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Abstract. Isotropic tetrahedron meshes generated by Delaunay refinement algo-
rithms are known to contain a majority of well-shaped tetrahedra, as well as spu-
rious sliver tetrahedra. As the slivers hamper stability of numerical simulations we
aim at removing them while keeping the triangulation Delaunay for simplicity. The
solution which explicitly perturbs the slivers through random vertex relocation and
Delaunay connectivity update is very effective but slow. In this paper we present a
perturbation algorithm which favors deterministic over random perturbation. The
added value is an improved efficiency and effectiveness. Our experimental study
applies the proposed algorithm to meshes obtained by Delaunay refinement as well
as to carefully optimized meshes.

1 Introduction

Delaunay refinement algorithms [9, 26, 23, 25] have been extensively studied
in the literature. They are amenable to analysis, and hence are reliable algo-
rithms. In addition, the robust implementations of Delaunay triangulations
which are now available greatly facilitate the implementation of Delaunay-
based mesh refinement algorithms. However, most Delaunay refinement al-
gorithms fail at removing all badly-shaped tetrahedra, and a special class
of almost-flat tetrahedra (so-called slivers) may remain in the triangulation.
These slivers, with dihedral angles close to 0 and to π, are problematic for
many numerical simulations.

1.1 Slivers

Many finite element methods require discretizing a domain into a set of tetra-
hedra. These applications require more than just a triangulation of the do-
main for simulation and rendering. The accuracy and the convergence of
these methods depend on the size and shape of the elements apart from the
fact that the mesh should conform to the domain boundary [28]. Both the
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bad quality and the large number of the mesh elements can negatively affect
the execution of a simulation. It is required that all elements of the mesh are
well-shaped as the accuracy of the simulations and computations can be com-
promised by the presence of even a single badly shaped element. In general
it is desirable to bound the smallest dihedral angle in the mesh, from below.
The Delaunay refinement technique guarantees a bound on the radius-edge
ratio of all mesh elements, which is the ratio of the circumradius to the short-
est edge length of a tetrahedron. Although in 2D this translates into a lower
bound on the minimum angle in the mesh, in 3D it does not: a bound on the
radius-edge ratio is not equivalent to a bound on the smallest dihedral angle.

The only bad elements that remain after Delaunay refinement are slivers.
A sliver tetrahedron is formed by almost evenly placing its 4 vertices near the
equator of its circumsphere (see Figure 1), and has a bounded radius-edge
ratio. In such a sliver the smallest dihedral angle can be very close to 0◦, and
a numerical simulation may be far from accurate in the presence of slivers.

1.2 Tetrahedron Quality

Several tetrahedron quality criteria have been defined and used in the liter-
ature depending on the application. The radius edge ratio ρ of a simplex is
defined as the ratio of its circumradius to the length of the shortest edge.
This measure, which is minimal for the regular tetrahedron, unfortunately
cannot detect slivers, though it is used in Delaunay refinement algorithms to
define bad simplices. The radius ratio, defined as the ratio of the inradius
(insphere radius) to the circumradius (circumsphere radius), is another pop-
ular measure of tetrahedron quality. It is desired to ensure that radius ratio
of all tetrahedra are bounded from below by a constant.

Another criterion for mesh generation is the minimum dihedral angle θmin.
It can be shown that a lower bound on the radius ratio is equivalent to
a lower bound on the minimum dihedral angle. In the sequel we choose this
measure to evaluate the mesh quality as it is more intuitive and geometrically
meaningful than, e.g., the radius ratio, which combines the six dihedral angles
of a tetrahedron.

Consider an arbitrary tetrahedron τ with triangular faces T1, T2, T3, T4.
Let the areas of these triangles be denoted by S1, S2, S3, S4 respectively, the
dihedral angle between Ti and Tj by θij and the length of the edge shared
by Ti and Tj by lij . The volume V of τ is given by

V =
2

3lij
SiSjsinθij for i �= j in {1, 2, 3, 4}. (1)

Let rC , rI be the circumradius and inradius of τ and ri be the circumradius of
Ti for i in {1, 2, 3, 4}. We know that for any tetrahedron, ri ≤ rC . This gives
Si ≤ π r2i ≤ π r2c , and we also have a bound on the volume V ≥ 4

3 πr
3
I .
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Using Equation 1, for i �= j we have

4
3
πr3I ≤

2
3lij

SiSjsinθij ≤ 2
3lij

π2r4csinθij,

and we get

sinθij ≥ 2
π
· r

3
I

r3c

lij
rC
≥ 2
π
· a

3
0

ρ0
,

where a0 is the radius-radius ratio and ρ0 is the radius-edge ratio. Finally,

θij ≥ sin−1

(
2
π
· a

3
0

ρ0

)

.

