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Summary. Q-Tran is a new indirect algorithm to transform triangular tes-
sellation of bounded three-dimensional surfaces into all-quadrilateral meshes.
The proposed method is simple, fast and produces quadrilaterals with provably-
good quality and hence it does not require a smoothing post-processing step.
The method is capable of identifying and recovering structured regions in
the input tessellation. The number of generated quadrilaterals tends to be
almost the same as the number of the triangles in the input tessellation. Q-
Tran preserves the vertices of the input tessellation and hence the geometry
is preserved even for highly curved surfaces. Several examples of Q-Tran are
presented to demonstrate the efficiency of the proposed method.

Keywords: Mesh generation, all-quadrilateral, indirect methods, curved sur-
faces.

1 Introduction

Automatic mesh generation is one of the main procedures in Finite Element
Analysis (FEA) as well as many other fields. Hence, a robust automatic mesh
generator becomes an indispensable tool in such applications. Nowadays, the
generation of triangular meshes on 3D surfaces by either the Delaunay trian-
gulation [1, 2, 3, 4] or the advancing front technique [5, 6, 7, 8] are considered
matured. However, in many applications, quadrilaterals are preferable to tri-
angular meshes due to their superior performance for various applications
such as sheet metal forming and crash simulations. A smaller set of literature
exists for quadrilateral meshing. In the last decade, different approaches have
been proposed in the area of unstructured all-quadrilateral mesh generation.
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Virtually, all existing quadrilateral meshing algorithms can be grouped into
two main categories, namely, the direct and the indirect approaches.

In the indirect methods, quadrilaterals are formed based on a triangular
tessellation called a background mesh. The simplest approach under this cat-
egory is to divide each triangular face into three quadrilaterals by inserting a
vertex into at the center of each face as well as splitting all of its three edges.
This method is fast, robust and preserves the angle bounds of the background
mesh. However it triples the number of the faces of the input tessellation and
introduce a large number of irregular vertices, which are usually not favored
in many applications. An irregular vertex is an internal vertex with valence
number other than four. An alternative method is to combine adjacent pairs
of triangles to form a single quadrilateral [9, 10]. The drawback of this method
that in order to generate a mesh with good quality, many triangular faces in
the initial tessellation might be left in the output mesh. To minimize the num-
ber of these remaining triangles, several heuristic procedures suggested to con-
trol the order in which triangles are combined, and in some cases split during
the conversion[11, 12, 13]. Velho proposed a local transformation method that
utilizes clustering of triangular pairs and produce all-quadrilateral meshes[14].
Owen et al. [15] developed an advancing front algorithm, Q-MORPH, based
on a background mesh and the techniques used in the paving algorithm [16].
Q-MORPH generates an all-quadrilateral mesh with well aligned rows of ele-
ments and a fewer number of irregular vertices. However, this method needs
an initial front to start the quadrilateral conversion and the quality of the gen-
erated quadrilaterals depends heavily on that front. This might be a problem
for applying Q-MORPH to closed 3D triangular tessellation that is not asso-
ciated with sharp features. Miyazaki et al. proposed a method to generate a
suitable initial front in these cases[17]. However, the Q-Morph transformation
is still not local, since each triangular face cannot be transformed unless it be-
comes adjacent to the advancing front. Moreover, Q-Morph does not preserve
the vertices of the input tessellation which may alter the associated geometry
for a curved input surface.

On the other hand, in the direct methods, quadrilaterals are directly cre-
ated over the problem domain. These methods are generally classified into
one of three main categories. The first depends on some form of domain de-
composition [18, 19, 20]. The second is based on the advancing front method
[21, 16, 22]. The third extracts a quadrilateral surface using a Cartesian grid
[23] or packing of circles [24]. In general, direct methods are slower and less
robust compared to indirect methods.

The main objective of this study is to present a new indirect quadrilateral
mesh generation scheme over 3D curved surface while preserving the vertices
of the input triangular tessellation. The proposed method is partially similar
to the technique proposed by Velho [14]; however, Q-Tran produces fewer
quadrilaterals and fewer irregular vertices in general.
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2 Outline of the Q-Tran algorithm

The Q-Tran algorithm is briefly outlined in the following steps:

1. Initial edge classification: Each edge in the input triangular tessellation is
classified as one of the following six types (see Figure 1)

A boundary edge, BE, is either an edge adjacent to a single triangular
face or associated with a sharp feature or specified by the user.

An anisotropic diagonal edge, ADE, is a non-boundary edge adjacent
to two triangular faces such that its length is greater than the length
of the remaining four edges and at least one of the two triangle is
anisotropic. A triangular face is considered anisotropic if its aspect
ratio exceeds 3.0 otherwise it is considered to be isotropic.

An isotropic diagonal edge, IDE, is an edge that does not fall into any
of the two categories mentioned above and adjacent to two isotropic
triangular faces such that its length is greater than the length of the
remaining four edges and none of these edges is a boundary edge.

A corner edge, CE, is an edge that does not fall into any of the three
categories mentioned above and adjacent to two isotropic triangular
faces with at least one of these two has two boundary edges.

