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Abstract. A method towards robust and efficient medial axis transform (MAT)
of arbitrary domains using distance solutions is presented. The distance field, d,
is calculated by solving the hyperbolic-natured Eikonal (or Level Set) equation.
The solution is obtained on Cartesian grids. Both the fast-marching method and
fast-sweeping method are used to calculate d. Medial axis point clouds are then
extracted based on the distance solution via a simple criteria: the Laplacian or the
Hessian determinant of d. These point clouds in 2D-pixel and 3D-voxel space are
further thinned to curves and surfaces through binary image thinning algorithms.
This results in an overall hybrid approach. As an alternative to other methods,
the current d−MAT procedure bypasses difficulties that are usually encountered by
pure geometric methods (e.g. the Voronoi approach), especially in 3D, and provides
better accuracy than pure thinning methods. It is also shown that the d−MAT
approach provides the potential to sculpt/control the MAT form for specialized
solution purposes. Various examples are given to demonstrate the current approach.
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1 Introduction

In physics, the nearest normal wall distance d is still a key parameter in many
turbulence modeling and simulation approaches [10, 28] and also in peripheral
applications incorporating additional solution physics [17, 29]. Such examples
include explosive front, multiphase flow, and electrostatic particle force mod-
eling. Also, in grid generation the near-wall isovalues of d can be used to
form the boundary layer mesh [25, 30], while the far-field d contours can be
used as a rapid means of evaluating computational interfaces on unstructured
overset meshes with relative movements. Not only being useful in traditional
physics, distance field has also been important in computer vision, modeling
and computational physics.

In the general fields of shape analysis and solid modeling, including auto-
mated meshing, obtaining the medial axis transform (MAT) for a given ge-
ometry (or shape/domain) is regarded as an essential step [14, 19, 22, 21, 23].
Efficient and robust techniques are therefore required. Medial axis has been
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widely studied by researchers across the community. Several different types
of methods exist, mainly including thinning, Voronoi diagram, distance field,
and hybrid methods. A brief review on these methods can be found in [9]. Most
widely discussed are the Voronoi diagram [6, 16, 3, 7] and distance field meth-
ods [1, 24, 27]. By nature, the Voronoi diagram is geometry-based and the dis-
tance field is often related to general differential equations. One of the advan-
tages of differential equations is that their extension to 3D space is straight-
forward. On the other hand, although being quite intuitive, the Voronoi type
methods often encounter increasing geometric and logical complexity and the
approaches rigidity prevents MAT modification/customization.

In this paper, we propose a hybrid differential MAT approach based on the
pixel/voxel distance field solution, namely d−MAT. Notice the advantage of
such a hybrid method is to extract a well approximated medial point cloud on a
properly calculated distance field, while pure thinning methods are fundamen-
tally discrete and cannot ensure an accurate distance distribution. A similar
approach has been suggested by Bouix [5]. However, the Laplacian or Hessian
determinant criteria of the distance field proposed in this study seems simpler,
more robust, and is independent on the thinning techniques. As shown later
in this paper, the differential equation-based approach also provides a biased
MAT, in other words the medial axis does not necessarily lie at the mid-point
of the space, and it can be sculpted/controlled by the user.

To evaluate d, there are several methods. They can be broadly classified
as: search procedures, integral approaches, and numerically solving differ-
ential equations. Crude search procedures often require O(nvns) operations
where nv and ns correspond to the number of volume and surface node points
[28]. This can be O(nv

√
ns) and O(nv logns) operations, however, for com-

plex geometries such specialized approaches are difficult to apply [28]. Dif-
ferential equation-based methods have been discussed in detail in References
[29, 28, 30]. Advantageously, they are naturally compatible with vector and
parallel computer architectures. The focus here is on the solution of Eikonal
differential equation within the framework of the integer Cartesian space
using the fast-marching method (FMM) [25] or the fast-sweeping method
(FSM) [31].