Li [21] uses a different parameter of tetrahedron quality to define a sliver.
Denote the volume of tetrahedron pqrs by V and its shortest edge length by
l. The volume per cube of shortest edge length (σ = V

l3 ) is used as a measure
of the shape quality along with the radius-edge ratio ρ, or on its own [7].
According to Li, a tetrahedron pqrs is called sliver if ρ(pqrs) ≤ ρ0 and
σ(pqrs) ≤ σ0, where ρ0 and σ0 are constant.

Fig. 1. Tetrahedron shapes. A sliver (left) has its four vertices close to a circle,
four very small dihedral angles (close to 0◦), and two very large (close to 180◦). A
regular tetrahedron (right) is well shaped and has its dihedral angles close to 70.5◦.
Each of the other tetrahedra (middle) present a different type of degeneracy.

1.3 Previous Work

The problem of removing slivers from a 3D Delaunay mesh has received
some attention over the last decade. Delaunay refinement gets so close to
providing a perfect output that removing the leftover slivers is generally per-
formed as a post-processing step that is worth it. Previous work on removing
and avoiding the creation of slivers can be classified into three parts: The
Delaunay-based methods, the weighted Delaunay-based methods, and the
non-Delaunay methods. For each part, post-processing steps and complete
mesh generation algorithms can be studied. This paper focuses on a post-
processing step, devised to take as input a Delaunay mesh and to improve
its quality in terms of dihedral angles.
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Delaunay-based

Vertex Perturbation

Li [21, 14] proposes to explicitly perturb the vertices incident to a sliver in
an almost-good mesh, by locally relocating them so as to remove the incident
slivers. The idea is based on the fact that, for any triangle qrs, the region of
locations of the vertex p such that the tetrahedron pqrs is a sliver, is very
small. Moving the point p out of this region ensures that the tetrahedron is
not a sliver anymore, or has disappeared once the Delaunay connectivity is
updated. This is achieved by moving the point p to a new location inside a
small ball centered at p, whose radius is proportional to the distance from p
to its the nearest neighbor. The author shows that for certain values of the
involved parameters, there always exists some points in this ball which are
outside all regions that form slivers with nearby triangles. Li uses the union
graph concept to avoid circular dependencies on vertex perturbations. The
following theorem [21] proves the existence of such a point that makes the
mesh locally sliver-free.

Theorem 1 (Sliver theorem). If every simplex in a Delaunay triangulation
has radius-edge ratio of at least ρ0, then there is a constant σ0 > 0 and a very
mild perturbation S′ with σ(τ) ≥ σ0 for each tetrahedron τ in the perturbed
triangulation.

Based on this theorem, Li proposes an algorithm that applies mild random
perturbations to the mesh until one which removes slivers is found. One draw-
back of the above result is the pessimistic theoretical estimate of the bounds
on the involved parameters. These bounds are either too small or too large
to have any significance. In practice, though this technique is very effective,
when targeting a large bound on the minimum dihedral angle (e.g. 15◦), the
average number of trials of random perturbations required is very large. In
our experiments, it is not rare to apply hundreds of random perturbation
trials on a single vertex before succeeding in removing a sliver. This number
is not surprising when seeking a high minimum dihedral angle such as 15◦

since the corresponding tetrahedron is not a real sliver anymore. However the
fact that the perturbation succeeds even for a high minimum dihedral angle
is at the core of our motivation. Finally, the fact that this method always
maintains the mesh as a true Delaunay triangulation makes it both robust
and practical.

