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Summary. A quasi-conformal mapping of the parametric domain onto the
underlying physical domain is used to generate a 2D structured mesh with
required properties: grid line orthogonality and prescribed mesh point clus-
tering near the domain boundary. The functions implementing the mapping
are sought by solving the Dirichlet problem for the elliptic partial differential
equations. An additional control for the cell shape is executed by introducing
a local mapping. Example of the mesh near the airfoil is presented.
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1 Introduction

When constructing a structured (block-structured) mesh on a two-dimensional
domain with aim to simulate viscous gas flow near a body, there are addi-
tional requirements imposed on the mesh. It is grid line orthogonality and
prescribed strong mesh point clustering near the streamline body. If the out-
side domain boundary is in “infinity” and may have an arbitrary shape, then
one may use algorithms based on solving hyperbolic partial differential equa-
tions (PDEs) (cf. [1, 2]). If the entire boundary is stringently defined, such
methods are badly applicable due to the boundary value problem (BVP) is
ill-possed. Besides, the hyperbolic PDEs transfer singularities of the solution
(i.e., breaks on the boundary) along characteristics. Quasilinear hyperbolic
PDEs may produce a non-smooth and even discontinuous solution even with
smooth boundary conditions [3].

For the rigidly defined boundary it is convenient to utilize elliptic PDEs of
the second order (cf. [4, 5, 6]) producing meshes at a quasi-conformal mapping.
Here it is sought a mapping of the domain P in the parametric plane with a
given square mesh onto the domain Ω in the physical plane where the grid is
required. We call P a parametric domain and Ω is called a physical domain.
If to employ a homeomorphic mapping F :P→Ω then the image of the square

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo
kgruda
Rectangle



2 Boris Azarenok

mesh on P is an unfolded grid on Ω. For the Laplace equations, the Radó
theorem [7] asserts that the harmonic mapping of a simply connected bounded
domain onto a simply connected bounded convex domain is univalent subject
to a given homeomorphism between the boundaries. To satisfy the conditions
of the Radó theorem for nonconvex physical domains, the inverted Laplace
equations are applied (cf. [4, 6]). The use of the inverted Laplace equations
provides a smooth and quasiuniform grid. However, the grid so generated
is not always satisfactory in the sense that points may not be clustered to
where they are needed and grid orthogonality near the domain boundary is
not supported. Besides, some problem arises at discrete level that leads to
mesh folding (cf. [8, 9, 10, 11]).

In [5], with purpose to implement grid line control, a substitution of vari-
ables was implemented for the inverted Laplace equations. In [12], the source
terms were used in those Eqs. and, in [16], an algorithm of specifying coef-
ficients in source terms was suggested to impose grid line orthogonality and
prescribed mesh point clustering near the domain boundary. An additional
algebraic transformation was applied in [13], additional local mapping was
executed in [14, 10]. It is not possible to obtain orthogonal mesh in the entire
domain with a curvilinear boundary, except simple canonical domains (disk,
ring or their sector, etc.) because the BVP is ill-possed [15]. In complicated
domains, the mesh, generated by using a conformal mapping, is not applicable
for mathematical simulation. On the other hand, one may obtain a mesh with
orthogonal grid lines of one family towards the boundary and prescribed mesh
point clustering near the domain boundary. To this end, in the source terms
of the Poisson equations of [12] it is specified coefficients at the exponent by
solving an inverse problem [16]. This process is rather cumbersome and prac-
tical calculation demonstrates that grid line may approach the boundary at
an angle substantially differing from 90o [16, 2, 17].

We present the grid generation method based on solving the Dirichlet
problem for the elliptic PDEs [10, 11]. Grid line control is imposed by in-
troducing an additional local mapping which induces the control metric. We
present the way of specifying the control metric with aim of obtaining grid line
orthogonality and required mesh point clustering near the domain boundary.
Example of the mesh near the NACA6409 airfoil is considered.

2 Grid generation using mapping

Let a structured mesh be required on a simple connected domain Ω repre-
sented as a curvilinear quadrangle in the plane of physical variables x, y. The
mesh is defined by the nodal Cartesian coordinates

ri,j = (x, y)i,j , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2,

subject to given nodal coordinates on the boundary ∂Ω
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ri,1, ri,N2
, i=1, . . . , N1; r1,j, rN1,j j=1, . . . , N2.

