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Abstract. We present a novel and robust algorithm for triangulating point clouds
in R

2. It is based on a highly adaptive hexagonal subdivision scheme of the in-
put domain. That hexagon mesh has a dual triangular mesh with the following
properties:

• any angle of any triangle lies in the range between 43.9◦ and 90◦,
• the aspect ratio of triangles is bound to 1.20787,
• the triangulation has the Delaunay property,
• the minimum triangle size is bounded by the minimum distance between input

points.

The iterative character of the hexagon subdivision allows incremental addition of
further input points for selectively refining certain regions. Finally we extend the
algorithm to handle planar straight-line graphs (PSLG). Meshes produced by this
method are suitable for all kinds of algorithms where numerical stability is affected
by triangles with skinny or obtuse angles.

Keywords: Unstructured Mesh Generation, Delaunay Triangulation, Guaranteed
Angle Bounds, Hexagon Subdivision.

1 Introduction

Mesh generation is the subject of many articles due to its importance to com-
putational geometry, computer graphics, numerical simulation and various
other areas. Many problems are based on input data lying in a 2-dimensional
domain. This data is often triangulated to allow computations on the mesh,
e.g. for finite element methods. The result usually strongly depends on the
quality of the triangular mesh, e.g. small or obtuse angles reduce the numer-
ical stability for a high number of elements. The number of triangles also
determines the runtime for solving the problem. Therefore it is desirable to
have a well-shaped triangular mesh with as few triangles as possible.

There are several kinds of unstructured mesh generators. Some are based
on grid-techniques, e.g. quad-trees, while others try to improve an existing
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triangulation iteratively. These and other approaches like advancing front
techniques are surveyed by Owen [7].

In this paper we use a different approach. Instead of a quad-tree a hexag-
onal highly adaptive subdivision scheme is used for the input domain. When
the domain is finally subdivided a dual mesh is extracted from the centers
of the full hexagons. It turns out that this mesh has the Delaunay property,
i.e. maximizing the minimum angle of any triangle, which is guaranteed to
be 43.9◦ – independent of the input data. The method is also aware of
different regions of interest, meaning that areas with less input points have
larger triangles. The size of the triangles quickly decreases in regions of high
interest. It is limited by the minimum distance among the input points which
also ensures termination of the algorithm. Both properties lead to triangular
meshes with a reasonable number of triangles.

After describing previous work, we give a short introduction into the
hexagon subdivision scheme. Then refinement rules are defined to subdivide
the input domain adaptively according to the location of the input points.
From the hexagonal mesh a dual triangular mesh is extracted where any an-
gle is between 30◦ and 120◦. In order to achieve much tighter bounds the
hexagons are classified according to their adjacent neighbors. Additional re-
finement rules and shifting the centers of the classified hexagons results in a
triangular mesh with angles between 43.9◦ and 90◦.

As an additional result the algorithm is extended to handle also PSLGs.
This may be important to limit the domain only to valid input values. How-
ever at these boundaries the proven angle bounds are lost.

2 Previous Work

Baker et al. [1] introduced guaranteed shape properties for the resulting
meshes so that all angles of the triangles lie within 13◦ and 90◦, yielding
an aspect ratio of at most 4.6. This is achieved by placing a square-grid over
the polygons to include Steiner points. The size of the grid is determined
by the smallest distance among the input points and edges. However the
resulting meshes may be very large.

Bern et al. [2] use a quad-tree instead of a uniform grid. This method
gives bounds to shape property and the number of triangles. Subdividing the
domain by a quad-tree allows a local refinement with Steiner points where
necessary while regions of low interest remain coarse. For point sets the angle
bounds are 36◦ and 80◦ and for a planar straight-line graph (PSLG) the range
is 18.4◦ and 153.2◦. To achieve this, the key-idea is to move the corners of
the quad-tree according to some patterns. The method of Neugebauer and
Diekmann [6] uses rhombi instead of squares when subdividing the domain,
yielding angle bounds of 30◦ and 90◦ for polygonal input.