Sliver-free mesh generation

Some mesh generation algorithms are designed to avoid creating slivers. For
example, Delaunay refinement can be modified by choosing a new type of
Steiner point which does not create any sliver [22, 23, 24]. As an exam-
ple, Chew’s algorithm [9] inserts Steiner points in a randomized manner, to
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avoid the creation of slivers. This method has a theoretical lower bound of
arcsin 1/4 ≈ 14.5◦ on the angles of the triangular faces of the mesh.

Weighted Delaunay-based

Sliver exudation

First described by Cheng et al. [7], sliver exudation is a technique based on
turning a Delaunay triangulation into a weighted Delaunay triangulation [3],
devised to trigger flips so as to increase the minimal angle. Edelsbrunner and
Guoy [13] provide an experimental study of sliver exudation, and show that
it works pretty well in practice as a post-treatment applied to a triangulation
obtained by Delaunay refinement [25]. The main strategy of the algorithm
consists of assigning a weight to each vertex so that the weighted Delau-
nay triangulation is free of any slivers after connectivity updates, without
any changes over the vertex locations. This method successfully increases all
dihedral angles above 5◦ in the best configuration (see Section 3), but as
admitted in [13], the theoretical bound on the dihedral angle is too small to
be of any practical significance.

Beside being not strictly Delaunay anymore, the main disadvantage of
sliver exudation is that the process often ends with leftover slivers near the
boundary [13]. This is mainly due to the fact that sliver exudation is not
allowed to modify the topology of the boundary of the mesh. Hence, weight
assignments close to the boundary are constrained and do not always manage
to remove the slivers.

Complete algorithm

Cheng and Dey [6] propose a complete Delaunay refinement algorithm, com-
bined with the sliver exudation technique. This type of weighted-Delaunay
algorithm is also used to handle input domains containing sharp creases sub-
tending small angles [8].

Non-Delaunay

Local combinatorial operations

Though a Delaunay-refined triangulation is known to have nice properties
on its angles in 2D [12], there is no theoretical guarantee on the dihedral
angles in 3D. One valid choice consists of leaving the Delaunay framework
by flipping some well-chosen simplices [27, 18], either as a post-processing
step to the meshing process [19], or during the whole process [10]. As long
as the triangulation remains valid, flips can be performed on its edges and
facets. Joe gives a description of all possible flips [17] that can be made in
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a triangulation, and a triangulation improvement algorithm through these
flips. Although each improvement in this algorithm is local, the complete
algorithm succeeds in improving the overall quality of the mesh.

Dealing with non-Delaunay meshes can also be combined with optimiza-
tion steps, such as Laplacian smoothing [15], which relocates each vertex
to a new location computed as an average of the incident vertex positions.
Laplacian smoothing can be applied to any valid triangulation.

Complete algorithm

Some other types of triangulations, such as for example max-min solid angle
triangulations [16] can be computed to improve the solid angles as com-
pared to that in a Delaunay triangulation. This method generates a set of
well-distributed points in the input polyhedral domain and first computes
a Delaunay triangulation of these vertices. Then, local combinatorial trans-
formations are applied to satisfy the local max-min angle criterion. These
local transformations can in fact be applied to any triangulation as a post-
processing step.

Instead of performing local improvements through flips in a Delaunay
mesh, Labelle and Shewchuck [20] propose a fast lattice refinement technique
which constructs a triangulation based on two nested regular or adapted
grids. In its graded version this algorithm provides a theoretical bound on
the dihedral angles which is much more practical than provided by other
algorithms.

1.4 Contribution

We present a sliver removal algorithm inspired by Li’s random perturbation
algorithm [21]. Our algorithm is made more deterministic by choosing a fa-
vored perturbation direction for each vertex incident to one or more slivers,

Fig. 2. Sphere. (Left) Graded mesh with 3195 vertices, output angles are in
[23.5; 142.5]. (Right) Uniform mesh with 7041 vertices, output angles are in
[30.02; 138.03].
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before resorting to Li’s random perturbation if the favored perturbation fails
at removing the incident slivers. Our experiments show that the chosen de-
terministic directions are sufficient to remove more than 80% of the slivers
of a mesh, leading to shorter computational times. In addition, our approach
reaches higher minimum dihedral angles in practice.

