
A Transfinite Meshing Approach for
Body-In-White Analyses

Kirk Beatty1 and Nilanjan Mukherjee1

Meshing and Abstraction Group
Digital Simulation Solutions
Siemens PLM Software
2000 Eastman Dr., Milford, Ohio 45150 USA
kirk.beatty@siemens.com, mukherjee.nilanjan@siemens.com

Summary. A very wide range of finite element analyses required to design car-
bodies calls for quadrilateral meshes with austere quality needs. Quadrilaterals being
varying strain and non-planar, element quality, in body-in-white analyses, is virtu-
ally impossible to measure with a single parameter. Auto-designers mostly prefer
heuristic element quality metrices that catapult the need for predominantly orthog-
onal meshes. Transfinite or “mapped” meshing thus assumes great importance. The
present investigation presents a holistic transfinite meshing approach for body-in-
white analyses involving groups of tessellated faces. A new corner detection algo-
rithm is proposed. The concept of “pseudo-edges” is introduced to cluster face edges
into four logical sides. “pseudo-edge-clans” are next formed for the purpose of count
propagation that does not require traditional LP solves. In the meshing process,
we use 2D domain generation from a 3D tessellation at two steps. During corner
determination we use a least squares conformal map with free boundaries to find
boundary angles in 2D. After pseudo edges are identified, 2D domain for meshing
a face is generated using a constrained rectangular boundary. In this second use of
our domain generation method, we make use of a mapping type parameter which
varies from conformal (angle preserving) solution to an authalic (area preserving)
map. Based on practical examples, the best value for the mapping type parameter
for the second domain generation step was found to be about 0.7. We present several
results to illustrate our process of meshing for body-in-white analyses.

Key words: transfinite, mapped, flattening, pseudo-edge, Guru edge, Pro-
tege edge, count propagation, corner detection, parameterization, quadrilat-
eral, mapping type parameter, least squares conformal map.

1 Introduction

Transfinite or mapped meshing continues to be of prime importance for auto-
motive body-in-white analyses. Competitive fuel efficiency needs and stringent

jbmalon
Rectangle

2 Kirk Beatty and Nilanjan Mukherjee

vehicle safety requirements have made carbody design a crucial step of auto-
motive design over the years. Body-in-white analyses are done with quadrilat-
eral elements. Quadrilaterals are varying strain and fundamentally non-planar
finite elements and thus their quality for a wide range of analysis requirements
cannot be measured by a singular parameter. Most car companies use pro-
prietary heuristic quality metrices to evaluate the element quality of finite
element meshes of their body panels. Consequently, transfinite or “mapped”
meshing that produces structured orthogonal meshes has gained enormous
importance over time. A typical body panel component involves hundreds of
surfaces more than half of which are single loop and logically four-sided. In
order to generate a mapped or transfinite mesh on them, the global problem
of distributing element counts on the four logical sides of all map-meshable
surfaces needs to be addressed. This involves determination of the three or
four corners of the surface, construction of the logical sides and an effective
count distribution strategy to solve the problem in a global scale. In the case
of a mapped mesh an important criterion for quality is the angles for the quad
elements (90 degrees is desirable). Our approach for creating a mapped mesh
is to find a 2D parameter space from the 3D tessellation, create a 2D mesh on
this domain, then transform the mesh back to the original 3D surface. One
might think that the best type of domain to preserve angles in a quad mesh
is a conformal, or angle preserving map. But this is not necessarily so! Con-
formal maps map circles to circles and squares to squares in the infinitesimal.
But often we want to allow the mapping of (especially finite size) squares to
rectangles as this preserves our 90 degree angles. So it is quite possible other
types of maps will perform better for this purpose.

2 Past Research

Transfinite meshing is a relatively simplical and well-defined meshing prob-
lem that, for singular NURBS geometry, has been thoroughly investigated.
However, the amount of research material available in the field of setting up
transfinite meshing problems in a global scale is rather limited. Tam and
Armstrongs [9] findings are probably the earliest in this field closely followed
by Mitchells corner detection [5] and element assignment algorithms [4]. The
above approaches targetted NURBS geometry and dont cater very well to all
of the complex needs of body panel meshing. Golpalsamy et al. [4] parame-
terized facetted surface patches for structured meshing. They suggested more
work was needed to assess the quality of the results using different parame-
terizations. Ryskin and Leal [8] addressed the importance of non-conformal
maps for structured grid generation. The inability of the LP solve [6, 10] to
efficiently and intelligently handle both over-constrained and large problems
severely limits the robustness desired to handle body panels. The stringent
and diverse quadrilateral quality needs for the wide range of structural and
flow analyses performed on body panels add additional complexities. We are

A Transfinite Meshing Approach for Body-In-White Analyses 3

not aware of any report on a complete transfinite meshing approach for body-
in-white analyses.