A different approach is refining an already obtained Delaunay-triangulation
of a point set by inserting Steiner points at certain positions iteratively which
is called Delaunay refinement. The original approach of Chew [3] and Ruppert
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[8] uses the circumcenter of badly shaped triangles while latest methods of
Üngör [10] and Erten [4] use different locations . The guaranteed angle bounds
for point sets are 30◦ and 120◦. For PSLGs they are set to 20◦ and 160◦. In
practice often higher angles up to 34◦ are achieved, depending on the input
data which was examined by Shewchuk [9]. The Off-Center approach even
raises this limit up to 42◦. However it is always possible to get input data,
where the Delaunay refinement fails for high angles. Both methods are imple-
mented in Triangle which is a robust software for creating Delaunay-refined
meshes available at http://www.cs.cmu.edu/~quake/triangle.html.

3 Hexagonal Subdivision

Sußner et al. [5] use a bidirectional subdivision of a hexagonal mesh to adap-
tively refine the domain of huge height-fields for interactive purposes. The
subdivision method follows simple and easy-to-implement rules and is there-
fore an efficient way to adaptively subdivide planar regions.

3.1 Subdividing a Hexagon

A hexagon is subdivided by scaling it to half size and filling the remain-
ing space with semi-hexagons. The hexagons are organized in levels: Full
hexagons are located in even levels while semi-hexagons only occur in odd
levels. When subdividing a full hexagon, the scaled full hexagon is moved
into the next even level while the semi-hexagons are put in the odd level
in-between. After the operation each of the semi-hexagons is checked for a
fitting adjacent semi-hexagon (see Fig. 1). If there is one both semi-hexagons
are joined to form a new full hexagon one level above.

3.2 Reverse Operation

The above operation is reversible. In a first step adjacent full hexagons may
be separated into two semi-hexagons. In order to break the right hexagons,

Fig. 1. The numbers denote the split-counter of each hexagon. On the left the split-
/merge-operator is shown which increases/decreases the split-counter by one. The
join-/break-operator in the middle creates a new full hexagon with a split-counter
value of zero. As shown on the right side, a boundary semi-hexagon is treated like
a virtual full hexagon.
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each hexagon gets a subdivision counter which is set to zero when a new
hexagon was created by joining two semi-hexagons. Every time a hexagon is
subdivided the counter is increased by one and decreased if it was scaled up
to a hexagon of lower level. Finally a hexagon may only be broken up into
two semi-hexagons if the subdivision counter is zero.

3.3 Adaptive Refinement

For the sake of a smooth increase of level-of-detail, a simple balancing rule
is applied. After each subdivision step the level difference of adjacent (semi-)
hexagons must not be larger than one. If the difference is larger the hexagon
of lower level is subdivided as well. If this is a semi-hexagon, the opposite
neighbor, which must be a full hexagon, is subdivided. The balancing rule
is illustrated in Fig. 2. Note that a single subdivision step may trigger the
refinement of large parts of the hexagon mesh.

Fig. 2. The numbers represent the level counter of each hexagon. If the level
difference is greater than one further splits and joins of semi-hexagons are forced.

4 Simple Refinement

In this section we present a simple version of the triangulation algorithm,
with angle range of 30◦ to 120◦. Beyond these angles triangles are usually
considered as bad.

4.1 Refinement Rules

As a first step, a bounding hexagon is created around all input points. In
order to keep the number of triangles as low as possible, a good choice is
the minimum bounding sphere as the inner circle of the hexagon as shown
in Fig. 3. This sphere may be efficiently computed by the method presented
by Welzl [11]. In addition to the balancing rules of section 3.3 the following
rules must be obeyed in order. A hexagon containing an input point is marked
occupied. Given a set of hexagons H, the rules are:
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1. subdivide any hexagon hi ∈ H occupied by several input points,
2. if hi ∈ H is an occupied semi-hexagon, subdivide the full hexagon adja-

cent to the long edge of hi,
3. subdivide an occupied hexagon hi ∈ H if any adjacent neighbor is occu-

pied as well,
4. if any of the adjacent neighbors is of lower level, subdivide the (full)

hexagons adjacent to the long edge of the neighboring semi-hexagon,
5. subdivide an occupied hexagon hi ∈ H if any adjacent neighbor is of

higher level.