2 Solutions of Eikonal Equation

2.1 H-J/Eikonal Equation for d

To overcome the expense of calculating d, Sethian [25] considered viscosity
solutions of the following general Hamilton-Jacobi equation, ε→ 0,

β
∂φ

∂t
+H(∇φ,x, β) = ε∇2φ (1)

with H(∇φ,x, β) = F |∇φ| − (1 − β). A stationary Eikonal equation with
hyperbolic nature is obtained when β = 0:
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F |∇φ| = 1 + ε∇2φ (2)

where the dependent variable φ describes first arrival times of propagating
wave fronts from boundaries, and F (x) is the local speed function of these
fronts. The wall distance is then simply d = F φ, if F ≡ const.. With ε→ 0,
Eq. (2) can be solved by numerical schemes with just enough dissipation to
gain an entropy (physical sensible) solutions [25, 28]. As shown by Tucker
[28, 30], the right hand side Laplacian is useful and often employed to control
the front propagation velocity. However, this potential is not explored here.

With ε = 0, Eq. (2) is also the multidimensional form of the boundary
value formulation of the front tracking problem, F = dx

dφ , where F > 0.
Details of the procedures to solve Eq. (2) with ε ≡ 0 using FMM and FSM
are given in Appendix.

2.2 Domain and Initialization

For simplicity and efficiency, uniform Cartesian grids1 are used in this d
calculation context, namely Δx = Δy = Δz = h. The numbers of grid points
in x, y and z direction are I + 1, J + 1 and K + 1 respectively. The physical
space is transformed and scaled into x ∈ [0 : I], y ∈ [0 : J ] and z ∈ [0 : K],
so that no grid storage is needed and point locating is straightforward. To
locate a given point (x0, y0, z0) in the Cartesian grid, the floor function � · �
is simply applied. For example, if i = �x0�, then i ≤ x0 ≤ i + 1, and so are
y0, z0.

Fig. 1. A 2D schematic showing the wall boundary (or initial front) and the ini-
tialization of the solution (F > 0 for outward propagation).

Figure 1 shows the position of the wall boundary or initial front inside a
Cartesian grid. This arbitrary curve can either be open or closed. To initialize,
all immediate nearby grid points of the curve are marked as known (black
1 Non-uniform Cartesian grids are particularly attractive when the geometric fea-

tures have a broad range of scales.
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(a) (b)

Fig. 2. Distance field contours for (a) a cosine wave, and (b) a curved cross domain

dots in Figure 1) and the value of d on these points are evaluated exactly.
The remaining points are marked as ‘unknown’ and the value of d on them
set as ∞. Then, the whole domain is solved numerically with FMM or FSM.

2.3 Distance Solution Examples

Figure 2 shows the distance contours of example 1 and 2 solved on a uniform
Cartesian grid with I = J = 200. In Example 1, frame (a), the boundary
(initial front) is a piece of cosine curve x ∈ [0, 4π], and in example 2, frame
(b), the domain is the closed area of a curved cross profile. Both examples
show the entropy conformed fronts propagating from the initial position in 2D
space. The analogous compression from the concave feature and the expansion
from the convex and sharp feature are also clear.

Example 3 is a slightly more complex multiply connected 2D domain.
Various shapes (including a rectangle, a square, a triangle, an ellipse and a
circle) are subtracted from the domain leaving internal voids with disparate
d scales. A Cartesian grid with I = J = 400 is used. Both FMM and FSM
demonstrate good efficiency to obtain accurate solutions with FMM using
4.7 seconds and a single 22-sweep FSM using 2.3 seconds on a single 2.33GHz
Intel Xeon CPU core. Figure 3a shows the distance contour. Collisions of
fronts are seen in the central area. A center line cut (shown as the dash-dot
line) is made through the domain. Figure 3b compares numerical solutions
together with the exact d distribution on the center line. The FMM and FSM
solutions are close to each other and agree with the analytical solution.

