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Abstract. In this paper, we present a surface-fitting based smoothing algorithm for discrete, 
general-purpose mesh models. The surface patch around a mesh vertex is defined in a local 
coordinate system and fitted with a quadratic polynomial function. An initial mesh smooth-
ing is achieved by projecting each vertex onto the fitted surface. At each vertex of the initial 
mesh, the curvature is estimated and used to label the vertex as one of four types. The cur-
vature-based vertex labeling, together with the curvature variation within a local region of a 
vertex, is utilized to adaptively smooth the mesh with fine features well preserved. Finally, 
three post-processing methods are adopted for mesh quality improvement. A number of 
realworld mesh models are tested to demonstrate the effectiveness and robustness of our 
approach. 

Keywords: Surface mesh smoothing, Quadric surface fitting, Curvature labeling, Mesh 
quality improvement. 

1   Introduction 

The surface reconstruction and visualization from 3D imaging data have found 
wide applications in biomedical fields, such as computer-aided diagnosis, 
intervention planning, and realistic pathological analysis and prediction. The 
models used for such purposes are typically represented by surface meshes in 
triangular or quadrilateral forms. Going from imaging data to surface meshes 
involves a number of computational approaches. Two of the critical steps are 
image segmentation and surface mesh generation and processing. In digital 
images, image segmentation normally produces a vast number of discrete voxels 
(small cubes) that approximate the boundary of an object of interest. These voxels 
can certainly be converted into surface manifolds represented by quadrilateral 
meshes by extracting the faces of the cubes that face towards either outside or 
inside of the boundaries. But the resulting meshes suffer from an extremely 
bumpiness on the surface, as shown in the examples in Fig. 1. One of the goals in 
the present paper is hence to smooth a given mesh to reduce the bumpiness on the 
surface.  
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(a)                                                               (b) 

Fig. 1. Examples of surface meshes generated from image segmentation. The meshes ap-
pear very bumpy without further mesh processing. 

Surface mesh smoothing has been studied for decades. Laplace iterative 
smoothing is one of the most common and simplest techniques for mesh 
smoothing [1-5]. During each iteration, each vertex of a mesh is adjusted to the 
barycenter of its neighboring region. It is very fast but often results in volume 
shrinkage. Taubin [2] used a signal processing method, the Laplacian operator, to 
fair surface design and reduce the shrinkage. Desbrun et al. [3] extended Taubin’s 
work to smooth irregular meshes by using geometric flows. Their approach 
provides a better way to prevent the volume shrinkage. Peng [6] presented a 
denoising approach for geometric data represented as a semiregular mesh on the 
basis of locally adaptive Wiener filtering. 

Other popular smoothing approaches include the energy minimization 
techniques. Kobblet [7, 8] proposed a general algorithm to fair a triangular mesh 
with arbitrary topology in R3 by estimating the curvature for the discrete mesh 
model. Welch and Witkin [9] described an approach to designing fair, freeform 
shape by using triangulated surfaces. These methods are time-consuming due to 
the complicated energy functions that need to be solved. 

Recently, feature-preserving smoothing methods [10-21] have drawn more and 
more attentions. Jones et al. [19] developed a feature-preserving smoothing 
algorithm by adopting statistics and local first-order predictors of triangulated 
surface meshes. Bajaj et al. [20] proposed a PDE-based anisotropic diffusion 
approach for processing noisy geometric surfaces and functions defined on 
surfaces. Li et al. [21] adopted the weighted bi-quadratic Bezier surface fitting and 
uniform principal curvature techniques to smooth surface meshes.  

In the present paper, we describe a novel approach, combining the surface 
fitting, curvature estimation, and vertex labeling, to smooth meshes. Beside the 
surface smoothness that we shall demonstrate below, Antoher main goal in this 
paper is to preserve or improve the mesh quality so that the processed meshes 
have no sharp angles. The mesh quality is extremely critical in some applications 
such as the numerical simulation using finite or boundary element methods. 
However, not all meshes that appear smooth have high quality in terms of angles. 
For example, the marching cube algorithm can be used to generate a very smooth 
surface triangulation of a volumetric function but the resulting mesh usually 
suffers from too many sharp or skinny angles, which often cause poor accuracy in 
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numerical simulation. To this end, improving mesh quality, sometimes also 
referred to as mesh smoothing, is taken into serious consideration in our 
algorithms presented here. 