To this end, the parametric domain P , rectangle with the sides N1−1
and N2−1 subdivided into unit squares, in the plane ξ, η is mapped onto the
physical domain Ω. If a homeomorphic mapping F :P→Ω can be found, the
image of the square mesh on the domain P will be an unfolded mesh on the
domain Ω. This is true at least in continuous approach. Meantime at the
discrete level, truncation error may case grid folding (cf. [11, 9, 8]). As grid
lines on Ω it is utilized the equipotential lines of the functions ξ(x, y) and
η(x, y).

The functions F=x(ξ)=(x(ξ, η), y(ξ, η)), of class C2, executing the map-
ping x(ξ) :P→Ω (see Fig. 1), are sought by solving the Dirichlet problem for
the elliptic PDEs [10, 11]

L(x) = g22xξξ − 2g12xξη + g11xηη − xξ

[

G̃22(P − Q) + G̃12(S − R)
]

(1)

−xη

[

G̃11(R − S) + G̃12(Q − P )
]

= 0, L(y) = 0,

G̃kl =
Gkl√
detG

, P = g11

∂G̃12

∂η
− g12

∂G̃11

∂η
, Q =

1

2

(

g11

∂G̃22

∂ξ
− g22

∂G̃11

∂ξ

)

,

S = g12

∂G̃22

∂ξ
− g22

∂G̃12

∂ξ
, R =

1

2

(

g11

∂G̃22

∂η
− g22

∂G̃11

∂η

)

.

The components of the metric tensor gkl, induced by the mapping x(ξ), are

g11 = x2
ξ + y2

ξ , g12 = xξxη + yξyη, g22 = x2
η + y2

η .
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Fig. 1. Mapping x(ξ) :P→Ω is sought by solving problem (1),(2). Control metric
G is specified by local mapping X(ξ), e.g., 4 cells (dotted) in plane ξ, η onto 4 cells
in plane X, Y .

In Eqs. (1), we use one more metric G. The control metric G is induced by
a local mapping X(ξ) of a subdomain P1⊂P to a domain in the plane of new
variables X, Y . At discrete level it may be, for instance, four adjacent cells in
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the parametric plane ξ, η, forming a 9-point stencil to approximate the system
(1), onto four adjacent cells in the plane X, Y (see Fig. 1). The components
of the control metric tensor Gkl are

G11 = X2
ξ + Y 2

ξ , G12 = XξXη + YξYη, G22 = X2
η + Y 2

η .

The boundary conditions specify the boundary correspondence

x = xb(ξ, η) , y = yb(ξ, η), (ξ, η) ∈ ∂P . (2)

The mapping x(ξ) is quasi-conformal, i.e., it transforms an infinitesimal circle
of P to an infinitesimal ellips of Ω.

In some particular cases, the mapping x(ξ) :P→Ω is a composition of two
sequential mappings. First, we construct the mapping X(ξ) of the domain
P onto the domain C in the plane X, Y (see Fig. 2). Therefore, a mesh (or
a part of the mesh) is constructed on the domain C. Next the image of this
mesh is obtained on the domain Ω at the mapping x(X) : C→Ω. If Gkl is the
identity tensor, then Eqs. (1) turn to the inverted Laplace equations of [4] and
x(ξ) :P→Ω is the inverse harmonic mapping. By the Radó theorem [7], the
direct harmonic mapping ξ(x) : Ω→P , specified by the Laplace equations, is
univalent.

ξ

η

x(ξ)

Y

X

X(ξ)

x(X)

C

P

x

y

Ω

Fig. 2. In particular cases, first mapping X(ξ) :P→C is used and then mapping
x(X) : C→Ω is considered.

PDEs (1) are the Euler equations to the universal functional suggested in
[14]. The property of universality implies that by specifying the control metric
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G any given smooth homeomorphic mapping F :P→Ω may be reproduced by
solving the problem (1),(2) and, at discrete level, any given unfolded mesh
may by constructed. In addition, Eqs. (1) are invariant to nonsingular trans-
formations of the coordinates x, y and X, Y . These two properties of Eqs. (1)
allow to obtain a grid with required properties subject to such a grid exists.