3 Transfinite Meshing Approach

First we give an overview of our transfinite meshing process. The body pan-
els to be meshed are characterized by tessellated surfaces. Each tessellelated
surface could be derived from one or more CAD mid-surfaces or other source.
Facetted Surfaces with more than one loop are automatically ruled out for
transfinite meshing. Our meshing method first requires a procedure to first
create a 2D domain for identifying corners of surfaces. A Least Squares Con-
formal Map type flattening method [1] is used to lay down the 3D surfaces on
2D. Four facet-vertices are identified as corners such that the 4-sided 2D shape
produces a Jacobian closest to that of a rectangle of the given corner combi-
nations. Once the corner facet-vertices are identified for each map-meshable
face, “pseudo-edges” are constructed for each surface. A pseudo-edge is con-
ceived as a face-bound pseudo-topological entity that represents each side of
the 3 or 4 sides of a map-meshable face. The pseudo-edges of all map-meshable
surfaces are next clustered into pseudo-edge-clans. Some of these clans have
common sub-members [part or whole of a pseudo-edge] while others are not.
These colliding clans are merged, collapsed if necessary and prioritized ac-
cording to their content. An element count propagation algorithm is applied
to ensure counts match up on the opposite pseudo-edges for each surface.
Instead of traditional LP solve strategies, a new, more user-controlled, semi-
automatic, corrector-constrainer solution technique is proposed as a system
solution. Associated with the facetted face there is a topology which includes
loops and edges. This topology is an important component of our meshing
process, which in turn puts requirements on our flattening procedure. The
facetted faces consist of triangles defined by facet vertices. The facetted faces
to be flattened have loop and edge topology. The edges are defined on edges
of facets. The edges can be both on the exterior and interior of the 3D face.
Once the face corners are identified and pseudo-edges are constructed, the
corner/edge information is used as constraints to solve the domain generation
problem. A transfinite mesh is generated in the 2D domain and transformed
back to the 3D facetted surface. Many of the details of closely related au-
tomated meshing procedures using faceted surfaces have been reported on
previously by us and our coworkers. [2, 11, 1]

4 Corner Detection

The first task is to identify a polygonal face with a given topology as a map-
meshable face. This involves the identification of the 4 corners. Mitchell [5]
proposed a practical angle-based approach weighted by other factors. However,

4 Kirk Beatty and Nilanjan Mukherjee

the eventual quality of the mapped-mesh is a strong function of shape-factor
(implying orthogonality) of the area. A 4-sided shape closest to that of a
rectangle is the most desired configuration. Consider the discretized surface
shown below in Figure 1.

 (a)

 (b)

 (c)

Face

PE1

e1
 e2

 PE2

e3 e4

PE3

PE4

 e5

e6

Face

e1

e2

e3

e4

 e5

e6

Face

Fig. 1. (a) An m-sided (m facet vertices) CAD derived polygonal surface. (b) Surface
with n potential corner vertices and n geometry edge (here n = 6). (c) Surface
bounded by 4 pseduo-edges.

Figure 1(a) shows the m facet vertices [m = 9 for this particular face].
Figure 1(b) shows the n CAD-derived edges [n = 6 in this case]. Only geometry
vertices are candidates for corners. First, the (2D) included angles, φi, of
all n vertices are measured. To find angles in 2D, we solve for facet vertex

A Transfinite Meshing Approach for Body-In-White Analyses 5

positions in 2D using a least squares conformal map with free boundaries. A
conformal (angle preserving) map solution is a special case of the Weighted
Edge Flattening Method (WEFM),[1] where the mapping type parameter, S,
is zero. Note it is not necessary to have a 1-1 map as we are interested in
angles at the boundary only. So overlaps are quite acceptable as shown in
the flattening of a helix shown in Figure 2. The original 3D triangulation is
sufficiently dense that the corners are readily identifiable. (Usually very few
of the facet vertices are possible corner candidates because we make use of
edge definition data from the CAD geometry.) A conformal flattening method
gives a 2D domain where the the angles between facet edges can be used for
the determination of corners.