While triangular surface meshes are perhaps the most common form in 
representing a 3D model and a majority of previous work has been focused on this 
type of meshes, we will consider in this paper quadrilateral meshes, especially 
those extracted from 3D imaging data and represented by cube-like bumpy 
meshes. The resulting meshes will be smoothed quadrilateral meshes with 
improved quality, which can be readily converted into triangular meshes if 
needed. In addition, the data structures we used can be easily modified to read 
triangular meshes as inputs. In other words, the approach we propose here will 
provide a general-purpose tool for mesh processing in a variety of applications. 

2   Surface Mesh Smoothing Algorithm 

Our algorithm includes four steps. At first, the geometric and topological 
relationship is constructed from the input surface mesh model. For each vertex, we 
construct a local coordinate system and then fit the neighboring vertices in the 
local coordinate system with an analytical quadric surface function. The vertex 
being considered is projected onto this quadric surface. The initial mesh 
smoothing is achieved by updating each vertex with its projection. Then, the 
curvature of each vertex is estimated based on the first and second fundamental 
forms of its quadric surface obtained and then the vertex is labeled with the 
corresponding type. Additionally, for each vertex, the size of its neighborhood is 
dynamically determined according to the curvature and vertex type so that the 
mesh is adaptively smoothed by similar approaches as in the first step. Finally, the 
mesh is further improved with a few post-processing algorithms. 

2.1   Initial Mesh Smoothing 

The local surface patch around a point can be approximated with a quadric surface 
[22]: S(u, v)=(u, v, h(u, v)), a parametric representation in a local coordinate sys-
tem as shown in Fig 2, where p is the origin; h-axis directs along the normal vec-
tor n of p on S; and u-, v- axes are orthogonal vectors in the tangent plane of p on 
S. Obviously, the local coordinate system (p-uvh) can be transformed from the 
global coordinate system (o-xyz). According to the surface theory [23], the local 
shape of surface around p can be represented with Darboux system D(p) = (p, T1, 
T2, n, k1, k2), where (T1, T2), (k1, k2) are principal directions and curvatures, respec-
tively.  

We extend this principle to discrete mesh models and construct the local 
coordinated system for each vertex on the meshes. Since the construction of a 
local system mainly relies on the h-axis, i.e., the normal vector of the vertex, we 
first estimate the normal vector for each vertex with the area-weighted averaging 
method.  
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Fig. 2. An illustration of the local coordinate system on a surface 

Let NV_i(k) be the set of neighboring vertices of vertex vi within the k-ring 
(that is, the minimum number of edges from vi to the neighboring vertices is equal 
to or less than k), E_i = {<vi, vj>|vj∈NV_i (1)} the set of edges incident to vi, and 
F_i the set of faces incident to vi. Then the normal vector ni of vi is calculated as: 
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where areaf, nf are respectively the area and normal vector of face f in F_i. After 
the normal vector ni is calculated, we consider vi, ni as the origin and z-axis of the 
local coordinate system respectively. Then the x- and y- axes of the local 
coordinate system are arbitrarily chosen in the plane locating at vi that is 
orthogonal to the normal ni.  

 

Fig. 3. The 2-ring neighboring vertices at a vertex. The minimal number of edges from 
these vertices to the center vertex is equal to or less than 2. 

After constructing the local coordinate system, we find all the neighboring 
vertices for each vertex with a ring-by-ring scheme, referred to as the k-ring 
neighborhood. At the initial mesh smoothing phase, k is fixed as 2 in our algo-
rithm. Fig. 3 shows the 2-ring neighboring vertices of vi, in which the red and blue 
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vertices are the first and second ring neighboring vertices respectively, and all 
these vertices constitute the 2-ring neighbors of vi. 