A regular edge, RE, is any other edge that does not fall into any of the
four categories mentioned above.

A special reqular edge, SRE, is a regular edge with two adjacent trian-
gles that has two aligned boundary edges.

2. Reclassification of regular and corner edges:

A regular edge that shares a vertex with an anisotropic diagonal edge
is reclassified as a boundary edge.

A special regular edge is reclassified as a boundary edge.

A corner edge is reclassified into an anisotropic diagonal edge if its two
adjacent faces has four boundary edges.

A corner or a regular edge is reclassified into a boundary edge if it
would result in violating the angle bounds of the input tessellation
during the conversion process.

3. Check for optimal solution: If the number of diagonal edges is half the
number of the faces in the input tessellation, an optimal solution exists.
Retrieve it by merging the two adjacent triangles to each diagonal edge
into a single quad and exit, otherwise proceed to the next step.

4. Creation of new vertices:

Create a vertex, edge verter, at the center of non-regular edge.
Create a vertex, regular face vertex, at the center of each triangular
face with three regular edges or with two boundary edges.

Create a vertex, boundary face vertex, at the center of each triangular
face with three boundary edges.

5. Quadrilateral formation:

For each boundary face vertex, generate three quadrilaterals by split-
ting the associated boundary face into three quadrilaterals.
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e For each anisotropic diagonal edge, transform the adjacent two trian-
gles into four quadrilaterals.

e For each regular edge, generate a quadrilateral using the two vertices
of that edge and the two created vertices in the adjacent faces.

e For each corner edge generate the quadrilaterals as shown in Fig-
ure 3(b).

6. Topology clean-up:

e Minimize the number of irregular vertices using face collapse of the
quadrilaterals with two opposite tri-valence vertices that are created
during the Q-Tran algorithm. Do not execute this step if the quality
will deteriorate due this heuristic operation. This operation is illus-
trated in Figure 2.

Fig. 1. Classification of the edges of the input tessellation.

3 Quality of the generated mesh

In this section, we study the quality of the quadrilaterals generated during
the Q-Tran algorithm in terms of preserving the angle bounds of the input
tessellation. As mentioned in the previous section, there are six cases associ-
ated with the generation of the quadrilaterals within Q-Tran. The first three
types, Group A, are illustrated in Figure 3(a). In these cases, the angle bounds
of the input tessellation are preserved automatically. The proof is trivial and
follows the simple fact:

min(z,y) < ;L Y < max(z,y) (1)
where z and y in Equation 1 represents two adjacent angles in the triangular

tessellation while % represents the corresponding angle in the quadrilateral

tessellation.
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(a) Input (b) Output

Fig. 2. Topology clean-up using face collapse to reduce the number of irregular
vertices. A quadrilateral face is collapsed converting two irregular vertices into a
regular one. The triangular tessellation is shown using dotted lines in both figures.

For the second group, the quality of the input tessellation is preserved
by construction, where an edge from Group B would be reclassified into an
edge from Group A if it causes a violation to the angle bounds of the input
tessellation. However, we note that throughout the test problems that we have
used in this paper we have never encountered this case. Further investigations
are required to prove that this case can ever exists.

4 Analysis of Q-Tran performance

In order to test the performance of Q-Tran, we generated a sequence of tri-
angular tessellations covering a planar hexagon. A triangular tessellation,
M;,i = 2,3,...,7, is obtained by isotropic refinement of the previous tes-
sellation, M;_1, where each triangular face is split into four triangular faces.
Q-Tran is then utilized to convert each tessellation in this sequence into an
all-quadrilateral mesh. Note that all the internal edges in any tessellation here
are regular edges, which means that random Topology clean-up will be applied
everywhere in the mesh at the end of the algorithm. This should represent
a worst case scenario for Q-Tran with regard to the time of execution, given
that the algorithm should have the same performance for planar and curved
surfaces. The results of this test are summarized in Table 1. As we notice from
these results, random clean-up operations might increase the relative number
of the generated quadrilaterals in some cases to be as much as twice the num-
ber of the faces in the input tessellation. All of the tests performed in this
section were performed using a 32-bit operating system and 2.0 GHz (T'7250)
processor with 2.0 GB of memory. Q-Tran was implemented in a generic func-
tion so the performance might vary based on the utilized datastructure.
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Fig. 3. Quadrilateral formation in Q-Tran. The quality of the quadrilaterals gener-
ated in Group A is guaranteed automatically while the quality of the quadrilaterals
generated in Group B is guaranteed by construction.

Table 1. Performance of Q-Tran for the hexagon problem.