Fig. 2. On the left is the boundary of a conformal map of a 10 twist helix. Facet
vertices near corners of of the surface are marked with triangles and squares. The
map mesh of the helical (facet based) surface is given on the right. The final 2D
domain for meshing the helix is a rectangle based on pseudo-edges.

Potential vertices are segregated based on the following heuristics,

Vn ≈ 90− α ≤ φi ≤ 90 + α for i = n (1)

180− β ≤ φp ≤ 180 + β (2)

where α and β are variable angles in degrees [10 ∼ 15 deg.]
The problem is now reduced to a smaller subset of n corners. Any 4 of these

n corners are selected and the largest slope deviation of the curves running
between them is computed (using the other vertices). These locations are used
as mid-points. Curve C = f(x, y, z) Slope of the curve at location i is given
by

Si(x, y, z) = ∂C/∂S =
∂C∂x

∂x∂s
+
∂C∂y

∂y∂s
+
∂C∂z

∂z∂s
(3)

s represents the curve parameter The mid-point must satisfy the following
criteria Smid−point = Smax.

6 Kirk Beatty and Nilanjan Mukherjee

Now the 8-corner surface is mapped to square or a rectangle in a planar
parabolic isoparametric coordinate (ξ, η) system as shown in Figure 3. The
shape functions for a 8-noded isoparametric shape is given by

Ni = 0.25(1 + ξiξ)(1 + ηiη)(ξiξ + ηiη − 1) i = 1, 2, 3, 4 (4)

Ni = 0.5(1 + ξiξ)(1 + ηiη)(1− ξ2ηi2 − ξi2η2) i = 5, 6, 7, 8 (5)

Face

(-1,-1) (1,-1)

(1,1) (-1,1)

Fig. 3. Left diagram is with 4 corners and mid-points identified. On the right is the
related isoparameteric coordinate system.

For the shape to be closest to a rectangle/square, the Jacobian Ratio Jr
(a normalized Ratio; 0 ≤ Jr ≤ 1.0) of the surface must be as close to
1.0 as possible. In other words, The problem is to determine the corner set
that minimizes shape distortion functional λ, where λ = (1.0 − Jr) and the
Jacobian ratio Jr is defined by

Jr =
‖Jmin‖
‖Jmax‖

and J = Jacobian =
[
ΣNi,ξXi ΣNi,ηXi

ΣNi,ξYi ΣNi,ηYi

]
(6)

where i = 0, 4 and Xi, Yi are the transformed coordinates of the 2D domain
at node i such that

{
X
Y

}
= [T]

X
Y
Z

 (7)

where [T] is the transformation matrix.
The efficiency of this method depends on the number of candidate corners

n. The number of combinations to be measured is O(nC4) .

O(nC4) < O(n2) ; n ≤ 7 (8)

A Transfinite Meshing Approach for Body-In-White Analyses 7

So when we have 8 or more candidate vertices, this is not an efficient
method. However, a face with 8 or more candidate vertices is unlikely to be
map-meshable.

5 Pseudo Topology

A known approach, as described by Mitchell [5] and Armstrong and Tam [9],
to the problem of assigning element counts to geometric edges is to set up
constraint schemes on edges so as to result in a linear integer program which
is solved by using LP solves [10]. The success of this approach is limited by the
size of the problem. The LP solve becomes inefficient and lacks the robustness
necessary to deal with thousands of surfaces. In many cases, problems are
ill-defined in the sense that a solvable system cannot be set up. Requiring
map-meshes on all surfaces can lead to no solution or poor quality meshes. To
avoid these problems, a more controlled corrector-constrainer solution scheme
is proposed that requires a pseudo topology. As a result, for certain problems
free meshes are chosen for a select few surfaces. After faces that are 4-sided
and thus candidates for transfinite (map) meshing, are identified, the problem
needs to be set up in a global sense for proper interval assignment on the edges.
To achieve this, the concepts of pseudo-edge and edge clan are introduced.
A pseudo-edge is conceived as a face-bound pseudo-topological entity that
represents each side of the 3 or 4 sides of map-meshable face. Therefore, one
or more geometry edges that form each side of the face between two corners
as shown in figure 1.