2 Algorithm

We describe a sliver perturbation algorithm which improves in a hill-climbing
manner the dihedral angles of an input isotropic Delaunay mesh. This algo-
rithm can be used as a post-processing step after refinement or optimiza-
tion.

To improve the dihedral angles of the mesh tetrahedra, the rationale be-
hind our approach is as follows: each vertex v incident to at least one sliver
is repeatedly relocated through a perturbation vector pv such that when v
moves to v + pv, the incident slivers get flipped. More specifically, the cho-
sen direction for pv is not devised to improve the shape of the slivers, but
rather to worsen them instead, so that they get flipped. Two directions are
favored by the algorithm: the incident squared circumradius gradient ascent
(see Section 2.1) and the sliver volume gradient descent (see Section 2.2).
The length of the perturbation vector is heuristically chosen as a fraction
(usually between 0.05 and 0.2) of the minimum incident edge length. If nei-
ther of these two perturbation vectors succeed in flipping a sliver we resort
to random perturbations (see Section 2.3). If the whole sequence does not
improve the local minimum dihedral angle then we restore the vertex to its
original location before perturbation.

By construction, our combined perturbation algorithm is hill-climbing in
the sense that the dihedral angles in the output mesh must be higher than the
ones in the input mesh. The theoretical proofs of Li’s method [21] concerning
random perturbation apply to this combined perturbation method as we
resort to it in case of failure of the deterministic perturbation.

When more than one sliver is incident to a vertex v, all perturbation vec-
tors must be compatible (i.e., pushing in a similar direction) to be effective.
In our current algorithm, a set of perturbation vectors are said to be compat-
ible if all their pairwise dot products are positive. The perturbation vector
pv is then set to be the average of these vectors. When not compatible,
v is perturbed only using random perturbations. The algorithm relies on a
modifiable priority queue, built in a way such that vertices incident to fewer
slivers are processed first. Hence, any “chain” of slivers (set of slivers sharing
at least one vertex) is treated starting from its endpoints thereby minimizing
the need to process vertices incident to more than one sliver.
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Algorithm 1. Sliver perturbation
Input: T : a Delaunay triangulation,
α: the angle bound defining slivers, and
Nmax: the maximum number of random trials, or gradient steps.

Let P be a priority queue of Delaunay vertices.
Fill P with vertices incident to slivers,
Compute perturbation vector pv for each vertex v in P ,

while P non-empty do
Pop v from P ,
v′ ← v,
while relocating v to v′ would not trigger a combinatorial change,
and #loops < Nmax do
v′ ← v′ + pv,
if pv is random, then

compute a new pv,
v′ ← v.

end if
end while

Conditionally relocate v to v′.

if v is still incident to slivers and pv is not random, then
Compute a new perturbation vector (another type, if possible),
and re-insert v into P .

end if

Insert all vertices affected by relocation into P ,
with their new perturbation vector.

end while

Note that each vertex relocation is conditional, as we want our algorithm
to be hill-climbing in terms of dihedral angles. We need to check that the
minimum dihedral angle of the triangulation does not decrease, and that
the topology of the boundary is not affected. Otherwise, the relocation is
canceled.

Each time a vertex is effectively relocated, the priority queue is updated.
Moving v to v′ in a Delaunay mesh makes combinatorial changes (and, hence,
changes on incident dihedral angles) on the vertices incident to v before its
removal, and the ones incident to v′ after its insertion. We first compute
the perturbations associated with all these vertices, and insert them into the
priority queue.

The order in which the vertices are processed in the priority queue is re-
lated to the vertex type. Interior vertices are processed first, since they are
more likely to be easily perturbable than boundary vertices. The boundary
vertices are constrained to be located on the boundary, and their move must
not break the topology of the mesh. These constraints make them more dif-
ficult to perturb. The other ordering criteria are discussed in Section 3.
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2.1 Circumsphere Radius

In an almost-good isotropic tetrahedron mesh, the distribution of the mesh
vertices is locally uniform. Hence, perturbing the vertex locations so as to
make the radius of the sliver’s circumsphere explode triggers many flips as the
empty circumsphere property must hold after Delaunay connectivity update.