Model Name| Numz | Numg |Numg/Numyz|Time (seconds)|Rate (Numqg/min.)
Hexagon-3 96 158 1.65 0.451 12,700
Hexagon-4 384 668 1.74 0.486 47,407
Hexagon-5 | 1,536 | 2,920 1.90 0.557 165,457
Hexagon-6 6,144 | 11,856 1.93 1.359 271,258
Hexagon-7 | 24,576 | 47,458 1.93 4.206 350,584
Hexagon-8 | 98,304 (104,976 1.07 13.219 446,194
Hexagon-9 [393,219(405,914 1.03 54.880 429,904

The performance of Q-Tran is mainly affected by the relative number
different edges categories in the input tessellation. For example, if all the edges
are classified as boundary edges, then the number of the faces of the input
tessellation will be quadrupled. On the contrary, if the number of diagonal
edges in the mesh is half the number of the faces of the input tessellation,
then the latter will be reduced by half in the output mesh. For most cases,
where the relative ratio of internal to boundary edges is relatively large, Q-
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Fig. 4. The first four meshes in a sequence utilized to test the performance of Q-
Tran. The upper figures show the triangular tessellation of a Hexagon while the
lower figures show the corresponding quadrilateral meshes.

Tran tends to almost preserve the number of the faces in the input tessellation.
With regard to the required computational time, Q-Tran tends to be much
faster as the number of diagonal edges relatively increase, since fewer clean-up
operations would be required. As shown in the next section we have applied
Q-Tran to a wide range of different types meshes. Some of these meshes have
some structured patches with anisotropic faces, others are decomposed of
highly curved surfaces with no boundary edges at all, ... etc. The performance
of Q-Tran for these meshes is summarized in Table 2.

Table 2. Performance of Q-Tran for various problems.

Model Name| Numr | Numgq |Numg/Numr|Time (seconds)|Rate (Numqz/min.)
hook 1,014 | 1,212 1.20 3.350 18,161
ref-plane 3,406 | 3,776 1.11 0.933 219,035
siklone-1 29,428 | 31,749 1.08 6.809 259,315
siklone-2 117,716 {123,892 1.05 18.855 374,593
siklone-3 470,864 487,156 1.03 70.674 399,748
topology-1 35,000 | 41,993 1.20 7.244 289,895
topology-2 |140,0000{171,785 1.23 23.989 350,160
vase-1 19,460 | 27,508 1.41 6.28 185,923
vase-2 77,844 (107,546 1.38 14.346 325,570
vase-3 311,360 419,060 1.35 53.685 347,985
tori-1 12,000 | 12,129 1.01 2.769 260,021
tori-2 48,000 | 49,788 1.04 7.412 388,559
tori-3 192,016 {197,252 1.03 28.422 405,353
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To have an overall average estimation of the Q-Tran performance, the re-
sults of all the test performed in this section are illustrated in Figure 5. These
results shows that the number of the quadrilaterals in most cases tends to be
almost the same as the number of the triangles in the input. This may increase
in the worst cases to be as much as twice that number. On average, Q-Tran
seems to convert a triangular tessellation into an all-quadrilaterals meshes at
an average rate of 375,000 triangles per minute using a 2.0 GHz processor.
Again, this is considered a rough estimation since we utilized a generic imple-
mentation These results might be further improved if a datastructure-specific
implementation is to be utilized because Q-Tran depends to a large extent on
the speed of adjacency queries.
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Fig. 5. Q-Tran performance. The relation between the number of the faces in the
input and the output meshes is illustrated in the right figure while the execution
time for the various test problems is illustrated in the left figure. The inclined line
in each of the two figures is used as a reference.

5 Example Problems

Six examples, shown in Figures 6-11, demonstrates various features of the
Q-Tran algorithm. The first example shown in Figure 6 demonstrates the ca-
pability of Q-Tran to handle highly curved surfaces with no boundary edges.
This example illustrates the ability of Q-Tran to detect and preserve struc-
tured regions in the input tessellation. Figure 7, on the other hand, shows the
quality of the quadrilaterals generated for a Cad model with non-manifold
boundary edges. This example includes almost all the types of edge classifi-
cations within Q-Tran.

The ability to handle a triangular mesh with some anisotropic faces is illus-
trated in Figures 8. As this figure show, the final quadrilateral mesh preserves
the directionality of the stretched faces.
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Figures 9 and 10 show that the vertices distribution in the final quadrilat-
eral mesh is almost the same as in the input tessellation. This is demonstrated
using a highly curved surface as well as a simple planar surface with variable
density distribution.

The final example, in Figure 11, demonstrates that efficiency of recovering
the structured regions from the input tessellation. As illustrated in that figure
Q-Tran was capable of recovering all of the structured regions in this example
leaving behind a very small number of irregular vertices.

6 Conclusion

The Q-Tran algorithm is an indirect quadrilateral meshing algorithm that
utilizes edge classification to transform triangles into quadrilaterals locally. It
generates an all-quadrilateral mesh with provably-good quality. The resulting
quadrilaterals, in general, follow the boundaries of the domain. The Q-Tran
algorithm is capable of detecting and recovering the structured regions in the
input tessellation. It can handle isotropic and anisotropic cases with almost
the same efficiency. Compared to the Q-Morph algorithm, Q-Tran can be im-
plemented in parallel, preserves the vertices of the input tessellation and does
not require an initial front. Moreover, the quality of the generated quadri-
laterals is guaranteed, hence, no smoothing is required as a post processing
step. Improvements include minimizing of the irregular vertices as well as
controlling the directionality in the isotropic structured regions.
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