A face has loops formed by CAD-derived geometry edges. The face-loop
can now also be defined by these face-bound pseudo-edges. These edges are not
strictly Euler-edges. Each pseudo-edge has members which are real geometric
Euler edges shared across faces. The pseudo-edges are not directly shared
across faces. The solid lines depict topological relationships, while the dotted
lines mean non-topological relationships [Figure 4].

Many pseudo edges can be related to one another by requirements of ele-
ment counts. A group of such pseudo-edges will be refered to as an “edge-clan”.
There can be conflicts in the requirements of different edge-clans, a problem
which is considered in the next section.

6 Pseudo-Edge Hierarchy

The pseudo-edge has a relational hierarchy with respect to the geometry edges
and the edge clan to which it belongs. To explain this, let us consult the ex-
ample depicted in Figure 5. A group of 7 map-meshable faces [F1-F7] are
shown with their pseudo-edges [pe1-pe28]. 8 edge clans [EC1-EC8] are set up
with these pseudo-edges as listed in Table 1. When some more inter-clan rela-
tionships are defined, intra-clan conflicts resolved, an element count (seeding)

8 Kirk Beatty and Nilanjan Mukherjee

Face

Loop

Edge1 Edge2 Edge6 Edge3

PseudoEdge2

PseudoEdge3

Edge4 Edge5

PseudoEdge4

PseudoEdge1

Fig. 4. The pseudo-topological relational model.

can be applied to the edge-clan system, thereby solving the present problem
of element count distribution so as to ensure that transfinite meshes can be
generated on all faces in the assembly .

Fig. 5. Pseudo-edges for a 7-face assembly.

6.1 Pseudo-Edge Classification

Pseudo-edges are classified into a number of categories depending on how they
are prioritized and treated.

A Transfinite Meshing Approach for Body-In-White Analyses 9

Guru Edge A pseudo-edge that decides the element seeding of a clan. The
protégé or follower edges follow the seeding of the Guru. In some special
cases of constraint conflict, a follower-edge may not follow the Guru. In
Figure 5, pe2 of edge-clan EC1 is a typical Guru pseudo-edge.

Protégé Edge A secondary member of the edge clan that follows or obeys
the element seeding of the Guru. Within the context of a face, the protégé-
edge is usually the pseudo-edge that is opposite the Guru pseudo-edge.
In edge-clan EC1, pe1 is a typical protégé pseudo-edge of Guru edge pe2
(for face F1).

Shadow Edge Pseudo-edges that share children geometry-edges. In Fig-
ure 5, pe6 and pe9 are shadow-edges and they carry the same member
geometry-edge. Shadow edges do not partially overlap. When they share
the same children, they are simply called Sister Shadow Edges.

Implicit Shadow Edge A pseudo-edge that own less geometry edges than
its explicit shadow pseudo-edge. pe26 is an implicit shadow edge of pe2.

Explicit Shadow Edge A pseudo-edge that owns more geometry-edges than
its implicit shadow pseudo-edge. pe2 is an explicit shadow edge of pe26
and pe27.

Mirror Edge A pseudo-edge that belongs to the same face as another
pseudo-edge and is directly opposite to it. They need to have the same
element seeding in order that the face map-meshes. Usually one of them
is a Guru and the other is a Protégé-Edge. pe12 is the mirror edge of pe11
(face F4 in Figure 5) and vice versa. Mirror and Shadow edges are used
to walk the surfaces.

Table I: List of Edge Clan and their Members.
Edge Clan Members Guru Pseudo-Edge Clan Conflict
EC1 pe1, pe2, pe5, pe6, pe9, pe2 -pe with most EC8,EC7

pe10, pe11, pe12, pe13, sub-edges
pe14, pe15, pe16, pe17,
pe18

EC2 pe3, p4 pe3
EC3 pe7, pe8
EC4 pe19, pe20 pe19 or pe20
EC5 pe22, pe21 pe21
EC6 pe23, p2e24 pe23 or pe24
EC7 pe26, pe25 pe26 -implicit

shadow edge
EC8 pe27, pe28 pe27 implicit EC1

shadow edge EC1

6.2 ALGORITHM I: Resolving Pseudo-Edge Clan Conflict

Once the pseudo-edge clans are constructed, we realize that some of them can
run into conflict with the others with respect to the element count. To resolve

10 Kirk Beatty and Nilanjan Mukherjee

the clan conflict, a merge-logic is used as described by the flowchart given
below.