For each vertex, the global coordinates of all the neighboring vertices are 
transformed to the local coordinates by homogeneous transformation and then the 
local coordinates are used to fit an analytical quadric surface:  

h(u, v) = au2 + buv + cv2 +eu + fv + g                                 (2) 

In our algorithm, the least square fitting method is adopted. Let V_i = {<xj, yj, 
zj>| j = 1, 2, ... m} be the local coordinates of 2-ring neighboring vertices of vertex 
vi. The objective function of the least square quadric surface fitting can be 
expressed as: 
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where wj is the weighting function defined below. It is observed that the closer the 
neighboring vertex to vi, the more it affects the surface shape. Therefore, wj can be 
represented as  
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The linear equations can be solved with Gaussian elimination method [24], 
which yields the coefficients of the quadric surface. The vertex vi is then projected 
onto the fitted quadric surface along its normal vector. Since its normal vector is 
exactly the z-axis in the local coordinate system, the coordinate of the projected 
point of vi should be (0, 0, g) in the local coordinate system. Its global coordinate 
is calculated by the coordinate transformation from local system to global system. 
Finally, the vertex vi is updated with the global coordinate of its projection. The 
above steps are performed for every vertex, yielding what we call the initial mesh 
smoothing. Fig. 4 shows mesh smoothing of two simple models. 
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Fig. 4. Two examples of initial mesh smoothing. The first and third from left are the origi-
nal models and the other two are meshes after smoothing. 

2.2   Curvature Estimation and Labeling 

Meshes generated in the initial smoothing step are much better than the original 
meshes but may not be good enough for subsequent applications if the original 
meshes are too bumpy. In our algorithm, an adaptive mesh smoothing algorithm is 
proposed to further smooth the meshes by taking advantage of the same surface 
fitting technique as seen in Section 2.1 but the size of the neighborhood 
considered adaptively changes according to the local geometric properties as 
explained below. 

Many features in the real-world structures/models are usually defined on the 
basis of curvature variance of the surface meshes. When an input mesh, such as 
the cube-based meshes in Fig. 1, is too coarse, we cannot accurately calculate the 
curvature information. However, this becomes much less problematic after the 
initial mesh smoothing. To further smooth a mesh and preserve the features in the 
model, the same surface fitting and vertex projection schemes as in initial Section 
2.1 are adopted, whereas the ring number of neighboring vertices for surface 
fitting is dynamically determined based on the curvature variance. In this 
subsection we introduce how the curvatures are analytically calculated and used to 
label the vertices. 

In the initial mesh smoothing, each vertex is associated with a quadric surface 
using the least squre fitting technique. Since each vertex has been adjusted to its 
projection in the normal direction, it is straightforward to calculate the curvature 
of the vertex on quadric surface by using the first and second fundamental forms 
of a surface. The analytical form of the quadric surface of a vertex vi can be trans-
formed to the parametric form as: 

S = (u, v, h(u, v))                                                      (6) 

The coefficients of the first and second fundamental forms of the quadric sur-
face at vi are calculated as: 
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The Gaussian and mean curvatures at vi are then given respectively as follows: 
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The Gaussian and mean curvatures of a mesh face facei with vertices v1, v2, …, 
vm are approximated as: 
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After the Gaussian (K) and mean (H) curvatures are obtained, all the mesh ver-
tices and faces are labeled with the corresponding type. In particular, the signs of 
K and H define the surface type and the values of K and H define the surface 
sharpness. Besl and Jain [25] proposed eight fundamental surface types using the 
signs of K and H as shown in Table 1. 

Table 1. Eight fundamental surface types 

 K > 0 K = 0 K < 0 

H < 0 Peak Ridge Saddle ridge 
H = 0 N/A Flat Minimal surface 
H > 0 Pit Valley Saddle valley 

In our algorithm, four simplified types are considered: convex, flatten, minimal 
and concave. In Table 1, the convex type includes peak, ridge and saddle ridge 
surfaces; the flatten and minimal types only includes flat and minimal surfaces re-
spectively; and the concave type contains pit, valley and saddle valley surfaces. 
These surface types are extended to mesh vertices. After the curvatures are calcu-
lated, the faces and vertices are labeled with the criterion in Table 2. 

Table 2. Four surface types 

Surface/Vertex type Signs of H & K 
 Convex type H < 0 
Flatten type H = 0 

Minimal type H = 0 && K < 0 
Concave type H > 0 

2.3   Adaptive Mesh Smoothing 

After curvature-based vertrex labeling, the whole mesh is segmented into four 
types of features, each of which consists of topologically adjacent vertices and 
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faces with the same surface type. In order to further smooth the mesh model, the 
quadric surface fitting on each vertex is performed in a similar way as in Section 
2.1, and the vertex is adjusted by projecting onto the fitted surface. Meanwhile, to 
preserve the features of the mesh model during the smoothing process, the 
neighboring vertices used in the surface fitting here should have the same type as 
that of the center vertex. As a result, these four types of features will be preserved 
after smoothing.  