3 Discretization and numerical solution

Eqs. (1) are approximated to second order at the interior mesh node (i, j)
on the domain P via the difference relations on the 9-point square stencil of
spacing 1. The derivatives of the function x(ξ, η) are approximated as follows

xξ ≈ [xξ]i,j = 0.5(xi+1,j − xi−1,j), xη ≈ [xη]i,j = 0.5(xi,j+1 − xi,j−1),

xξξ≈[xξξ]i,j=xi+1,j − 2xi,j + xi−1,j , xηη≈[xηη ]i,j=xi,j+1 − 2xi,j + xi,j−1, (3)

xξη ≈ [xξη]i,j = 0.25(xi+1,j+1 − xi+1,j−1 − xi−1,j+1 + xi−1,j−1),

and the components of the metric tensor gkl are approximated as follows

[g11]i,j = [xξ]
2
i,j + [yξ]

2
i,j , [g22]i,j = [xη]2i,j + [yη]2i,j ,

[g12]i,j = [xξ]i,j [xη]i,j + [yξ]i,j [yη]i,j .

The components of the control metric tensor Gkl are approximated similarly.
Substituting these relations into Eqs. (1) gives approximation of the oper-

ators L(x) and L(y) denoted [L(x)]i,j and [L(y)]i,j , respectively. The resulting
discretized equations with boundary conditions (2) are solved by employing
the iterative procedure. Let nodal coordinates be known at the lth iteration.
Then at the l+1th iteration they are updated by formulae [5]

xl+1
i,j = xl

i,j + τ
[L(x)]i,j

2([g11]i,j + [g22]i,j)
, yl+1

i,j = yl
i,j + τ

[L(y)]i,j
2([g11]i,j + [g22]i,j)

. (4)

Here [.] denotes approximation of the underlying expression at the node (i, j)
at the lth iteration, iterative parameter 0<τ<2. To accelerate convergence of
the iterations (4) the Seidel procedure is employed. Iterations are executed
until the condition for the nodal coordinates ri,j=(x, y)i,j

max
i,j

|rl+1
i,j − rl

i,j | < ε, i=2, . . . , N1−1, j=2, . . . , N2−1,

is satisfied. Here ε>0 is sufficiently small. As an initial guess ro
i,j one may

utilize a grid provided by the inverted Laplace equations.
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4 Control metric assignment

The control metric G is specified so that the grid possesses required proper-
ties. Suppose we need to construct a mesh with the j-line (equipotential line
ξ(x, y)=const) approaching orthogonally the upper part of the boundary ∂Ω
(where the nodes (i, N2), i=1, 2, . . . , N1, are located) and, in addition, with
prescribed mesh point clustering near this part of ∂Ω. In other words, several
upper i-lines (equipotential line η(x, y)=const), say jo, are given by the nodal
coordinates ri,j=(x, y)i,j

ri,j = ri,j+1 + ni,j+1hi,j+1/2, i=2, . . . , N1−1, j=N2−1, . . . , N2−jo, (5)

where the spacing hi,j+1/2 is the distance between the nodes (i, j) and (i, j+1),
ni,j+1=(sy,−sx)i,j+1 is the inward unit normal vector towards the i-line. The
unit tangent vector towards the i-line is

si,j+1 = (ri+1,j+1 − ri−1,j+1)/|ri+1,j+1 − ri−1,j+1|. (6)

This grid block we call boundary cell layers. After calculating the metric tensor
components gkl at nodes of the i-lines j=N2−1, N2−2, . . . , N2−jo, we specify
components of the control metric tensor Gkl=gkl at those nodes. If jo=N2−2
(it would imply that we specify all interior nodes), because the system (1) is
universal, the numerical solution will reproduce the given mesh (see [10, 11]).
This case may be represented as follows. The mesh, given on the domain C in
the plane X, Y (see Fig. 2), is reproduced on the domain Ω in the plane x, y.
If we specify only some upper part of the grid (jo<N2−2), due to the system
(1) is elliptic, the initially given mesh in the plane X, Y will be distorted on
the domain Ω.