At each single subdivision step, i.e. splitting full hexagons and joining semi-
hexagons, input points were re-distributed among the affected hexagons. In
order to test the whole hexagon-mesh after each operation, a list of affected
hexagons is maintained. Refinement stops if this list is empty. Termina-
tion is guaranteed since an input point is only associated to one hexagon.
Fig. 3 shows examples of these rules. In the final hexagon mesh all occu-
pied hexagons are full hexagons surrounded by a ring of full non-occupied
hexagons.

Fig. 3. Initial setup of input points on the left side, followed by a sequence of applied
refinement rules: several input points, input point in semi-hexagon, adjacent lower
level hexagons.

4.2 Extracting the Dual Mesh

For getting the dual triangulation from the hexagon mesh just add an edge
from the center of each full hexagon to the centers of its adjacent hexagons. If
the neighbor is a semi-hexagon connect the edge to the center of the opposite
full hexagon of the neighbor (see Fig. 4). In a final step the center positions of
the occupied hexagons are replaced by the location of corresponding assigned
input points.

4.3 Proving Angles

The proof for a minimum angle of 30◦ is split into two parts. First the angles
of the plain dual mesh, i.e. without relocated centers, are examined. In the
second part we take a look at the situation of a relocated center.



524 G. Sußner and G. Greiner

Fig. 4. The dual mesh consists of the edges among adjacent full hexagons. For
semi-hexagons the opposite neighbor is taken. Note that the minimum angle of 30◦

is always in the triangulation due to the adaptive subdivision (grey triangle on the
left). On the right side there is a triangle consisting of both angle bounds, 30◦ and
120◦.

Angles of the Plain Dual Mesh

As shown in Fig. 4 the centers of three adjacent full hexagons form a equi-
lateral triangle with three angles of 60◦. If one of them is subdivided, the
center of scaled hexagon still remains at the same position. If two of them
are subdivided, they form a new full hexagon located right in the middle of
them. Therefore the equilateral triangle is split into two with half angle at
the center of the remaining un-subdivided hexagon. Since the center of the
new hexagon lies on the middle of the two existing centers both triangles
have an angle of 90◦ at the new center.

Angles at Relocated Centers

A hexagon containing a relocated center is surrounded by full hexagons as
shown on the right side in Fig. 4. The input point may be located anywhere
within the hexagon. In extremum the center is moved to a hexagon’s vertex.
In this case one triangle has two angles of 30◦, but not less. This also means
that the third angle must be 120◦.

5 Extended Refinement

For simple refinement the dual mesh is extracted by connecting the centers
among all full hexagons. But there is plenty of freedom to shift the centers’
position to achieve tighter angle bounds. To reach this goal, two enhance-
ments are necessary.

First the full hexagons are classified according to their adjacent (semi-)
hexagons. Based on that classification the hexagon mesh is adaptively re-
fined. In a second step, when the dual mesh is extracted, the centers of some
classified hexagons are shifted to yield higher angle bounds of 43.9◦ and 90◦

respectively.
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5.1 Classification of Hexagons

The classification of the full hexagons is based on the number of fins. A fin is
a semi-hexagon which joins at its long edge to the full hexagon (see top row
of Fig. 5). If there is any fin the hexagon hi ∈ H is marked as follows:

MOVED CENTER 1 - hi has only one fin,
MOVED CENTER 2 - hi has only two consecutive fins,
MOVED CENTER 3 - hi has only three consecutive fins,
SUBDIVIDE - else.

Full hexagons adjacent to the edge before the fin strip are called left neighbor
hil

. Those adjacent to the edge after the fins are called right neighbor hir . In
case that hi is of type MOVED CENTER 3 the remaining adjacent full hexagon
is called top neighbor hit . Full hexagons hi ∈ H without fins are marked as
well (see bottom row of Fig. 5):

OCCUPIED 1 - input point lies within the half-sized hexagon of hi,
OCCUPIED 2 - input point lies outside of half-sized hexagon of hi,
FIXED CENTER IN RING - hi is in 1-ring of a hexagon of type OCCUPIED 1 or in

2-ring of a hexagon of type OCCUPIED 2,
MOVED CENTER IN RING - hi is in 1-ring of a hexagon of type OCCUPIED 2,
MOVED CENTER 4 - hi is top neighbor of a hexagon of type

MOVED CENTER 3,
FIXED CENTER REGULAR - else.