Example 4 is a 3D cubic box, where a variety of shape subtractions are
made. FSM is applied to get the solution on a I = J = K = 200 uniform
3D Cartesian grid. Figure 4 plots the d contours at three cut planes. The
predicted maximum d is within 0.05% of the exact solution.
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Fig. 3. Distance field contours for example 3

Fig. 4. Distance field obtained for the cubic box domain at various planes. The
contour range evenly spreads from 0 (blue) to dmax (red).

3 Medial Axis Transform via Distance Field: d−MAT

The medial axis of a shape provides a compact representation of its features
and their connectivity. As a result, researchers have discovered and are still
exploring its use in many fields, such as topology recognition for grid gen-
eration [26, 23]. The medial axis is defined when the shape is embedded in
an Euclidean space and is endowed with a distance function. Therefore, an
expedient route is to efficiently obtain d (as discussed in previous sections)
followed by the medial axis construction. (Notice that this approach is dif-
ferent from the pure geometric Voronoi-diagram based approach, in which
the equal distance nature of the Voronoi-diagram is a key.) In 3D, a sphere is
called medial if it meets S, the domain boundary, only tangentially in at least
two points. The medial axis M is defined as the closure of the set of centers
of all medial spheres. Figure 5 is an illustration in 2D. Only the medial axis
inside the domain is considered here. Informally, the medial axis of a surface
in 3D is the set of all points that have more than one closest point on the
surface. They are often called the medial axis transform (MAT) for that 3D
bounded domain.
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Fig. 5. Schematic of the medial axis for a 2D domain defined by a closed curve

3.1 Feature Detection Criteria

The key step for the MAT construction here is to detect the medial axis
feature in a given d field. Notice that the unique property of a medial axis
point is that it has equal distance to multiple boundaries. Hence, in space, the
medial axis represents the ‘local maxima’ or non-smoothness of the distance
function d(x). For example, in one dimension the medial axis is a single point
as shown in Figure 6.

d’(x) discontinuity
d

x

Fig. 6. An example of 1D distance field and its medial axis (vertex)

In multi-dimensions, one of the general formulations to represent this dis-
continuity in gradient or ‘slope jump’ is the Laplacian, ∇2d. In smooth re-
gions, ∇2d ≡ 0. In the vicinity of the local maxima of d, ∇2d→ −∞. Hence,
with the numerical approximation of d, the medial axis area can be identified
by specifying a criteria such as ∇2d < −ε, where positive small number ε is
a user specified threshold.

Another way to detect the medial axis feature is through the Hessian
matrix determinant. The Hessian matrix, Hij(d) = ∂2d

∂xi∂xj
, is a square matrix

of second-order partial derivatives of a function. It is the true ‘second order’
derivative in multi-dimensional space. The determinant of the Hessian matrix
has been widely used in computer vision [15] (e.g. the ’blob detection’) and
shock wave detection in computational fluid dynamics [2, 20].
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(a) (b) (c) (d)

Fig. 7. Distance field and marked medial axes for simple domains: (a, b) Laplacian
based medial axes and (c, d) Hessian based.

Figure 7 gives geometries where d distance contours and medial axes (in
thicker line) are shown. For the medial axis identification, Figures 7(a) and
(b) use the Laplacian criteria while 7(c) and 7(d) apply the Hessian matrix
criteria. The results are very similar. We note that generally the Laplacian
is simpler and cheaper to calculate. Figure 8 gives Laplacian based medial

(a) (b) (c)

(d) (e)

Fig. 8. Distance field and marked medial axes for complex domains
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(a) (b) (c)

Fig. 9. Point cloud represented medial axis for a bended duct: (a) d contours and
marked MA, (b) Underlying point cloud of the MA, (c) Zoom-in.

axes for more complex geometries. These include a hand profle, compressor
passage with two blades and one splitter, a turbine blade shroud, a turbine
blade in a passage, and a test section with an airfoil and other devices.