Input Clan
X and Y

Clan Y

Merge Clans

Do
frozen

 members have
same elem

count?

N

Y

YNDon’t assign
elements to conflicting

members

Remove conflicting
members from ClanY Clan X

Do
both Clans
have frozen
members?

Fig. 6. Algorithm I. Resolving Clan Conflict.

7 Element Count Propagation

In order to propagate element count to surfaces, the pseudo-edge clans need
to be count-constrained. The task begins with prioritizing the pseudo-edge
clans. A procedural heuristic algorithm used to prioritize them is described
below.

7.1 ALGORITHM II: Prioritizing Clan Constraint Propagation

1. Select clan with longest frozen (completely) edge

A Transfinite Meshing Approach for Body-In-White Analyses 11

2. If no frozen (completely) edges are found, consider clan with longest par-
tially frozen pseudo-edge. A partially frozen pseudo-edge is one that has
nodes on some of its member edges but not on all.

3. If no frozen (partially) pseudo-edges are found, consider clan with shortest
pseudo-edge.

4. If two or more clans have the same shortest member length, consider the
clan with more members.

5. If two or more clans have the same size (i.e. same number of members),
the clan with the largest composite face takes precedence.

Once clans are prioritized, they are visited in sequence and an element
count is applied to each. The determination of the element count is based on
the most influential member of each clan, referred to as the Guru edge. A
heuristic-deterministic procedural algorithm for the identification of the Guru
pseudo-edge is described below.

7.2 ALGORITHM III: Determination of Guru pseudo-edge

1. The most constrained edge in a clan is the default choice.
2. If no constraints are present, consider the pseudo-edge that has the most

number of children.
3. If more than one pseudo-edge has the same number of children (explicit

pseudo-edges of the same degree), consider the longest edge among them.
4. As for the Protégé-edge, it will not follow the Guru if
• It is too short or too long compared to the Guru
• If its children mesh-edges are incompatible
• If it has more children than the specified interval
• If it has more hard-points than the specified interval
• If is too curved for the given interval

Once the Guru edge is identified, an element count is determined on it based
on the element size specified and the presence of local constraints (like frozen
edges, mesh-points etc.), if any. The same element count of element interval
is now assigned to all the other members (protégé members) of the clan. The
algorithm used to assign the intervals on each pseudo-edge is described below.

7.3 ALGORITHM IV: Interval Assignment on a Pseudo-Edge

To distribute an interval of N elements on a pseudo-edge comprising m geom-
etry edges, the following equations are used

ni = (N − k)Wi i ≥ 1 (9)

ni denotes the sub-interval on geom-edge i. Wi denotes the weight factor for
geom-edge i and can be expressed as

12 Kirk Beatty and Nilanjan Mukherjee

Wi =
Li

m−p∑
i=1

Li

(10)

where Li denotes the length of geom-edge i. This assumes the pseudo-edge is
partially frozen, with k intervals on p edges. For a free pseudo-edge p = 0,
k = 0.

7.4 ALGORITHM V: Corrector-Constrainer Solution

Once all non-conflicting edge clans (EC2-EC6) are element assigned based on
ALGORITHM-III and ALGORITHM-IV to the data in Figure 5 and Table
1, the problem is reduced to the pseudo-edge and edge clans connected with
faces F1, F6 and F7. Figure 7 describes the reduced problem in terms of
geom-edges e1-e3 and pseudo-edges pe1, pe2, pe26 and pe27.

Fig. 7. Section of Figure 5 showing 3 faces, their geom-edges, pseudo-edges and the
overlapping and edge-clan conflicts.

A constraint equation in matrix form can be set up and rearranged as

{Ω} = |Aij |{ρj} (11)

where positive integers, denote the counts on i pseudo-edges positive inte-
gers, denote the counts on j geom-edges and [Aij] is a binary matrix, usually
unsymmetric but positive definite Equation 6 for the reduced problem de-
scribed in Figure 7, can be thus written as

Ω2

Ω26

Ω27

Ω1

 =

1 1 0
1 0 0
0 1 0
0 0 1

ρ1

ρ2

ρ3

 (12)

where {Ω} = {Ω2 Ω26 Ω27 Ω1} denote the counts on pseudo-edges pe2,
pe26, pe27 and pe1 and {ρ}T = {ρ1 ρ2 ρ3} denote the counts on geom-edges

A Transfinite Meshing Approach for Body-In-White Analyses 13

e1, e2 and e3. The known constraints in this system are Ω1 and ρ3. Equation
(11) can be underconstrained, balanced or overconstrained. For the latter case
it cannot be solved and thus the related faces are free-meshed. If the system is
under-constrained, the matrices are permuted or corrected according to clan
priority and one unknown count is determined by solving one equation at a
time.