Next, this block should be smoothly extended to the interior of the domain
Ω. It may be done as follows. While moving in a j-line away from the boundary
∂Ω, the tensor Gkl should be transformed to the identity tensor within j1
nodes because in the interior of the domain Ω no additional control is needed.
To this end, it is used a local mapping of 4 cells adjacent to the underlying
node (see Fig. 1). The identity tensor at a node in the plane X, Y is specified
by the 9-point square stencil of spacing 1. Consider the node (i, j), which is
placed at the origin (0,0), and 8 adjacent nodes forming the 9-point stencil (see
Fig. 3). For the initial stencil of Fig. 3, we define index j=N2−jo. Moving in
the j-line from the node (i, N2−jo−1) to the node (i, N2−jo−j1), we should
gradually transform this stencil to the square stencil of spacing 1. To this
end, the node (i−1, j) should pass to the point (−1, 0), node (i, j−1) to the
point (0,−1), etc., within j1 cell layers. Let us introduce the local indices
m, n=−1, 0, 1 for the 9-point stencil relating to the underlying node (i, j) so
that m=0, n=0 specify the node (i, j); m=1, n=0 specify the node (i+1, j);
etc. Stencil transformation is performed using a linear interpolation

rm,n = rin
m,n +

N2 − jo − j

j1

(

rsq
m,n − r

in

m,n

)

, (7)
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Fig. 3. Initial stencil transforms to square stencil of spacing 1. Correct location of
initial stencil relatively square stencil (a), incorrect (b). Rotated stencil (c).

j=N2−jo−1, . . . , N2−jo−j1, m, n=−1, 0, 1,

where rin
m,n are the nodal coordinates of the initial stencil and rsq

m,n are the
nodal coordinates of the square stencil of spacing 1, the node m=n=0 is fixed.
Because the system (1) is invariant to rotation and scaling of the coordinates
X, Y , the mesh constructed will smoothly transform to the grid on the rest of
the domain Ω. However, the case depicted in Fig. 3b provokes 9-point stencil
folding during transformation (7). To prevent this situation, first we rotate
the initial stencil about the origin (0,0), i.e., about the point (i, j), so that
the node (i+1, j) lays in the X-axis (see Fig. 3c). We find the rotation angle
ϕ between the vector ri+1,j and X-axis
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cosϕ = Xi+1,j

/√

X2
i+1,j + Y 2

i+1,j , sinϕ = Yi+1,j

/√

X2
i+1,j + Y 2

i+1,j

and update coordinates of 8 nodes

X ′

m,n=Xm,n cosϕ+Ym,n sin ϕ, Y ′

m,n=−Xm,n sin ϕ+Ym,n cosϕ, m, n=−1, 0, 1.

We obtain the stencil like that of Fig. 3c. Next, the transformation (7) is
executed.

5 Mesh around airfoil

Consider the grid generation problem on the domain Ω around the NACA6409
airfoil represented parametrically with Bézier curves [18]

x(t) = F1(Z1(1 − t)),

y(t) =

{

F2(Z1(1 − t)) + Z2(1 − t, th), upper airfoil branch y ≥ 0 ,
F2(Z1(1 − t)) − Z2(1 − t, th), lower airfoil branch y < 0 ,

Z1(t) =

8
∑

i=1

αiBi(t), Z2(t, th) = th

8
∑

i=1

βiBi(t),

F1(t) =

4
∑

i=1

γiCi(t), F2(t) = δ

3
∑

i=1

Ci(t),

0 ≤ t ≤ 1, th = 0.09, δ = 0.12, α1 = 0, α2 = 0.03571, α3 = 0.10714,

α4 = 0.21429, α5 = 0.35714, α6 = 0.53571, α7 = 0.75, α8 = 1, β1 = 0.18556,

β2 = 0.34863, β3 = 0.48919, β4 = 0.58214, β5 = 0.55724, β6 = 0.44992,

β7 = 0.30281, β8 = 0.0105, γ1 = 0.2, γ2 = 0.4, γ3 = 0.7, γ4 = 1,

B1(t) = 8t(1 − t)7, B2(t) = 28t2(1 − t)6, B3(t) = 56t3(1 − t)5,

B4(t) = 70t4(1 − t)4, B5(t) = 56t5(1 − t)3, B6(t) = 28t6(1 − t)2,

B7(t) = 8t7(1 − t), B8(t) = t8,

C1(t) = 4t(1 − t)3, C2(t) = 6t2(1 − t)2, C3(t) = 4t3(1 − t), C4(t) = t4.