3.2 Thinning and Representation

It is very often still not enough to just have the medial axis as a finite thickness
curve or surface. The ultimate aim of MAT is to reduce the marked area to
thin curves/surfaces and possibly to represent them in a parametric form.
This requires a ‘thinning’ operation. As shown, for example, in Figure 9 once
the medial axis area is marked, by say application of ∇2d < −ε one only
obtains a point cloud of the underlying mesh nodes. However, to build up
the topology, data reduction and connectivity of the point cloud are needed.
Because the complex medial axis area does not represent a simple bounding
line or surface, surface reconstruction methods or point cloud simplification
methods cannot be applied directly, particularly due to branching points of
the medial axis. Hence, here, shape recognition methods are considered. A
typical procedure is to first convert the point cloud into a binary image and
then thin the ‘width’ of the band (or shell) in the image, and finally transfer
back to medial axis skeleton of the domain.

Notice that the term ‘thinning’ is a morphological operation that is used to
remove selected foreground pixels/voxels from 2D/3D binary images, some-
what like erosion or opening. The result of thinning can be regarded as the
minimum set of the topology preserving representation of the original shape.
It can be used for many applications, and is often useful for skeletonization.
Thinning is normally only applied to binary images, and produces another
binary image as output. In the current case, because the uniform Cartesian
grids are used, they are conformed with binary (black & white) images. The
marked medial axis points can be regarded as ‘black’ pixels and the rest
are ‘white’. Therefore, the thinning methodologies for binary images can be
applied here to thin medial axis point clouds.
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Thinning in Z
2

Thinning methodologies for 2D binary images have been extensively studied
since 1980s (see [13] for a review). In this study, the algorithm described in
[11] is adopted. Consider a pixel at p and its eight neighbors, see Figure 10.
The following notations are used. The pixels x1, x2, . . . , x8 are the 8-neighbors
of p and are collectively denoted by N(p). They are said to be 8-adjacent to
p. The pixels, x1, x3, x5, x7 are the 4-neighbors of and 4-adjacent to p. The
value of each pixel can either be 0 or 1 meaning ‘white’ and ‘black’.

p x1

x2x3x4

x5

x6 x7 x8

Fig. 10. Pixel adjacencies of N8(p) in Z
2, where the value at each pixel can either

be 0 or 1

The thinning algorithm is generally described as: p is deleted (i.e. value
changed from 1 to 0), if only if all the following conditions are satisfied:

C1: XH(p) = 1,
C2: 2 ≤ min[n1(p), n2(p)] ≤ 3,
C3: (x2 ∨ x3 ∨ x8) ∧ x1 = 0 for odd iterations; (x6 ∨ x7 ∨ x4) ∧ x5 = 0 for
even iterations.

where ∨, ∧ are logical ‘OR’, ‘AND’ operators, and

XH(p) =
4∑

i=1

bi and bi =

{
1, if (x2i−1 = 0) and (x2i−1 or x2i+1 = 1)
0, otherwise

(3)

n1(p) =
4∑

k=1

x2k−1 ∨ x2k and n2(p) =
4∑

k=1

x2k ∨ x2k+1 (4)

A note to this algorithm is that it preserves the connectivity of the pixels,
or to say: no two remaining pixels after thinning are ‘disconnected’ if they
were neighbors before the thinning. Therefore, if p and x1 are the remaining
pixels in Figure 10, the local connectivity is straightforward, because x1 is
either directly or diagonally adjacent to p. A simple N8(p) neighborhood
check restores the full connectivity. p is identified as a medial axis branching
point if

∑
N8(p) > 2; for p, where

∑
N8(p) = 1, p is an end point of a medial

axis; and finally for any p with
∑
N8(p) = 2, p is a middle point in a medial

axis curve.
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(a) (b) (c)

Fig. 11. The bended duct after applying thinning: (a) Single-pixel-wide point
cloud, (b) Zoom-in, (c) Rebuilt connectivity and splined MA curves.