Fig. 8. Map mesh on a small group of faces.

Missing constraints or edge counts are imposed. These counts are deter-
mined based on element size, neighboring counts, minimum element size etc.
Each solve reduces the resultant matrices by a dimension of one. The new ma-
trices are again corrected (permuted) based on clan priority and the process is
repeated until all unknown variables are solved or an over constrained system,
which cannot be solved, is reached. By employing this corrector-constrainer
solution scheme, any ill-condition or overconstraint, if present, is relegated to
an area of low interest or relative unimportance. Figure 8 shows a transfinite
mesh on a small cluster of 13 faces similar in disposition to Figure 5.

8 Surface Flattening Methodology for Transfinite
Meshing

To mesh a three dimension (3D) surface composed of triangles which is
bounded by four pseudo edges we first map it to a two dimensional (2D) do-
main. In this process we use the Weighted Edge Flattening Method (WEFM)
[1] with constraints and parameters especially adapted for transfinite mesh-
ing. In the WEFM, a vertex in a polygon is associated with two parameters
for each edge of the polygon to which it does not belong. In the case of a
linear triangle, each vertex has one (opposite) edge for each triangle in which
it resides. The first parameter, α, corresponds to a location along the poly-
gon edge. The second parameter, β, relates to a geodesic distance from the
point along the (possibly continued) polygon edge to the vertex divided by

14 Kirk Beatty and Nilanjan Mukherjee

the length of the edge. Using this 3D characterization, it is possible to find a
full range of different 2D solutions. In the WEFM the type of solution is tied
to a mapping type parameter, S, which varies from 0 in the conformal (angle
preserving) case to 2 in the authalic (area preserving) case. In the WEFM the
target location of a vertex based on the α and β parameters of an opposite
edge, h, is:

Zh = Ph(α) + βTh(α)(ρh)Si (13)

where P is for position along the polygon edge and T for evaluation of the
tangent in 2D. Z is a vertex position in the complex plane. ρh is a scaling for
3D to 2D along the polygon edge,

ρh =
|Th,3D(α)|
|Th,2D(α)|

(14)

In our previous paper we presented a simplified version for linear triangles.[1]
The WEFM minimizes the sum of the least square distance between the posi-
tions of vertices and their (weighted) average target positions. For transfinite
map meshing the boundary of the domain was constrained to form a rect-
angle. For each pseudo edge we set its 2D length to the average of the 3D
length of it and its opposing pseudo-edge. We then scaled all of the pseudo
edges so that the area of the rectangle in the 2D domain is the same as the
area of the 3D triangulation. One pseudo-edge is constrained to be along the
x-direction by setting the difference between facet points between facet edge
to its new scaled distance. The next pseudo-edges (of the loop) are in the Y
direction, then the X direction, then the Y direction. All facet point positions
are variables in the solve, and the differences in position are on the right hand
side of the solve. Since the constraints are all with vectors, the solution is not
unique. To eliminate the translation degree of freedom we add a constraint
based a weighting of the points. This procedure, based on Lagrange multipli-
ers, is described in our previous paper. [1] This vector based approach is more
flexible than directly fixing the boundary.

Fig. 9. Transfinite mesh of wheel well surface using S = 0.7.

A Transfinite Meshing Approach for Body-In-White Analyses 15

The WEFM was used for a 3D triangulation for the surfaces depicted
in figures 2 and 9. (The surfaces are presented with the final mesh, not the
original 3D facets.) The WEFM map for the surface in figure 9 with S equal
to 0 is shown in figure 10. The WEFM map for S equal to 0.7 is shown in
figure 11. (The figures are rotated relative to figure 9 for easier comparison
to one another.). For both the helix and wheel wheel the final map meshes
(figures 2 and 9) are based on the 2D domains using a mapping parameter
value of 0.7. We used an S value of 0.7 for our transfinite meshing process as
discussed in the results section of this paper.

Fig. 10. WEFM map of the wheel well surface with S = 0.0.