However, there are cases in which more than one feature may be seen in a 
segment having the same surface type. Consequently, if the vertex type was 
considered as the only criterion for definging the neighborhood of the vertex in the 
quadric surface fitting, many sub-features would be filtered. To address this issue, 
the standard deviation of curvatures within the neighborhood chosen is used as an 
additional constraint to determine the neighborhood size to preserve the sub-
features in a mesh. The standard deviation of curvatures in a neighborhood of a 
vertex should be bounded by a pre-defined threshold.  

Below we give the detailed algorithm of adaptive mesh smoothing. Let V = {v1, 
v2, ... vn} be the set of mesh vertices after initial mesh smoothing; T = {t1, t2, ... tn} 
the types of vertices; k the fixed ring number in the initial mesh smoothing and 
tmpVerArray the temporary vertex array. k is set as 2 by default. For each vertex vi, 

 
Step 1. Search its k-ring neighboring vertices and calculate the standard deviation 
σk of curvatures of all such vertices; 
Step 2. Set tmpVerArray = NULL. For each vertex vi in the set of the outermost 
(k-th) ring neighboring vertices,  

i) if the types ti and tj of vi and vj are same, add the vj into tmpVerArray; 
ii) otherwise, go to step 4. 

Step 3. Calculate the standard deviation σk+1 of curvatures of k-ring neighboring 
vertices together with vertices in tmpVerArray. 

i) if σk+1 is less than σk, add each vertex of tmpVerArray into the neighboring 
vertices and update k←k+1, σk←σk+1; then go to step 2; 

ii) otherwise, go to step 4. 
Step 4. Fit the k-ring neighboring vertices of vi with a quadric surface and project 
vi onto the surface to get the vertex vi’; 
Step 5. Adjust vi to vi’, i.e. vi←vi’. 

 

During the smoothing processes, we adjust mesh vertices by updating their 
coordinates, while the geometric and topological relationship of the mesh model 
remains unchanged, which reduces the space and time complexity of this 
smoothing algorithm. 

2.4   Mesh Quality Improvement 

When the input mesh has complicated features and the resolution of the mesh is 
not high enough to capture the features, the smoothing approaches described 
above may produce some unwanted errors or low-quality meshes, such as twisted 
polygons, very short edges, or very sharp angles. Below we briefly describe the 
strategies to handle these three cases. 
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• Twisted meshes. Normally, the four vertices in a quadrilateral should be ar-
ranged in order (e.g., counterclockwise), while in a twisted quadrilateral, the 
vertices are arranged in a “Z” shape. Fig. 5(a) shows the twisted meshes, 
mesh1, mesh2 and Fig. 5(b) gives the corresponding meshes after adjustment. 
In order to detect whether a quadrilateral is twisted or not, we use the normal 
vectors of the two triangles associated with the quadrilateral. In a regular 
quadrilateral the angle between the normal vectors n123, n341 of the triangles 
v1v2v3, v3v4v1 is less than 90° , as shown in Fig. 5(c). By contrast, the angle 
would be more than 90° in a twisted quadrilateral (see Fig. 5(d)). A twisted 
quadrilateral usually occurs in conjunction with its opposite quadrilateral 
sharing the same edge. Therefore, the common edge (v3v2 in Fig. 5(a)) be-
tween a pair of twisted quadrilaterals can be easily identified and its end 
points are swapped to cure this problem. 

 

 
(a) Twisted meshes                                     (b) Vertex swapping 

 
(c) Vertex arrangement in regular mesh   (d) Vertex arrangement in twisted mesh 

Fig. 5. Illustration of handling twisted meshes 

• Meshes with short edges. This occurs when the length of one edge of a quad-
rilateral is shorter than a pre-defined threshold (for example, see v1v2 in Fig. 
6). The steps to correct this type of meshes are described as follows. For the 
end point v1 of a short edge v1v2,, 
− Find the two associated edges v1v3, v1v4 in the meshes, mesh1, mesh2, con-

taining v1v2, 

− Compute the bisector c1 of 3 1 4v v v∠  and a plane pln passing through c1 

and the vector 1 3 1 4v v v v× ; 



204 J. Wang and Z. Yu 

− Find the intersection point p1 between  pln and the edges of all the poly-
gons incident to v1; 
 

For the other end point v2, its intersection point p2 can be computed in the 

same way. Then, the trisected points 1 2' , 'v v  are determined on the polyline 

1 1 2 2p v v p  such that the lengths of 1 1'p v , 1 1 2 2' 'v v v v  and 2 2'v p  are equal. 