(a) (b) (c) (d)

Fig. 12. Fina medial axes for simple domains previously shown in Figure 7

The typical procedure of applying this algorithm can be described with the
aid of Figures 9 & 11. First, the binary image is obtained from the marked
medial axis point cloud by one of the feature detecting criteria on the d
solution, as in Figure 9b & c. Secondly, the binary image is thinned using the
above pixel thinning algorithm, shown in Figure 11a & b. Thirdly, the pixels
are transferred from Z

2 back to R
2. Finally, and optionally, the MAT points

can be splined in smooth curves, as in frame (c). Figures 12 & 13 show the
results of pixel thinning applied to the cases previously shown in Figures 7
& 8.

Thinning in Z
3

It is much more complicated to thin a binary image with p ∈ Z
3. The recent

study of Palágyi [18] shows that a robust (both topology-preserving and
maximum thinning) surface-thinning algorithm is possible. It deals with the
full 26-adjacent voxels to p, see Figure 14. This is an analogous extension from
the 2D thinning algorithms but different in the underlying details. We adopt
this method in this study to thin the equivalent Z

3 binary image representing
the marked medial axis point cloud in 3D.



Distance Solutions for Medial Axis Transform 257

(a) (b) (c)

(d) (e)

Fig. 13. Final medial axes for more complex domains previously shown in Figure 8

U
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W

(a)

P

(b)

Fig. 14. Voxel adjacencies of N26(p) in Z
3

Consider a voxel p. Its directly connected 6-adjacent neighbors are denoted
as U, N, E, S, W and D, shown in Figure 14a, also denoted as N6(p). The
set N18(p) contains the set N6(p) and the 12 points marked “black square”.
The set N26(p) contains the set N18(p) and the 8 points marked “black cir-
cle”. Whether p is deletable depends on N26(p) marked “diamond” and six
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additional points marked “black diamond”, see Figure 14b. An important
step is to construct structuring elements to delete the extra voxels. Due to
the extended neighbor dependency, this procedure, although becoming more
complex than its 2D counterpart, still seems manageable. A complete set of
114 structuring elements are suggested in [18]. Details of this algorithm can
be found in the original paper. A note to the application of this thinning algo-
rithm is that in our study the extracted medial point cloud by the Laplacian
criteria is already quite thin, usually a few voxels thick, say Nth ∼ 4 voxels.
The iterations involved in the above thinning is at most Nth/2 ∼ 2, and this
number is independent on the size of the image, i.e. the total voxels in space.

(a) (b)

Fig. 15. Full and partial view of the 3D medial axis surface through voxel thinning

For example, the 3D medial surfaces, shown in Figure 15, are obtained
using this approach. The FSM d solution of the 200 × 200 × 200 Cartesian
grid in Z

3 is calculated first. The voxels with local maxima of d are marked
using the Laplacian criteria, and finally thinned into the shown complex
medial surface inside the domain, between objects.

3.3 Solution Superposition

One useful feature of the current d−MAT approach is that it allows solution
superposition. For instance, in Figure 16, frames (a), (b) and (c) are three
independent solutions. The first is simply a square domain. The other two
are solid points at two different locations placed in an infinite domain. After
applying the minimum superposition:

d = min(da, db, dc) (5)

where da, db and dc are the independent solutions, the solution shown in
frame (d) is obtained. The solution is the same as if it was solved with
the three boundary conditions imposed simultaneously. This decomposition
is particularly useful because different speed functions can be applied to
different solutions before the superposition. For example, Figure 17 rep-
resents a different pattern of the distance field after the superposition of
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(a) (b) (c) (d)

Fig. 16. Eikonal d solution superposition for a square domain and two points in
infinite domains: (a) Square domain solution; (b, c) Point source solutions; and
(d) Superposition of solutions

Fig. 17. Solution superposition for a square box and two points distance field
solution with Fa : Fb : Fc = 1 : 4 : 2

(a) (b)

Fig. 18. Standard and biased medial axes for a multi-element airfoil domain

three solutions with different speeds, in which case the speed functions are
Fa : Fb : Fc = 1 : 4 : 2.