Fig. 5. Hexagons are classified to their number of fins. Hexagons containing
an input point marked as OCCUPIED [12] depending on the location of the in-
put point within the hexagon (white areas). OCCUPIED 2-hexagons are surrounded
by ones of type MOVED CENTER IN RING. Input points are also surrounded by
FIXED CENTER IN RING-hexagons either in the 1-ring or 2-ring. The 1-ring of a
hexagon hi is defined by the full hexagons surrounding hi. The 2-ring of hi then
consists of all full hexagons surrounding the hexagons of the 1-ring of hi.
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5.2 Extended Refinement Rules

According to the classified hexagons further refinement rules are defined:

• subdivide any hexagon hi ∈ H of type SUBDIVIDE,
• subdivide any hexagon hi ∈ H of type MOVED CENTER x lying in the 1-ring

of a hexagon of type OCCUPIED 1,
• subdivide any hexagon hi ∈ H of type MOVED CENTER x lying in the 1- or

2-ring of a hexagon of type OCCUPIED 2,
• subdivide any hexagon hi ∈ H of type MOVED CENTER [123] if any full

hexagon adjacent to its fins is not of type FIXED CENTER x,
• subdivide a hexagon hi of type MOVED CENTER 4 if it is the top neighbor

of more than one non-consecutive hexagons of type MOVED CENTER 3.
• Given a hexagon hi of type MOVED CENTER 3 with a left neighbor of the

same type. If its right neighbor hj := hir is of type MOVED CENTER 2, subdi-
vide right neighbor hjr of hj . (Applied symmetrically with left neighbor!)

The last rule is necessary, since we have a special treatment for two or more
consecutive hexagons of type MOVED CENTER 3 when extracting the dual mesh.
The consequences of this rather complicated rule are illustrated in Fig. 6.
Note that six hexagons of type MOVED CENTER 3 may form a ring - called
blossom. This is exploited later in order to reduce the number of hexagons.
Also note that each sequence of MOVED CENTER 2/MOVED CENTER 3- hexagons,
except for a blossom, is enclosed by hexagons of type MOVED CENTER 1. Fig. 7
shows an example of a valid subdivision.

Fig. 6. Angle bounds do not hold if a MOVED CENTER 2-hexagon is adjacent to a pair
of MOVED CENTER 3-hexagons. Subdividing its right/left neighbor creates another
hexagon with three fins.

5.3 Local Coarsening

Applying above rules may lead to a subdivision with greater areas of hexagons
of same size. In order to avoid an unnecessary large number of triangles, a
local coarsening step is performed according to as fine as necessary but as
coarse as possible (see Fig. 7). For this the neighborhood of each hexagon
hi with a split-counter of 0 is examined whether it is possible to execute
all necessary break-/merge-operations to form a blossom. That is all of the
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Fig. 7. This subdivision shows almost all possible combinations among the differ-
ent hexagon types. Blossoms are created at a final local coarsening step in order
to avoid large regions of small sized hexagons. Note that two input points may
share hexagons of type FIXED CENTER IN RING, e.g. in the lower right quarter. The
corresponding dual mesh is drawn as an overlay on the right side.

hexagons in the 4-ring of hi must be of type FIXED CENTER REGULAR. By
this operation 37 hexagons are replaced by 7. In the dual mesh a blossom is
represented by 60 triangles instead of 96 for the plain region.

5.4 Modifications to the Dual Mesh

In this section we show how to adapt the center positions for the dual mesh.
For hexagons of type MOVED CENTER 3 it is additionally necessary to insert
moved centers of their fins.

Lower Angle Bound

First the lower angle bound is determined since this angle is used to compute
some of the relocated centers. Have a look at the left side of Fig. 8 where
a hexagon of type OCCUPIED 1 with radius r is shown. The input vertex is
located at a vertex of the half-sized hexagon, causing extremal angles. The
smallest angle in this configuration is α and is determined analytically:

tanα =
y

x
=

5
4r

3
2r
√

3
2

=
5

3
√

3
⇒ α ≈ 43.8979

Centers of MOVED CENTER IN RING-hexagons

In case that the input point does not lie in the half-sized hexagon of hi, the
closest vertex vci to the input point of hi is determined. As illustrated at
the right side in Fig. 8 the input point may be located anywhere in the grey
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Fig. 8. On the left side the input point is located at a vertex of the half-sized
hexagon (white area). The smallest angle α is determined by x and y. On the right
side the input point is located outside of the half-sized hexagon hi. The centers
of the surrounding hexagons are shifted by vector of 1

2
r from the center of hi

towards the nearest corner of the input point. For that corner the input point may
lie anywhere in the white area. Note that in either configuration all triangles are
acute.

region. In order to maintain angle bounds, the half-sized vector between vci

and the center Chi is added to each of the surrounding hexagons which are
of type MOVED CENTER IN RING.

