems. In the anisotropic case, it is semi-a posteriori : it involves residual
and edge jumps, both dependent on the computed solution, and the Hessian
of the exact solution. In [25], this result was improved to provide a metric
tensor for variational problems based on the HBEE and the underlying varia-
tional formulation. The new metric tensor is a posteriori in the sense that it is
based solely on residual, edge jumps, and HBEE. This is in contrast to most
previous work where M depends on the Hessian of the exact solution and is
semi-a posteriori or completely a priori ; e.g., see [10, 11, 13, 20, 23, 26].

4.1 General variational problem and the anisotropic metric tensor

Consider a general functional of the form

I[v] =
∫
Ω

F (x, v,∇v)dx, ∀v ∈ Vg

where F (·, ·, ·) is a given smooth function, Ω ⊂ Rd (d = 1, 2, 3) is the physical
domain and Vg is a properly selected set of functions satisfying the Dirichlet
boundary condition

v(x) = g(x) ∀x ∈ ∂Ω

for a given function g.
The corresponding variational problem is to find a minimizer u ∈ Vg such

that
I[u] = min

v∈Vg

I[v].

A necessary condition for u to be a minimizer is that the first variation of the
functional vanishes. This leads to the Galerkin formulation

δI[u, v] ≡
∫
Ω

(Fu(x, u,∇u) v + F∇u(x, u,∇u) · ∇v) dx = 0 (6)

for all v ∈ V0, where V0 = Vg with g = 0 and Fu and F∇u are the partial
derivatives of F with respect to u and ∇u, respectively.
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Given a triangulation Th for Ω and the associated linear finite element
space V hg ⊂ Vg, the finite element solution uh can be found by solving the
corresponding Galerkin formulation: find uh ∈ V hg such that

δI[uh, vh] =
∫
Ω

(Fu(x, uh,∇uh) vh + F∇u(x, uh,∇uh) · ∇vh) dx = 0

for all vh ∈ V h0 .
The a posteriori metric tensor MV P,K for general variational problems

developed in [25] for the error measured in the H1-semi-norm is given element-
wise by

MV P,K =

1 +
1

αh |K|

|K|1/2 ‖rh‖L2(K) +
∑
γ∈∂K

|γ|1/2 ‖Rh‖L2(γ)

 1
2

× det
(
I +

1
αh
|HK(zh)|

)− 1
4
[
I +

1
αh
|HK(zh)|

]
(7)

with the residual

rh(x) = Fu(x)−∇ · F∇u(x) x ∈ K ∀K ∈ Th

and the edge jump

Rh(x) =

{
(F∇u(x) · nγ)|K + (F∇u(x) · nγ)|K′ x ∈ γ ∀γ ∈ ∂Th\∂Ω,
0 x ∈ γ ∀γ ∈ ∂Ω.

Note, that δI[u, v] in (6) is linear in v but is nonlinear in u in general. Thus,
a modification of the error problem (Eh) for zh in Sect. 2.2 is required. For this
purpose, denote by ah(uh; ·, ·) a bilinear form resulting from a linearization
of δI[·, ·] about uh with respect to the first argument. The error estimate zh
is then defined as the solution of the approximate linear error problem: find
zh ∈Wh such that

ah(uh; zh, wh) = −δI[uh, wh]

for all wh ∈Wh [6].

4.2 Numerical example

Consider an anisotropic variational problem defined by the non-quadratic
functional

I[u] =
∫
Ω

[(
1 + |∇u|2

)3/4

+ 1000u2
y

]
dx

with Ω = (0, 1)× (0, 1) and the boundary condition



Using Hierarchical Error Estimates for Anisotropic Mesh Adaptation 11

Fig. 4: Variational problem: surface plot of the numerical solution.

{
u = 1 on x = 0 or x = 1,
u = 2 on y = 0 or y = 1.

This example is discussed in [25, 26] and is originally taken from [9]; the
analytical solution is not available, but a computed solution in Fig. 4 shows
that the mesh adaptation challenge for this example is the resolution of the
sharp boundary layers near x = 0 and x = 1.