With this useful feature, one can build biased medial axes by setting differ-
ent speed functions to superimposed solutions. Figure 18(a) shows the stan-
dard medial axes of the flow domain of a multi-element airfoil, and frame
(b) demonstrates the biased medial axes where front speed from the far field
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(a) (b)

Fig. 19. Standard and biased medial axes for a compressor passage with two blades
and one splitter

boundaries is three times faster than the one from the airfoil. Sometimes to
create more sensible domain decomposition, it is desirable to have such a
biased medial axis. For instance, in Figure 19, the biased medial axes may
provide more sensible information for domain division. We also note that to
further sculpt the medial axis (see Reference [30]) other d dependent func-
tions can be added to the differential Eikonal type equation. This sculpting
can provide a d−MAT for high quality hexehedral meshing. This is left as
future work.

4 Conclusion

Fast marching and sweeping methods of the Eikonal equation have been
applied to obtain distances, d, in arbitrary domains. A continuous distance
field based method for creating the medial axis transform d−MAT has been
proposed and demonstrated with various examples. This d−MAT approach
combines fast Eikonal equation solutions with the pixel/voxel thinning. The
link between the distance solution and the medial axes are established upon
the use of simple criteria of∇2d and |Hij(d)|. It has been found to be a robust
alternative to the classical pure geometric or pure thinning methods. Solution
superposition and boundary dependent front speeds have been found useful
to generate the biased medial axis, providing more general information than
the standard medial axis. Because the differential equation does not pose
any particular challenge when extended from 2D to 3D, it is a promising
approach for medial axes evaluation in geometrically complex domains. The
differential equation basis allows for flexible d−MAT customization through
the addition of source terms that are functions of d itself. Future work will
be focused on the representation of the 3D thinned medial surfaces which
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will involve building the connectivity through local voxel neighborhood, re-
sampling the voxels and splining the surfaces.
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A Finite Difference Solution Procedures

A.1 Fast-Marching Method

The gradient ∇φ in Eq. (2) is discretized by Godunov’s upwind difference
scheme. This correctly chooses the physically vanishing weak viscosity solu-
tion. The following form is suggested by Osher [17] and Sethian [25],

⎛

⎜
⎜
⎝

max(D−x
ijkφ−D+x

ijkφ, 0)2 +

max(D−y
ijkφ−D+y

ijkφ, 0)2 +

max(D−z
ijkφ−D+z

ijkφ, 0)2

⎞

⎟
⎟
⎠ =

1
F 2

ijk

(6)

whereD−
ijk andD+

ijk are the first-order backward and forward finite difference
operators given by:

D−x
ijkφ =

φi,j,k − φi−1,j,k

Δx
, D+x

ijkφ =
φi+1,j,k − φi,j,k

Δx

D−y
ijkφ =

φi,j,k − φi,j−1,k

Δy
, D+y

ijkφ =
φi,j+1,k − φi,j,k

Δy

D−z
ijkφ =

φi,j,k − φi,j,k−1

Δz
, D+z

ijkφ =
φi,j,k+1 − φi,j,k

Δz

(7)

φi,j,k−1

φi,j,k+1

φi,j−1,k

φi,j+1,k

φi−1,j,k φi+1,j,kφi,j,k

Fig. 20. Finite difference stencil at (i, j, k)
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The stencil of grid points involved is shown in Figure 20. Although schemes
with higher order accuracy are available, Refs. [25, 28] suggest the first-order
scheme is sufficient for d calculation. Through substitution of the above equa-
tion Eq. (6) can be rewritten as:

max
(
φ− φ1

Δx
, 0
)2

+ max
(
φ− φ2

Δy
, 0
)2

+ max
(
φ− φ3

Δz
, 0
)2

=
1
F 2

ijk

(8)

where
φ = φi,j,k

φ1 = min(φi−1,j,k, φi+1,j,k)
φ2 = min(φi,j−1,k, φi,j+1,k)
φ3 = min(φi,j,k−1, φi,j,k+1)