Finally, 1v , 2v  are updated with 1'v , 2'v  such that the short edge is pro-

longed (Fig. 6). 
 

 

Fig. 6. Illustration of handling short edges 

• Meshes with shape angles. When an internal angle of a mesh is smaller than 
a pre-defined threshold, the mesh needs to be improved. To this end, we adopt 
the angle-based approach as described in [26]. For the vertex v1 with sharp 
angle, we consider the surrounding incident vertices and calculate the bisector 
of each of the angles formed by adjacent vertices on that ring. Then v1 is pro-
jected onto each bisector (see the blue points in Fig. 7). Finally, the centroid 
of all these projection points is calculated and used to update v1 so that the 
sharp angle can be improved (Fig. 7). 

 

Fig. 7. Illustration of handling sharp angles 
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3   Implementation and Results 

All algorithms described have been implemented in Visual C++ and OpenGL, 
running on a Pentium IV PC configuration with 3.0G Hz. Many 3D surface mod-
els have been tested and a couple of them are demonstrated here. 

Fig. 8 shows the smoothing result of the 2CMP molecule, randomly chosen 
from the Protein Data Bank (http://www.rcsb.org/). The original mesh in Fig. 8(a) 
was generated using the approach described in [27]. The initial mesh smoothing 
gives the result as shown in Fig. 8(b). The curvature labeling is performed and 
shown in Fig. 8(c), where the patches in green and red are convex and concave 
surfaces respectively. A smoother mesh is achieved by the adaptive mesh smooth-
ing, as seen in Fig. 8(d). However, there are still some defective polygons in the 
smoothed mesh, as shown with small dark dots in Fig. 8(e). The meshes after the 
quality improvement are shown in Fig. 8(f). To estimate the smoothness of a sur-
face mesh, we calculate the curvature variation at each vertex as the maximal dif-
ference between the curvature of the vertex and the curvatures of the surrounding 
vertices. The average curvature variations over the entire mesh of 2CMP are 
0.5032, 0.3529, and 0.0921 in the original mesh, the mesh after initial smoothing 
and the adaptively smoothed mesh respectively, suggesting that the proposed 
adaptive mesh smoothing method is effective in smoothing a surface mesh. Fig. 9 
gives the result of another molecule called 2HAO, taken again from the Protein 
Data Bank. There are 72098 and 228132 vertices in the 2CMP and 2HAO models, 
and the computational time is 31.51s and 92.24s respectively. 

As mentioned in the introduction, the marching cube method is able to produce 
smooth surface meshes, but many skinny triangular meshes are generated as well. 
For instance, the angle histograms of several molecular surface meshes generated 
by the marching cube method are shown in [28], where one can see a lot of very 
small (near 00) and large angles (near 1800). To demonstrate the quality of the 
meshes , the angle histograms of the meshes generated with our method are plot-
ted in Fig. 10, where the angles used are the internals angles of all the triangles ob-
tained by dividing each quadrilateral into two triangles. It is interesting to observe 
that there are two obvious peaks in the histogram: one around 60° that corresponds 
to equilateral triangles and the other around 90° indicating that a large number of 
regular (equilateral) quadrilateral have been kept after the mesh smoothing.  