Adaptive meshes obtained with both metric tensors (Hessian recovery-
based and HBEE-based) are given in Fig. 5. The both methods have correct
mesh concentration and provide good alignment with the boundary layers.
Anisotropic meshes are comparable, although mesh elements near the bound-
ary layer in the HBEE-based adaptive mesh have a larger aspect ratio than
elements of the mesh obtained by means of the Hessian recovery. This could
be due to the smoothing nature of the Hessian recovery: usually, it operates
on a larger patch, thus introducing an additional smoothing effect, which af-
fects the grading of the elements’ size and orientation. The global hierarchical
basis error estimator does not have this handicap and, in this example, the
mesh obtained by means of HBEE is slightly better aligned with the steep
boundary layers.

5 Anisotropic diffusion problems and the DMP

Anisotropic diffusion problems arise in various areas of science and engineer-
ing, for example image processing, plasma physics, or petroleum engineering.
Standard numerical methods can produce spurious oscillations when they are
used to solve these problems. A common approach to avoid this difficulty is
to design a proper numerical scheme or a mesh so that the numerical solution
satisfies the discrete counterpart (DMP) of the maximum principle satisfied
by the continuous solution. A well known condition for the DMP satisfac-
tion by the linear finite element solution of isotropic diffusion problems is the
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(a) Metric based on residual, edge jumps, and Hessian recovery: 1160 triangles,
max. aspect ratio 15.

(b) Metric based on residual, edge jumps, and HBEE: 1143 triangles, max. aspect
ratio 51.

Fig. 5: Variational problem: adaptive meshes obtained by means of Hessian
recovery-based and HBEE-based metric tensors; close-up views at (0,0).

non-obtuse angle condition that requires the dihedral angles of mesh elements
to be non-obtuse [14]. In [29], a generalization of the condition, the so-called
anisotropic non-obtuse angle condition, was introduced for the finite element
solution of heterogeneous anisotropic diffusion problems. The new condition
is essentially the same as the existing one except that the dihedral angles are
measured in a metric depending on the diffusion matrix of the underlying
problem. Based on the new condition, a metric tensor for anisotropic mesh
adaptation was developed, which combines the satisfaction of the DMP with
mesh adaptivity. The obtained metric tensor is based on the diffusion matrix
and the Hessian of the exact solution. As in previous sections, we can improve
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(a) Boundary conditions.

0
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xy

u

(b) Numerical solution.

Fig. 6: Anisotropic diffusion: boundary conditions and numerical solution.

the obtained metric tensor by replacing the (unknown) Hessian of the exact
solution by the Hessian of the HBEE as shown in the following example.

Consider the BVP discussed in [29]:{
∇ · (D∇u) = f in Ω,

u = g on ∂Ω,
(8)

with

f ≡ 0, Ω = [0, 1]2\
[

4
9
,

5
9

]2
, g = 0 on Γout, g = 2 on Γin,

where Γout and Γin are the outer and inner boundaries of Ω, respectively
(Fig. 6a). The diffusion matrix is given by

D =
[
cos θ − sin θ
sin θ cos θ

] [
1000 0

0 1

] [
cos θ sin θ
− sin θ cos θ

]
, θ = π/4,

where θ is the angle of the primary diffusion direction (parallel to the first
eigenvector of D).

This example satisfies the maximum principle and the solution stays be-
tween 0 and 2 and has sharp jumps near the inner boundary. The analytical
solution is not available, but the numerical solution is provided in Fig. 6b. The
goal is to produce a numerical solution which also satisfies DMP and stays
between 0 and 2 and has a good adaptation.

In two dimensions and for the error measured in the H1-semi-norm, the
DMP-compliant anisotropic metric tensor MDMP,K developed in [29] is given
element-wise by

MDMP,K =
(

1 +
1
αh
BDMP,K

) 1
2

det (DK)
1
2 D−1

K , (9)
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where

BDMP,K = det (DK)−
1
2
∥∥D−1

K

∥∥ · 1
|K|

∫
K

‖DK |H(u)|‖2 dx. (10)

The diffusion matrix D in (9) provides the correct mesh alignment whereas
the Hessian of the exact solution in (10) is responsible for the appropriate
mesh density. As noted in Sect. 2, if the finite element solution error can be
bounded by the interpolation error of the hierarchical basis error estimator,
the Hessian of the exact solution in (10) can be replaced by the Hessian of
the HBEE zh:

BHB,K = det (DK)−
1
2
∥∥D−1

K

∥∥ · 1
|K|

∫
K

‖DK |H(zh)|‖2 dx. (11)

With this choice, the mesh will still satisfy the DMP, but this time the mesh
density is determined by the a posteriori error estimate zh.