9 Transfinite Meshing Algorithm

Boundary blended Coons blending functions are traditionally used to generate
transfinite or mapped meshes on the flattened 2D domain. [3] The algorithm
is standard and is discussed in details in a previous investigation. [7] Presence
of constraints, (both internal and external) however, pose challenges to the
transfinite blending algorithm requiring inverse-solves and leads to anisotropic
transfinite meshes. Much of this is outside the scope of this investigation and
has been [7] (and will be) reported separately.

10 Results and Discussion

Among other quality metrices, the deviation of the extremum quad angle from
90 degrees is often used in the automobile industry to measure the quality of

16 Kirk Beatty and Nilanjan Mukherjee

Fig. 11. WEFM map of the wheel well surface with S = 0.7

quad meshes for body-in-white analyses. Figure 12 shows the effect of the
mapping type parameter, S , on the maximum quad angle for the surface
meshed in figure 9. Results for a section of a torus which is a more typical
surface in our process are also given. For our transfinite meshing process we
chose a value of 0.7 for the mapping type parameter, a value which was nearly
optimal for the surfaces we normally encountered. In cases where the elements
of the mapped mesh are very small relative to the size of the facets, a WEFM
based parabolic triangles or quadrilaterals could be used. Such a map would
have a smooth transition in map scaling within the boundaries of the parabolic
facets/polygons. Figure 13 shows a cluster of 135 single-loop faces of a body
panel, all map-meshed. The extremums of the quad angle for the mesh are 69
degrees to 148 degrees with 98.82% of the elements maintaining a quad angle
range of 83 to 98 degrees.

11 Acknowledgement

We would like to thank Michael Hancock and all our colleagues in the Meshing
and Abstraction Team at Siemens for their help with this work.

A Transfinite Meshing Approach for Body-In-White Analyses 17

90

92

94

96

98

100

102

104

0 0.2 0.4 0.6 0.8 1

M
a

x
im

u
m

 Q
u

a
d

 A
n

g
le

 (
d

e
g

re
e

s
)

Mapping Type Parameter S

Fig. 12. Maximum quad interior angle (in degrees) for different WEFM mapping
type parameters. Results from the surface meshed in figure 9 are given as squares.
Results from a section of a torus are given with circles.

Fig. 13. Tranfinte mesh spanning 135 faces on part of a body panel.

18 Kirk Beatty and Nilanjan Mukherjee

References

1. K. Beatty and N. Mukherjee. Flattening 3d triangulations for quality surface
mesh generation. In Proceedings, 17th International Meshing Roundtable, pages
125–139, 2008.

2. Jean Cabello. Towards quality surface meshing. In Proceedings, 12th Interna-
tional Meshing Roundtable, pages 201–213, 2003.

3. I. D. Faux and M. J. Pratt. Computational Geometry for Design and Manufac-
ture. Halsted Press, New York, NY, USA, 1979.

4. Sankarappan Gopalsamy, Douglas H. Ross, Yasushi Ito, and Alan M. Shih.
Structured grid generation over nurbs and facetted surface patches by repa-
rameterization. In Proceedings, 14th International Meshing Roundtable, pages
287–300, 2005.

5. S. Mitchell. Choosing corners of rectangles for mapped meshing. In Proceedings,
13th annual symposium on Computational Geometry, pages 87–93, 1993.

6. S. Mitchell. High fidelity interval assignment. In Proceedings, 6th International
Meshing Roundtable, pages 33–44, 1997.

7. Nilanjan Mukherjee. High quality bi-linear transfinite meshing with interior
point constraints. In Proceedings, 15th International Meshing Roundtable, pages
309–323, 2006.

8. G. Ryskin and L.G.Leal. Orthogonal mapping. Journal of Computational
Physics, 50:71–100, 1983.

9. T. K. H. Tam and C. G. Armstrong. Finite element mesh control by integer
programming. International Journal for Numerical Methods in Engineering,
36:2581–2605, 1993.

10. Simple LP solve site
http://riot.ieor.berkeley.edu/riot/Applications/SimplexDemo/Simplex.html,
June 2010.

11. Radhika Vurputoor, Nilanjan Mukherjee, Jean Cabello, and Michael Hancock.
A mesh morphing technique for geometrically dissimilar tesselated surfaces. In
Proceedings, 15th International Meshing Roundtable, pages 315–334, 2007.