Fig. 11 demonstrates the mesh smoothing results from 3D imaging data. Fig. 
11(a) shows a cross section of the 3D cryo-electron microscopy reconstruction of 
the rice dwarf virus. The initial surface mesh, shown in Fig. 1(a), was generated 
using the 3D image segmentation algorithms [29]. Fig. 11(c) shows the surface 
mesh after applying the smoothing techniques as described in Section 2. Fig. 11(b) 
shows a cross section of the 3D electron tomographic reconstruction of the ventri-
cle muscle cell. The initial surface mesh, illustrated in Fig. 1(b), was extracted us-
ing automatic image segmentation methods [30]. Fig. 11(d) shows the mesh after 
our smoothing algorithms. From both examples, we can see that our mesh smooth-
ing approach can be used in conjunction with image segmentation for a variety of 
3D biomedical imaging data. 
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(a) 3D mesh model                                     (b) Initial mesh smoothing 
 

          
 

(c) Curvature labeling                             (d) Adaptive mesh smoothing 
 

 
 

(e) Defective meshes after mesh smoothing              (f) Final smoothed meshes 
 

Fig. 8. Example of mesh smoothing for the molecular model 2CMP 
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(a) 3D mesh model                        (b) Initial mesh smoothing 
 

              
 

(c) Curvature labeling                        (d) Final smoothed meshes 
 

Fig. 9. Mesh smoothing of the molecular model 2HAO 
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Fig. 10. Mesh angle histogram of models: 2CMP and 2HAO 

     
(a) p8-monomer image         (b) T-tubule image 

 

     
(c) Final smoothed meshes                  (d) Final smoothed meshes 

Fig. 11. Mesh smoothing of surface models extracted from 3D imaging data. (a) & (c):  
a cryo-electron microscopy reconstruction of the rice dwarf virus (courtesy of Dr. Wah 
Chiu, Baylor College of Medicine). (b) & (d): an electron tomographic reconstruction of 
ventricular cells (courtesy of Dr. Masahiko Hoshijima, UC-San Diego). 

4   Conclusions 

We have presented in this paper a novel mesh smoothing method based on quadric 
surface fitting for general mesh models. The fitting algorithm is combined with 
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vertex projection, curvature estimation, and mesh labeling of four types. Based on 
the geometric characteristics of surfaces, the adaptive mesh smoothing is 
conducted to further smooth meshes while important features are well preserved. 
To improve the mesh quality, three adjustment methods are adopted to handle 
defective meshes. 

Our mesh smoothing algorithm can handle a variety of meshes, including 
molecular models, imaging data and industrial surface meshes. As demonstrated in 
the results, our method can generate meshes with high quality, i.e., no sharp angle 
or short edge in the output meshes. This is particularly useful and sometimes 
necessary in such applications as surface reconstruction, visualization, and 
numerical simulation. While the examples demonstrated here are all quadrilateral 
meshes, our method can be easily modified to handle triangular or other types of 
surface meshes. 

Due to the quadric model being used to approximate the local shape of a 
freeform surface, there may be some cases where our method does not work 
perfectly. Such cases include very sharp and thin features and meshes with too low 
resolutions to capture the features of interest. One of our future efforts is to detect 
these ill-posed regions and apply mesh subdivision techniques to increase the 
mesh resolution so that our method can work more effectively in these circum-
stances. There are still a few small angles persisting in the final meshes as can be 
seen in Fig. 10. We shall work on better methods to handle these cases during the 
vertex projection step. While sharp edges or corners are not commonly present in 
the biomedical examples we have tested, these features will be taken care of in our 
future work by making a good balance between sharp features and possible 
surface noises.  

References 

1. Field, D.A.: Laplacian smoothing and Delaunay triangulations. Communications in 
Applied Numerical Methods 4, 709–712 (1988) 

2. Taubin, G.: A Signal Processing Approach to Fair Surface Design. In: Proceedings of 
SIGGRAPH 1995, pp. 351–358 (1995) 

3. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit Fairing of Irregular Meshes 
Using Diffusion and Curvature Flow. In: Proceedings of SIGGRAPH 1999, pp. 317–
324 (1999) 

4. Vollmer, J., Mencl, R., Müller, H.: Improved Laplacian smoothing of noisy surface 
meshes. In: Proceedings of Eurographics, pp. 131–138 (1999) 

5. Ohtake, Y., Belyaev, A., Bogaeski, I.: Polyhedral Surface Smoothing with Simultaneous 
Mesh Regularization. In: Geometric Modeling and Processing, pp. 229–237 (2000) 

6. Peng, J., Strela, V., Zorin, D.: A Simple Algorithm for Surface Denoising. In: Proceed-
ings of IEEE Visualization 2001, pp. 107–112 (2001) 

7. Kobbelt, L.: Discrete fairing. In: Proceedings of the 7th IMA Conference on the 
Mathematics of Surfaces, pp. 101–131. Springer, Cirencester (1996) 