The outer domain boundary is specified by sides of the square −1.5≤x≤2.5,
−2≤y≤2.

In Fig. 4, it is presented the O-type 105×51 mesh. The lines i=1, N1 are
coincide and go from the trailing edge, line j=1 is the outer domain boundary,
line j=N2 is the airfoil contour. In the upper airfoil branch, points are located
by using the following distribution for the parameter t within the segment
0≤t≤1

t1 = 0, ti+1 = ti + 4ti+1/2, i=1, 2, . . . , Na, Na=(N1−1)/2,

4t3/2 =
2σ

(σ + 1)Na
, 4ti+1/2 = 4ti−1/2 −

2(σ − 1)

(σ + 1)Na(Na − 1)
, i=2, 3, . . . , Na,
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i=1

i=2

i=104

Fig. 4. 105×51 mesh with j-lines orthogonal to airfoil contour, mesh point clustering
near airfoil and outer boundary.

where σ=4tNa+1/2/4t3/2=1/11.5 . For the lower airfoil branch points i=Na+
2, . . ., N1−1, the above formulae are utilized with σ=4tNa+3/2/4tN1−1/2=0.1.

In a neighborhood of the trailing edge, the continuous mapping is unstable
that causes grid lines to overlap. To prevent grid folding we imply a constrain.
It is that the line i=1 should approach the corner point along the bisectrix of
the trailing edge outer angle. Several nodes of the line i=1 lay in the bisectrix,
i.e., at iterations (4) the shift vector rl+1

1,j − rl
1,j is projected to the bisectrix.

To satisfy the conditions of orthogonality and clustering near the airfoil
contour we define the control metric G in the following manner. In the plane
X, Y we specify nodal coordinates ri,j=(X, Y )i,j of jo cell layers according to
the formula (5) with mesh spacings along the j-line

hi,j+1/2 = hi,N2−1/2 +
[

(N2 − 1 − j)/jo

]2
(hi,N2−jo+1/2 − hi,N2−1/2) ,

i=1, 2, . . . , N1, j=N2−1, ..., N2−jo,
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where hi,N2−1/2, hi,N2−jo+1/2 are given spacings in the 1st and joth (from
airfoil contour) boundary cell layers. In Fig. 5, the boundary cell layers
are presented in the plane X, Y with parameters jo=20, hi,N2−1/2=0.03,
hi,N2−jo+1/2=6·10−3. These layers may be considered as a part of the mesh
on the domain C. The line i=1 is the bisectrix of the trailing edge outer angle

r1,j = r1,j+1 + bh1,j+1/2 , j=N2−1, ..., N2−jo . (8)

Here with j=N2−1, . . . , N2−jb the unit vector b=bd specifies the bisectrix
and number of gird nodes jb in this bisectrix is changed depending on node
clustering toward airfoil, see Table 1.

Fig. 5. Boundary cell layers in plane X, Y .

Table 1. Parameters of mesh on C domain in X, Y plane

hi,N2−1/2 6×10−3 3×10−3 10−3 3×10−4 10−4 3×10−5 10−5

hi,N2−jo+1/2 0.03 0.02 0.02 0.02 0.02 0.02 0.02

jb 1 3 4 6 8 8 8

For the rest of nodes in the line i=1 the vector b in (8) specifies the
direction which changes smoothly from bd to the vector k=(1, 0)

b =
b̃

|b̃|
, b̃ = bd +

N2 − jb − j − 1

jo − jb − 1
(k − bd), j=N2−jb−1, . . . , N2−jo .