Centers of MOVED CENTER 1-hexagons

Given a hexagon hi of type MOVED CENTER 1 and a hexagon hf0
i of type

FIXED CENTER x adjacent to the only fin f0
i of hi. The new center position

Ĉhi of hi lies on the axis between the original center position Chi and the
center C

hf0
i

of hf0
i :

Ĉhi :=
5
6
Chi +

1
6
C

hf0
i
.

The ratios are shown on the right side of Fig. 9 together with special config-
uration of MOVED CENTER 3-hexagons.

Centers of MOVED CENTER 2-hexagons

Given a hexagon hj of type MOVED CENTER 2 and three hexagons hf0
j , hf01

j

and hf1
j of type FIXED CENTER x adjacent to the fins f0

j and f1
j of hj. The

new center position Ĉhj of hj lies on the axis between the original center
position Chj and the center C

h
f01

j
of hf01

j . Looking at Fig. 9 x :=
√

3
2 r is the

edge between C
f0

j

h and C
f01

j

h , i.e.

tanα =
x

y
⇒ y =

√
3

2 r
5

3
√

3

=
9
10
r.
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Fig. 9. In this picture the ratios for computing the new location of the centers are
illustrated. On the left side the configuration with a single MOVED CENTER 3-hexagon
and on the right side a pair of them. Note that the ratio for a 1-fin-hexagon is derived
from the right side.

The distance between the centers of hj and hf01
j is 3

2r. Hence the hexagon’s
center is relocated to

Ĉhj :=
3
5
Chj +

2
5
C

h
f01

j

Centers of single MOVED CENTER 3-hexagons

Given a hexagon hi of type MOVED CENTER 3 and five hexagons hf0
i , hf01

i , hf1
i ,

hf12
i and hf2

i of type FIXED CENTER x adjacent to the fins f0
i , f1

i and f2
i of
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hi. If it is a single MOVED CENTER 3-hexagon, i.e. neither the left or nor the
right neighbor is of same type, the original center is neglected. Instead the
three centers of the fins are shifted and included in the triangulation. For
computing the new positions of three centers the same ratios are used as for
MOVED CENTER 2-hexagons. However for the middle one the ratio is swapped.

Ĉf0
i

:= 3
5Chi + 2

5Chf0
i

Ĉf1
i

:= 2
5Chi + 3

5Chf1
i

Ĉf2
i

:= 3
5Chi + 2

5Chf2
i

Centers of consecutive MOVED CENTER 3-hexagons

As mentioned in Sec. 5.2 we have different topologies for two or more con-
secutive hexagons of type MOVED CENTER 3. In addition to the previous case,
the center of hj is included in the triangulation. As shown in Fig. 9, it lies
on the axis between the original center position Chj and the center of its top
neighbor Cht

j
, i.e.

Ĉhj :=
2
3
Chj +

1
3
Cht

j
.

Suppose the left neighbor is of type MOVED CENTER 1, then the right neighbor
must be of MOVED CENTER 3 as shown on the right side of Fig. 9. The center
Cf1

j
lies on the line through Ĉhj and C

hf0
j

. Since we want an upper angle

bound of 90◦, it must form two right triangles together with center of the left
neighbor. Both triangles have the same height and one angle of α, then let
l0, l1 and l be defined as:

l0 :=
5

3
√

3
h l1 :=

3
√

3
5
h l :=

∥
∥
∥Ĉhj − Ch

f0
j

∥
∥
∥ .

Solving this for l0 and l1 leads to a ratio of 25 : 27, i.e. the new center is

Ĉf0
j

:=
25
52
Ĉhj +

27
52
C

h
f0

j
.