8. Kobbelt, L., Botsch, M., Schwanecke, U., Seidel, H.: Feature sensitive surface extrac-
tion from volume data. In: Proceedings of SIGGRAPH 2001 (2001) 

9. Welch, W., Witkin, A.: Free-form shape design using triangulated surfaces. In: Pro-
ceedings of SIGGRAPH 1994, pp. 247–256. ACM Press, Orlando (1994) 



210 J. Wang and Z. Yu 

10. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Anisotropic Feature-Preserving De-
noising of Height Fields and Bivariate Data. In: Graphics Interface, pp. 145–152 
(2000) 

11. Taubin, G.: Linear anisotropic mesh filtering. IBM Research Technical Report. 
RC2213 (2001) 

12. Liu, X., Bao, H., Heng, P., Wong, T., Peng, Q.: Constrained fairing for meshes. Com-
puter Graphics Forum 20(2), 115–123 (2001) 

13. Liu, X., Bao, H., Shum, H., Peng, Q.: A novel volume constrained smoothing method 
for meshes. Graphical Models 64, 169–182 (2002) 

14. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via 
anisotropic diffusion of normals. In: Proceedings of IEEE Visualization, pp. 125–132 
(2002) 

15. Ohtake, Y., Belyaev, A., Seidel, H.-P.: Mesh Smoothing by Adaptive and Anisotropic 
Gaussian Filter. In: Vision, Modeling and Visualization, pp. 203–210 (2002) 

16. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral Mesh Denoising. ACM Trans. Gr. 
(2003) 

17. Zhang, H., Fiume, E.L.: Mesh Smoothing with Shape or Feature Preservation. In: Ad-
vances in Modeling, Animation, and Rendering, pp. 167–182 (2002) 

18. Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface proc-
essing. In: IEEE Visualization 2000, pp. 397–405 (2000) 

19. Bajaj, C., Xu, G.: Anisotropic Diffusion on Surfaces and Functions on Surfaces. ACM 
Trans. Gr. 22(1), 4–32 (2003) 

20. Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. 
In: Proceedings of SIGGRAPH 2003, pp. 943–949. ACM Press, San Diego (2003) 

21. Li, Z., Ma, L., Jin, X., Zheng, Z.: A new feature-preserving mesh-smoothing algo-
rithm. Visual Comput. 25, 139–148 (2009) 

22. Frey, P.J.: About surface remeshing. In: Proc. in 9th IMR, New-Orleans, pp. 123–136 
(2000) 

23. Milroy, M.J., Bradley, C., Vickers, G.W.: Segmentation of a wrap-around model using 
an active contour. Computer Aided Designed 29(4), 299–320 (1997) 

24. Atkinson, K.A.: An Introduction to Numerical Analysis, 2nd edn. John Wiley & Sons, 
New York (1989) 

25. Besl, P.J., Jain, R.: Segmentation through Variable-Order Surface Fitting. In: IEEE 
PAMI 1988, vol. 10(2), pp. 167–192 (1988) 

26. Zhou, T., Shimada, K.: An angle-based approach to two-dimensional mesh smoothing. 
In: Proc. in 9th IMR, New-Orleans, pp. 373–384 (2000) 

27. Yu, Z.: A list-based method for fast generation of molecular surfaces. In: The 31st In-
ternational Conference of IEEE Engineering in Medicine and Biology Society (ac-
cepted, 2009) 

28. Yu, Z., Holst, M., Cheng, Y., McCammon, J.A.: Feature-Preserving Adaptive Mesh 
Generation for Molecular Shape Modeling and Simulation. Journal of Molecular 
Graphics and Modeling 26(8), 1370–1380 (2008) 

29. Yu, Z., Bajaj, C.L.: Computational approaches for automatic structural analysis of 
large bio-molecular complexes. IEEE/ACM Transactions on Computational Biology 
and Bioinformatics 5(4), 568–582 (2008) 

30. Yu, Z., Holst, M., Hayashi, T., Bajaj, C.L., Ellisman, M.H., McCammon, J.A., Hoshi-
jima, M.: Three-dimensional geometric modeling of membrane-bound organelles in 
ventricular myocytes: Bridging the gap between microscopic imaging and mathemati-
cal simulation. Journal of Structural Biology 164(3), 304–313 (2008) 