Let τ be the sliver, and {pi}i=0,1,2,3 its vertices. Without loss of generality,
and since the sequel remains true by translation, we can assume that p0 = 0R3 .
We also assume that this vertex is fixed. Let c be τ ’s circumcenter. We have
||c|| = R the radius of τ ’s circumsphere. Then, ∇R2 = ∇||c||2. We aim at
computing ∇R2.

Let pi = (xi, yi, zi) for i in {1, 2, 3} be τ ’s vertices, with p0 = 0R3 . Also,
let p2

i be (x2
i + y2

i + z2
i ). The center c of the circumsphere of τ is given by

c =

⎛

⎝
xc

yc

zc

⎞

⎠ =

⎛

⎝

Dx

2a
Dy

2a
Dz

2a

⎞

⎠, where

a =

∣
∣
∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣
∣
∣
, Dx = −

∣
∣
∣
∣
∣
∣

p2
1 y1 z1
p2
2 y2 z2
p2
3 y3 z3

∣
∣
∣
∣
∣
∣
, Dy = +

∣
∣
∣
∣
∣
∣

p2
1 x1 z1
p2
2 x2 z2
p2
3 x3 z3

∣
∣
∣
∣
∣
∣
, and Dz = −

∣
∣
∣
∣
∣
∣

p2
1 x1 y1
p2
2 x2 y2
p2
3 x3 y3

∣
∣
∣
∣
∣
∣
.

Thus we have, ∇p1 ||c||2 =

⎛

⎜
⎜
⎝

∂||c||2
∂x1

∂||c||2
∂y1

∂||c||2
∂z1

⎞

⎟
⎟
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=
∂
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(
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z

4a2

)

=
1

2a3
·
(

a · (Dx · ∂Dx

∂x1
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∂x1
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∂x1
) − ∂a
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and
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∇p1Dz =

⎛

⎜
⎝

∂Dz

∂x1
∂Dz

∂y1
∂Dz

∂z1

⎞

⎟
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Following a gradient ascent scheme, the vertex position pi evolves this way:

pnext
i = pi + ε∇piR

2
τ/||∇piR

2
τ ||, where the step length ε is taken as a fraction

of the minimum incident edge length to pi. A relocation is performed only if
the new minimal dihedral angle in the tetrahedra impacted by the relocation
is not smaller than it was before relocation. As shown by Figure 3, the squared
radius of τ ’s circumsphere increases very fast for a small perturbation of
one of its vertices’ positions. The circumsphere, now huge, most probably
includes other mesh vertices, which triggers a flip to maintain the empty
sphere Delaunay property.

Fig. 3. Circumsphere of a sliver. Before perturbation (left), the sliver is close to
the equatorial plane of its circumsphere. A very mild perturbation of one of the
sliver vertices (right) makes its circumradius increase considerably.

2.2 Volume

One of the main characteristics of a sliver is that its volume is strictly positive
albeit small with respect to its smallest edge length, and possibly arbitrarily
small. This property can be exploited in order to apply a perturbation devised
to generate a sliver with negative volume and hence to trigger a combinatorial
change.

Let {pi}i=1,2,3 be the three fixed points of τ , and p0 the vertex to be
perturbed. The volume of τ is

Vτ =
1
6

∣
∣
∣
∣
∣
∣
∣
∣

x0 y0 z0 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣
∣
∣
∣
∣
∣
∣
∣

.
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Then, we get the volume gradient:

∇p0Vτ =
1
6

⎛

⎝
y2z3 + y1(z2 − z3)− y3z2 − z1(y2 − y3)
−x2z3 − x1(z2 − z3) + x3z2 + z1(x2 − x3)
x2y3 + x1(y2 − y3)− x3y2 − y1(x2 − x3)

⎞

⎠ .

Following a gradient descent scheme, the vertex position pi evolves this
way: pnext

i = pi − ε∇piVτ/||∇piVτ ||, where the step length ε is taken as a
fraction of the minimum incident edge length to pi. A relocation is performed
only if the new minimal dihedral angle of the tetrahedra impacted by the
relocation is not smaller than it was before relocation. A negative tetrahedron
volume triggers a flip to maintain a valid Delaunay triangulation.