To emphasize the compliance with the DMP, the metric tensors MDMP

and MDMP+HB based on (10) and (11), respectively, are also compared to
a uniform mesh and the anisotropic metric tensor MHB based solely on the
HBEE (Sect. 3). Figures 7 and 8 show meshes and solution contours.

No overshoots in the finite element solutions are observed for all cases, but
Fig. 7 shows that undershoots and unphysical minima occur in the solutions
obtained with the uniform mesh (minuh ≈ −0.059) and MHB (minuh ≈
−0.0032). No undershoots can be observed for MDMP and MDMP+HB

(Fig. 8). The results confirm the prediction that the solutions obtained with
MDMP and MDMP+HB satisfy DMP and no unphysical extrema occur.

As for MDMP and MDMP+HB , the solution contours for both metric ten-
sors are almost undistinguishable and, although not as smooth, still quite
comparable to the one obtained with MHB (cf. Figs. 8 and 7b), thus provid-
ing a good adaptation to the sharp solution jump near the interior boundary
(cf. the somewhat smeared solution jump for the isotropic mesh in Fig.7a,
right). The mesh computed by means of HBEE is fully comparable with the
mesh obtained using Hessian recovery. Again, the maximum aspect ratio of
the mesh obtained by means of the HBEE has a slightly larger aspect ratio.

6 Concluding remarks

Numerical results show that a global HBEE can be a successful alternative to
Hessian recovery in mesh adaptation: in all three examples both methods pro-
vide very similar results. However, as observed in the heat conduction example
in Sect. 3, Hessian recovery could result in unnecessarily high mesh density
for problems with discontinuities. Also, it can cause a light mesh smoothing:
meshes obtained by means of Hessian recovery-based method have a slightly
smaller maximum aspect ratio than meshes obtained with HBEE and there-
fore seem to be slightly worse in terms of alignment with the steep boundary
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(a) Isotropic: 4170 triangles, minuh ≈ −5.9× 10−2, max. aspect ratio 2.7.

(b) MHB : 4353 triangles, minuh ≈ −3.2× 10−4, max. aspect ratio 37.2.

Fig. 7: Anisotropic diffusion: meshes and contour plots of the numerical solu-
tion for the (a) isotropic and (b) HBEE-based MHB metric tensors.

layers. The global HBEE seems to be less affected by these issues and, de-
pending on the underlying problem, can provide a more robust solution.

A key component of the HBEE-based method is to find the solution zh
of the error problem (Eh). This is a global problem. Hence, finding its exact
solution can be as costly as for computing a quadratic finite element approxi-
mation to the original problem. However, a fast approximate solution is as fast
as Hessian recovery and proved to be sufficient to provide enough directional
information for the purpose of the mesh adaptation.

Another key component of the method is the reliability of the error estima-
tor on anisotropic meshes: error estimation with hierarchical bases is usually
based on the saturation assumption, which basically states that quadratic
approximations provide finer information on the solution than linear ones.
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(a) MDMP : 4253 triangles, no undershoots, max. aspect ratio 76.5.

(b) MDMP+HB : 4381 triangles, no undershoots, max. aspect ratio 84.2.

Fig. 8: Anisotropic diffusion: meshes and contour plots of the numerical
solution for the (a) Hessian recovery-based MDMP and (b) HBEE-based
MDMP+HB metric tensors.

Existing results on its validity require bounds on the elements’ aspect ratio
[18]. It is still unclear if similar results can be achieved for general adaptive
meshes, but numerical results suggest that aspect ratio bounds are not nec-
essary if the mesh is properly aligned. Moreover, it seems that good mesh
adaptation does not require an accurate Hessian recovery or an accurate error
estimator, but rather some additional information of global nature, although
it is still unclear which information exactly is necessary.
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