Near the airfoil, direction of the lines i=1, 2 as well as i=105, 104 changes
sharply, nearly by 90o. This causes quality of the mesh on Ω deteriorates.
We smooth this change of direction by using a vector ti,j+1, a normalized
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linear combination of ni,j+1 and b, instead of the normal vector ni,j+1 in the
formula (5)

ti,j+1 =
t̃i,j+1

|t̃i,j+1|
, t̃i,j+1=λini,j+1 + b, i=2, . . ., 4, N1−4, . . ., N1−1, λ2=1.5,

λ3=2.7, λ4=4.5, λ5=10, λN1−4=5, λN1−3=3, λN1−2=1.2, λN1−1=0.5,

with indices j=N2−jb−1, . . ., N2−jo. With indices j=N2−1, N2−2, we use the
normal vectors ni,j+1 in the formula (5) with all i=2, . . . , N1−1. For the lines
j=N2−3, ..., N2−jb we use a vector pi,j+1, a normalized linear combination
of ni,j+1 and ti,j+1, instead of the vector ni,j+1 in the formula (5)

pi,j+1 =
p̃i,j+1

|p̃i,j+1|
, p̃i,j+1 = ni,j+1 +

N2 − 2 − J

5
(ti,j+1 − ni,j+1),

i = 2, ..., 5, N1−4, ..., N1−1.

The mesh of Fig. 5 is the boundary cell layers of an initial grid in the
iterative procedure (4). The remained part of the initial grid may be produced,
for instance, by an algebraic method. Transformation (7) of the tensor Gkl to
the identity tensor is executed within j1=6 cell layers. We calculate the metric
tensor Gkl for every new parameters hi,N2−1/2, hi,N2−jo+1/2 of Table 1. After
implementing iterations (4), the resulting mesh is used as an initial guess for
the grid with new parameters hi,N2−1/2, hi,N2−jo+1/2 except for jo boundary
cell layers for which the initial mesh is the grid on the domain C. For the first
1000 iterations (4) we set the iterative parameter τ equal to 0.3 and for the
remained iterations τ=1.7. The parameter ε, serving for stopping iterations,
is equal to 10−14. Convergence is attained within 2500 to 3000 iterations.

Fig. 6 presents fragments of the grid on Ω (for entire mesh see Fig. 4) with
the fifth set of parameters of the Table 1. For the last set of parameters of
the Table 1 in all cells of the layer j=N2−1 (nearest to airfoil), the spacing
hi,N2−1/2 is exactly equal to 10−5. The angle ϕ between j-line and tangent
vector towards the airfoil contour at the node (i, N2), i=2, ..., N1−1, computed
via (6), is equal to 90o with a deviation |4ϕ|≤0.1o. Thus, the requirements of
mesh orthogonality and prescribed node clustering near the airfoil are obeyed.

Besides we regulate the cell shape near the outer boundary. The control
metric tensor Gkl is specified by the rectangular grid on the domain C with
spacing in the X- and Y -axis

Xi+1,j − Xi,j = hx
i+1/2 = 1, i=1, . . . , N1−1, j=1, . . . , j2,

Yi,j+1−Yi,j=hy
j+1/2

=hy
j2−1/2

+
[ j−1

j2−1

]q

(1−hy
j2−1/2

), i=1, . . . , N1, j=1, . . . , j2.

The parameters are j2=11, q=1.5, hy
j2−1/2

=0.3 for the mesh of Fig. 4. In gen-

eral, the spacing hy
j+1/2

may also depend on the index i.
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a

b c

Fig. 6. Close-up with magnification factor of 3 (a) and 50 (b),(c).

6 Conclusion

We presented the grid construction method by using the quasi-conformal map-
ping. Existence and uniqueness of a diffeomorphic harmonic mapping is pro-
vided by the Radó theorem for the inverted Laplace equations. Next, this
mapping is deformed so that to obtain a grid with required properties. The
universal elliptic PDEs allow to obey the conditions of orthogonality and pre-
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scribed mesh point clustering near the domain boundary. The technique of
specifying the control metric was considered. For this, two formulations of
grid generation problem were used with implementing a local additional map-
ping and a global additional mapping.
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