2.3 Random Perturbation

When both ∇V and ∇R2 fail at flipping the considered slivers by vertex per-
turbation, we use a random perturbation based on Li’s approach [21]. A per-
turbation satisfying three conditions (flip sliver, improve minimum dihedral
angles, preserve restricted Delaunay triangulation) is searched for randomly
inside a sphere centered at v. In accordance with Li’s algorithm, the mag-
nitude of the perturbation vector is set to fraction of the minimum incident
edge length.

3 Experiments and Results

The algorithm presented has been implemented with the 3D Delaunay trian-
gulation of the Computational Geometry Algorithms Library [1]. Our imple-
mentation of Li’s random perturbation algorithm is based upon Algorithm 1,
with one single perturbation type: the random one, described in Section 2.3.
For each of the following experiments we set 100 trials of random perturba-
tions (in our combined version as well as in the purely random algorithm).

The order in which the vertices are processed in the priority queue has
been chosen empirically as a result of many experiments. Interior vertices are
processed first, with priority over boundary vertices. Boundary vertices are
constrained so as to remain on the domain boundary and their relocation is
invalid if they modify the local restricted triangulation. This makes boundary
vertices more difficult to perturb than interior vertices. The second order
criterion is the number of incident slivers to the processed vertex. The idea
behind this choice is that a chain of slivers (several incident slivers) is more
difficult to perturb than an isolated sliver as the directions of gradients may
not be compatible. However, if the endpoints of the chain are successfully
perturbed, we ideally would not have to deal with vertices incident to more
than one sliver. Thirdly, the vertex incident to a smaller dihedral angle is
processed first, as our first goal is to remove the worst tetrahedra.

In our experiments, the ∇R2 direction turns out to be more effective than
∇V at perturbing a sliver. On average, this perturbation is responsible for
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about 80% of all sliver flips. The ∇V perturbation accounts for about 15%
of the flips while the random perturbation counts for the remaining 5%. The
priority given to ∇R2 over ∇V and random while picking the perturbation
vector can be blamed for distorting these statistics, but we have chosen this
order because it turns out to be the most effective. Giving priority to ∇V
results in an overall slowdown. Random perturbation always remains the last
resort in the combined perturbation algorithm as the deterministic directions
are favored.

The following experiments show what our combined algorithm can achieve
on meshes generated by Delaunay refinement alone and on some meshes which
have been optimized after refinement. A mesh optimization algorithm is in
general devised to improve the mesh quality [2] while simpler algorithms
aim at evenly distributing the vertices in accordance to a given mesh sizing
function. Note that a mesh with well-spaced vertices does not mean an ab-
sence of slivers inside the mesh [29], and hence sliver removal is still required.
The mesh optimization schemes used in our experiments are the centroidal
Voronoi tessellation [11] using the Lloyd iteration, and the Optimal Delaunay
triangulation (ODT for short) [5]. Both of these optimization methods have
been implemented in a way that respects the local density of the mesh. It is
important to not modify the density of a graded mesh, and to not decrease
its quality.

Figures 4 and 5 provide the computation times and the best minimum
dihedral angles obtained in our experiments. The same experiment has been
carried out on many other models (not shown), giving similar results. Fig-
ures 4 and 5 emphasize that, for the same definition of a sliver (in terms
of smallest dihedral angle), the combined algorithm is faster in removing all
slivers by explicit perturbation compared to using Li’s random perturbation
alone. Moreover the combined algorithm reaches higher minimum dihedral
angles.

The algorithm obtains fairly high minimum dihedral angles when the in-
put is a mesh obtained by Delaunay refinement. Figures 4 and 5 illustrate
that when the mesh is optimized prior to perturbation, the time taken for
the algorithm to succeed in removing all slivers is shorter and that it can
reach a higher minimum dihedral angle. As shown by histograms of Figure 4,
the algorithm takes 611 seconds to perturb the mesh obtained after Delau-
nay refinement so that no dihedral angle is below 17◦. If the same mesh is
optimized prior to perturbations, the time taken goes down to 76 seconds
for Lloyd and even further down to 11 seconds for ODT. Overall the same
histograms show that a mesh optimized by ODT is easier to perturb and can
reach a higher minimum angle (25◦) than a mesh optimized by Lloyd (21◦).
However, optimization can be costly. The optimizations performed on Fig-
ure 4 meshes before applying perturbation took about 200 seconds. In spite
of this additional cost, the combined perturbation algorithm remains more
efficient than the random one. The same comments apply to Figure 5. The
gradation of the mesh in Figure 5, along with the numerous high curvature
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Fig. 4. Dinosaur. Comparison of the timings for our perturbation and random
perturbation (in seconds) w.r.t. the sliver angle bound α on the Dinosaur model
meshes obtained by Delaunay refinement (left), followed by Lloyd optimization
(middle) and ODT optimization (right).