Note that this configuration also determines the ratio for hexagons of type
MOVED CENTER 1. The center of the second fin is set to

Ĉf1
j

:=
3
5
Chj +

2
5
C

h
f1

j
,

in contrast to the single configuration where the ratio was swapped. At the
common edge of the two MOVED CENTER 3-hexagons the corresponding neigh-
bors coincide and are set to

Ĉf2
j

:=
9
20
CM +

11
20
C

h
f2

j
,

with CM as the average of the two hexagons’ new centers.
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Centers of MOVED CENTER 4-hexagons

The relocated position depends on the number n of adjacent hexagons of type
MOVED CENTER 3. If it is forming a blossom, the center is not relocated. In
any other case the most left hexagon hk0 of the consecutive MOVED CENTER 3-
hexagons is determined:

Ĉhi := 3
5Chi + 2

5Chk0 (n = 1),
Ĉhi := 5

4Chi − 1
4CM , CM := 1

2 (Chk0 + Chk1) (n = 2),
Ĉhi := 7

6Chi − 1
6Chk1 (n = 3),

Ĉhi := 4
3Chi − 1

3CM , CM := 1
2 (Chk1 + Chk2) (n = 4).

6 Properties

6.1 Angle Bounds

The minimum angle bound was already explained in the previous section
where it was used to relocate the hexagon centers so that each triangle has
no angle below that value. The center relocation also took care of right an-
gles, i.e. no triangle is created with an angle greater than 90◦. Yet there is
still missing an analytic proof of all possible combinations which is omitted
due to space constraints. We rather show in Fig. 10 a sample of almost all
possible configurations and and angles. It is left to the reader to verify them
by computing the single angles of each triangle.

Fig. 10. This figure shows almost all possible hexagon-configurations, missing only
MOVED CENTER 3-strips of size 3 and 4 and 6 (blossoms). α is the minimum angle
(tanα = 5

3
√

3
⇒ α = 43.9) and β is its counterpart in a right triangle (tan β =

3
√

3
5

⇒ β = 46.1).
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6.2 Aspect Ratio

Both angle bounds also limit the aspect ratio of a triangle, i.e. the ratio be-
tween the diameter of incircle and radius of the circumcircle. Given a triangle
T having both bounds as angles as shown in Fig. 11 and the shortest edge
has length s. The radii of the circumcircle and the incircle of a right triangle
are defined as

ϕ :=
c

2
=

1
2
s

√
√
√
√12 +

(
3
√

3
5

)2

=
1
2
s

√
52
25
.

ρ :=
a+ b− c

2
=
s
(
1 + 3

√
3

5 −
√

52
25

)

2

Thus the aspect ratio of T is 2ρ
ϕ ≈ 1.20786.

Fig. 11. On the left side the circumcircle reaches its maximum extent at the angle
bounds of 43.9◦ and 90◦. This also defines the maximum aspect ratio of the triangle
T . The Delaunay property is achieved if for every inner edge (AB) the sum of γ1

and γ2 is not greater than 180◦ as shown on the right side.

6.3 Minimum Triangle Size

The minimum triangle size is determined by the minimum distance among
the input points. As shown in Fig. 7 the minimum distance of two hexagons of
type OCCUPIED 2 may share some hexagons of type FIXED CENTER IN RING,
i.e. they have at least a distance of three full hexagons. Since the point-in-
hexagon-test may produce undefined results if an input point lies exactly on
an edge between two hexagons or on a vertex among three adjacent hexagons,
the vertex is assigned to the first hexagon to be tested. Therefore an addi-
tional distance of three full hexagons is added. The shortest edge in the
triangular mesh is the one marked in Fig. 8 in the 1-ring of a hexagon h with
radius rmin of type OCCUPIED 1 and has a length of

lmin := rmin

√
√
√
√

(
3
2

√
3

2

)2

+
(

1
4

)2

=
rmin

2

√
7.
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The radius rmin is defined by the minimum distance dmin among the input
points and a number of at most six full hexagons in between, i.e.

rmin :=
dmin

6 · 2
√

3
2

⇒ lmin :=
dmin

√
7

12
√

3
.