(9)

In a way similar to the Dijkstra algorithm [8], the idea of the Fast-Marching
Method (FMM) is to introduce an order to the selection of grid points. This
order is based on a causality criteria, where the arrival time φ at any point
depends only on the neighbors that have smaller values. Therefore, the FMM
relies on propagating the information in one direction from smaller values of
φ to larger ones. This is also convenient for Eq. (8), since it can be further
reduced to a standard quadratic equation,

(
φ− φ1

Δx

)2

+
(
φ− φ2

Δy

)2

+
(
φ− φ3

Δz

)2

=
1
F 2

ijk

(10)

The general algorithm can be described as follows. The front constructs a
narrow band of trial points, distinct from the accepted (known) points and
the far (unknown) points. Among the current trial points, the point, e.g.
denoted as A, with smallest φ is moved from ‘trial’ status to ‘known’. Each
neighbor of A is added to trial points if it was ‘unknown’ before, and the
quadratic equation (10) is solved for each neighboring point of A. Therefore, a
new narrow band of trial points is formed. A recursive procedure is performed
until there are no more ‘unknown’ points. The key to this algorithm is to find
the smallest φ among the trial points. To store the trial points A special min-
heap data structure [4] is suggested in [25], in which the worst case of finding
the smallest φ has the complexity of O(logN). This is significantly improved
compared with a crude search, which is of O(N).

A.2 Fast-Sweeping Method

To avoid implementing any complex data structure essentially needed in the
marching methods, the Fast-Sweeping Method (FSM) [31] is also considered.
For discretization, FSM shares the same finite difference scheme with FMM,
i.e. the first-order Godunov’s scheme Eq. (6). However, the FSM does not
have the FMM’s convenience of reducing Eq. (8) to a standard quadratic
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equation. A solution procedure of Eq. (8) is suggested in [31] by seeking the
solution of the following general form,

max(x − a1, 0)2 + max(x− a2, 0)2 + · · ·+ max(x− an, 0)2 = b2 (11)

where n is the number of dimensions. The above equation is re-organized so
that a1 ≤ a2 ≤ · · · ≤ an. When n = 2, the unique solution of the above
equation is:

x̄ =

⎧
⎨

⎩

a1 + b , if a1 + b ≤ a2,

a1 + a2 +
√

2b2 − (a1 − a2)2

2
, otherwise.

(12)

and for n ≥ 3 a recursive procedure, detailed in [31], is required to find x̄,
in which an integer p, 1 ≤ p ≤ n, is sought such that ap < x̄ ≤ ap+1 is the
unique solution of

(x− a1)2 + (x − a2)2 + · · ·+ (x− ap)2 = b2 (13)

FSM involves Gauss-Seidel iterations with alternating sweep orderings. At
each grid point xi,j,k whose value is not initialized as known (or fixed), the
solution of Eq. (8), denoted by φ̄i,j,k, is computed from the most recent values
of its neighbors φi±1,j,k, φi,j±1,k and φi,j,k±1, and then the value at xi,j,k is
updated by:

φnew
i,j,k = min(φold

i,j,k, φ̄i,j,k) (14)

The whole domain is repeatedly swept with 2n alternating orderings. For
example when n = 3, these orderings are

{i = 0 : I or I : 0} × {j = 0 : J or J : 0} × {k = 0 : K or K : 0}

Notice that often just one 2n sweep cannot guarantee a converged solution
for an arbitrary speed function F (x), especially those with complex charac-
teristics [31, 12]. However, in practice, for constant F or those with simple
characteristics one 2n sweep is sufficient for an accurate solution.
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tons and their usage for the characterization and recognition of 3D organ shape.
Comput. Vis. Image Underst. 66(2), 147–161 (1997)

17. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed:
algorithms based on Hamilton-Jacobi f ormulations. Journal of Computational
Physics 79, 12–49 (1988)
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