regions, make it more difficult to perturb in a way that still preserves the
gradation, even after optimization. Even in this case, ODT reaches a higher
minimum angle.

For comparison we have also performed sliver exudation on meshes gener-
ated by Delaunay refinement and on meshes optimized after refinement. As
expected sliver exudation performs better on the optimized meshes.

We performed two other experiments that were abandoned since they
rarely succeeded in improving the mesh quality. While computing the pertur-
bation of a vertex incident to more than one sliver, we tried combining ∇V
vector of one of the slivers and∇R2 of the other by using their average as per-
turbation direction if they were compatible. In practice such a combination
was almost never successful removing the slivers. The other aborted exper-
iment consisted of removing from the mesh the vertices that every explicit
perturbation failed to perturb. In practice this never resulted in improving
the minimum dihedral angle.

Moreover, our experiments show that successively applying our combined
algorithm to the mesh several times while progressively increasing the angle
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Fig. 5. Bimba. Comparison of the timings for our perturbation and random per-
turbation (in seconds) w.r.t. the sliver angle bound α on the Bimba model meshes
obtained by Delaunay refinement (left), followed by Lloyd optimization (middle)
and ODT optimization (right).

Table 1. Angles. Minimum dihedral angles obtained by the different perturbation
algorithms (combined perturbation, random perturbation, and sliver exudation).
To achieve these maxima, combined perturbation takes about twice the exudation
time, and random perturbation takes about six times the exudation time.

Mesh input combined random exudation
Dinosaur (DR) 0.65 25.0 24.2 2.62
Dinosaur (DR & Lloyd) 0.24 26.15 23.5 4.47
Dinosaur (DR & ODT) 2.26 28.55 22.0 4.55
Bimba (DR) 0.16 15.51 15.64 1.11
Bimba (DR & Lloyd) 0.11 16.02 15.63 3.84
Bimba (DR & ODT) 0.84 19.8 18.85 4.47

bound that defines a sliver provides higher minimal dihedral angles at the
price of higher computation times. This amounts to giving priority to vertices
incident to the worst slivers, cluster by cluster of minimum dihedral angles.
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Fig. 6. Delaunay meshes perturbed with combined perturbation algorithm after
ODT optimization.

Table 1 summarizes the best angles obtained in this way using com-
bined perturbation, random perturbation and sliver exudation. In this labor-
intensive experiment we only measure how far we can go in terms of dihedral
angles and do not consider timing. Finally, Figure 6 shows some Delau-
nay meshes obtained by Delaunay refinement followed by ODT optimization
and perturbed with the combined algorithm along with their dihedral angle
histograms.

4 Conclusion and Discussion

We have presented a practical vertex perturbation algorithm for improving
the dihedral angles of a 3D isotropic Delaunay triangulation. The key idea
consists of performing a gradient ascent over the sliver circumsphere radius as
well as a gradient descent over the sliver volume. All vertices incident to slivers
are processed, in an order devised to improve effectiveness and computation
times. We compare our approach with pure random perturbation and sliver
exudation.

Our experiments show that we are both faster and able to reach higher
minimum dihedral angles. Our scheme is particularly well suited as a post-
processing step after mesh optimization [30]. We also plan to use it in the
context of mesh generation from multi-material voxel images [4].
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In the cases where all vertices of a sliver are on the domain boundary,
the perturbation can fail in removing a sliver as the boundary vertices are
too constrained. One way to extend our approach would be to also perturb
the vertices of the sliver’s adjacent tetrahedra whose relocation can impact
the sliver. Future work will focus on obtaining a proof of termination of our
combined perturbation algorithm, and some tighter lower bounds on output
dihedral angles.
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