6.4 Delaunay Property

The upper angle bound of 90◦ automatically implies the Delaunay property.
Note that a triangular mesh has the Delaunay property if no other vertex lies
within the circumcircle of any triangle. This is equivalent that for each inner
edge the sum of the apex angles of the adjacent triangles is not greater than
180◦ (see Fig. 11). Since there is no larger angle than 90◦ this is obviously
satisfied.

7 Triangulating Planar Straight-Line Graphs

Domains are often bounded by a sequence of straight line segments, e.g. to
restrict the computation to valid input values or reduce the number of com-
puted elements. For this purpose we present a method to integrate a PSLG
in the hexagon subdivision assuming that line segments do not intersect each
other. However guaranteed angle bounds are lost at the line segments - but
are guaranteed in the interior of the bound region.

7.1 Input Line Segment

Additionally to the input points one or several line segments are associated
to the hexagons as shown in Fig. 12. During splitting-/join-operations line
segments are re-assigned to the children, according to a hexagon-intersects-
line test. Note that a line segment will never be split into several pieces while
refining the hexagon mesh. When extracting the dual mesh, edges of the
triangles are moved onto the line segment to ensure that all input lines are
represented in the final triangular mesh.

7.2 Extended Refinement Rules

All hexagons intersecting a line segment must not be of type
MOVED CENTER [1234]. These kinds of hexagons are neither allowed in the 1-
ring of the intersected hexagons. Additionally a hexagon may be intersected
at most by two line segments, but only if they are consecutive (see Fig. 12).
Therefore the following rules for an intersected hexagon hi are added to the
refinement rules of Sec. 5.2:

• if any neighbor hj of hi is of higher level subdivide hi,
• if any neighbor hj of hi is of lower level subdivide hj ,
• if hi is intersected by two or more non-consecutive line segments subdivide

hi.
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Fig. 12. Similar to input points line segments are assigned to hexagons. On the left
side s0 is assigned to hi and hj . s1 is assigned to hj and hk. A hexagon is allowed
to have at most two assigned input segments if they are consecutive. On the right
side hi gets all three line segments assigned and must be subdivided.

7.3 Line intersections

The basic idea is to relocate the centers of intersected hexagons. For this
consider the three main axis of a hexagon which are orthogonal to the corre-
sponding edges of the hexagon as shown in Fig. 13. Pick the axis forming the
largest angle with respect to the line segment and compute the intersection
of this axis and the line segment. If the intersection is still within the hexagon
the new center location and the corresponding distance to the start point of
the segment is kept in a list for that segment.

If the hexagon does not contain an input point but is intersected by two
line segments, e.g. at acute input segments, a link to its neighbor intersection
is stored in the record list as well. Finally for each line segment the associated
list records are sorted with respect to the distance to the start point s0 of
the line segment. Afterwards for each line segment the affected hexagons are
traversed according to the sorted intersection entries and their centers are
shifted accordingly. For hexagons with two intersections a new point and
new triangles have to be inserted into the triangulation as explained in the
following subsection.

Fig. 13. The axis a2 of hi forms the largest angle with line segment s0. On the
left side the intersection lies within hi and therefore an intersection record with ti
is created. In contrast to the situation in the middle. Here the intersection lies in
the neighbor hexagon and the center of hi will not be relocated. On the right side a
second intersection record is created for s1. For these kinds of hexagons additional
triangles have to be added to the dual mesh.



Hexagonal Delaunay Triangulation 535

7.4 Adding Triangles

Hexagons intersected only by one line segment are treated as non-intersected
ones. However hexagons with two projected centers require additional trian-
gles. The original single center is split into two, creating an inner region in
between the two line segments. This inner region is filled with two new trian-
gles as seen in Fig. 14. The triangles outside of the inner region are built in
a regular way by connecting the two centers with the centers of the adjacent
hexagons.

Special care is also needed for consecutive projected centers. This happens
for example at input points lying outside of the half-sized hexagon in Fig. 14.
In this case degenerated triangles would be created. The situation is solved
by omitting the projected center of the concerned hexagon if the distance
between the moved center and the projected center is greater than the radius
r of the hexagon.

Fig. 14. The original center is split into two, opening a gap between the two
line segments. This gap is filled by four new triangles. The edges outside the gap
are connected as usual. On the other side in case of almost co-linear segments,
degenerated triangles may occur. The projected center is not used if the distance
between the moved center of hj and the projected center is greater than the radius
r of hj .

8 Results

The method was implemented and tested on a regular PC with an Intel Core2
Duo processor at 2.6 GHz using only a single thread. The implementation is
a proof-of-concept, i.e. it uses a conservative approach for the refinement loop
with a runtime complexity of O(n2) which makes the current implementation
unsuitable for larger data sets.

In this section we compare the results of our method with the current
version of Triangle (v1.6). We have chosen 6 data sets. The first data set
– a popular benchmark – consists of two single points with a close distance
to each other, 0.02 units in this case. It is located within a hexagon with
unit radius. The second data set consists of 100 random points lying on a
straight line. In the third data set the 100 points are distributed randomly
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Fig. 15. Four data sets triangulated with our method. In the first row two close
points were triangulated. In this case the bounding hexagon was not adapted to the
bounding sphere of input points. In the second row a random set of 100 points lying
on a straight line is shown, while in the next row the 100 points were randomly
distributed. The last row shows the inclusion of line segments. The density of the
triangles increases with level-of-detail of the line segments. The right picture shows
a close-up of the triangulation.
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Table 1. Triangle was executed in single precision as well as in double precision
while our method uses just single precision. Per trial-and-error the angle was in-
creased by 0.25 degrees until the Triangle fails. When adding a PSLG the angle
bounds of the hexagon method are lost. For the IMR-letters the minimum angle is
13.7◦ and the maximum angle is 133.4◦ near the line segments. In the interior re-
gions the mininum and the maximum angle are 43.9◦ and 90◦. Timings for Triangle
are below 0.03 seconds for all data sets. The timings of our method are listed in
parenthesis behind the angle numbers.

# triangles of Triangle v1.6 (single) Triangle v1.6 (double) Hexagon Delaunay
2 close pts 122 at 36.75◦ 131 at 37.00◦ 684 at 43.9◦ (0.005 s)
100 pts on line 4890 at 35.00◦ 5289 at 35.00◦ 18667 at 43.9◦ (0.13 s)
100 pts on plane 1149 at 34.50◦ 1133 at 34.50◦ 12748 at 43.9◦ (0.21 s)
IMR-letters 2569 at 34.50◦ 1770 at 34.50◦ 30551 (1.03 s)
1k pts on plane 10423 at 34.5◦ 14414 at 34.75◦ 127729 at 43.9◦ (30.4 s)
2k pts on plane 19377 at 34.25 19244 at 34.25 268138 at 43.9◦ (123 s)

on the plane. The fourth data set consists of the sampled letters IMR where
the level-of-detail increases from letter I to letter R. Finally we tested the
algorithm with slightly larger data sets consisting of 1k and 2k resp. random
points. The timings clearly show the quadratic runtime complexity. However
it should be possible to implement a more sophisticated refinement loop to
reach a runtime complexity of O(n logn) or slightly above.

The resulting triangulations of the first four data sets are shown in Fig. 15.
In Table 1 we have listed the number of triangles for each data set according
to the maximum reachable angle bounds. For Triangle we increase the angle
by 0.25 degrees step by step until the program fails.

9 Conclusion and Future Work

We have presented a new approach of generating meshes of high quality by
triangulating point clouds. All angles of the triangles lie within the range
of 43.9◦ and 90◦. We have also shown that the triangular meshes have the
Delaunay property.

The triangulation is locally adaptive, i.e. regions of interest have more
triangles than regions with less input points. By balancing the underlying
hexagon-subdivision, the triangles grow quickly from high to low detailed re-
gions. Furthermore the minimum distance among the input points determines
the minimum size of the triangles, which may be pre-computed in advance.

In order to limit the domain to certain regions we provided a simple method
to include a planar straight-line graph in the triangulation. Although angle
bounds may fail directly at these line segments, they are still valid in the
interior regions, i.e. one hexagon away from the lines.

Future work will be concentrated on finding a refinement loop implemen-
tation with a better runtime complexity than O(n2) and an integration of a
PSLG with guaranteed angle bounds, preferably in the range of 30◦ and 90◦.
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An open problem is the extension to 3D space. It is not clear which 3D-
polytope will substitute the 2D-hexagon. A promising candidate seems to be
the octahedron.
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