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Abstract. An algorithm is introduced for converting a non-conforming
hexahedral mesh that is topologically equivalent and geometrically similar
to a given geometry into a conforming mesh for the geometry. The pro-
cedure involves embedding geometric topology information into the given
non-conforming base mesh and then converting the mesh to a fundamental
hexahedral mesh. The procedure is extensible to multi-volume meshes with
minor modification, and can also be utilized in a geometry-tolerant form
(i.e., unwanted features within a solid geometry can be ignored with minor
penalty). Utilizing an octree-type algorithm for producing the base mesh,
it may be possible to show asymptotic convergence to a guaranteed closure
state for meshes within the geometry, and because of the prevalence of these
types of algorithms in parallel systems, the algorithm should be extensible to
a parallel version with minor modification.
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1 Introduction

In this paper we explore more fully how to capture geometric boundary fea-
tures using elements in the dual. We build on work completed in [1, 2, 3]
and demonstrate conversion of non-geometry conforming hexahedral meshes
to conforming hexahedral meshes followed by a mesh conversion to the fun-
damental mesh. The final quality of these meshes is largely dependent on
the quality of the original non-conforming mesh; however, once a reasonable
mesh is developed within a geometry it should be feasible to perform mesh
conversions to optimize the structures within the mesh to improve geometric
quality and mesh topology. The method described in this paper is extensible
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
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to multi-volume meshes and geometry tolerant meshing paradigms. Addition-
ally, because the concepts relating to fundamental meshes effectively localize
mesh modification to geometric features, parallelizing the algorithm should
be relatively straight-forward.

2 Background

The basic concepts that will be utilized throughout this paper utilize a ’dual’
representation of a hexahedral mesh. The concept of the hexahedral mesh
dual is foundational to many hexahedral mesh modification techniques that
have been developed in recent years [4, 1, 5]. Defined by sheets and columns,
the dual provides an alternate representation of a conforming hexahedral
mesh. This alternate representation has supplied greater understanding about
hexahedral mesh topology and has led to the creation of some basic mesh
operations. Although the capture techniques introduced in this paper are
novel, there is some similarity in the results produced by this method with
grid-based methods. The reader is encouraged to review work in [6, 7, 8].

2.1 Dual Sheets and Columns

A hexahedral element contains three sets of four topologically parallel edges,
as shown in Figure 1. Topologically parallel edges provide the basis for hex-
ahedral sheets. The formation of a sheet begins with a single edge. Once an
edge has been chosen, all elements which share that edge are identified. For
each of these elements, the three edges which are topologically parallel to
the original edge are also identified. These new edges are searched iteratively
to find all connected hexahedra and the topologically parallel edges for each
of these elements. This iterative procedure continues until no new adjacent
elements are found. The set of all elements which are traversed during this
process results in a layer of hexahedra, also known as a hexahedral sheet. Fig-
ure 2 shows a hexahedral mesh with a single hexahedral sheet highlighted.

Fig. 1. A hexahedral element has three sets of four topologically parallel edges.

A hexahedral element also contains three pairs of topologically opposite
quadrilateral faces, as shown in Figure 3. Topologically opposite faces provide
the basis for hexahedral columns. The formation of a column begins with a
single face. Once a face has been chosen, the two elements which share that
face are identified. For each of these elements, the face which is topologically
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Fig. 2. A hexahedral mesh with one sheet highlighted.

Fig. 3. A hexahedral element has three pairs of topologically opposite faces.

Fig. 4. The intersection of the two sheets shown on the left is defined by the column
shown on the right.

opposite of the original face is also identified. These new faces are then used to
find the incident hexahedra and topologically opposite faces on these adjacent
elements. This process is repeated iteratively until no new adjacent hexahedra
can be found. The set of all hexahedra which are traversed during this process
makes up a hexahedral column. An important relationship between sheets
and columns is that a column defines the intersection of two sheets. This
relationship is illustrated in Figure 4.

2.2 Sheet Operations

The dual description of a hexahedral mesh is essentially an arrangement of
surfaces satisfying specific criterion. It is, therefore, possible to modify an
existing mesh simply by modifying the underlying arrangement of surfaces



88 J.F. Shepherd

describing the original mesh. The simplest form of modifying the mesh would
involve adding or removing a surface from the arrangement of surfaces. This
concept is often referred to as sheet insertion or sheet extraction [9]. Sheet
extraction removes a sheet from a mesh by simply collapsing the edges that
define the sheet, as shown in Figure 5.

Fig. 5. Sheet extraction: (a) A sheet is selected. (b) The edges that define the sheet
are collapsed. (c) The sheet is entirely removed from the mesh.

Using an inverse approach to sheet extraction, it is also possible to insert
new sheets into an existing hexahedral mesh. The most common method for
inserting a generalized sheet into a hexahedral mesh is pillowing [10]. Unlike
sheet extraction, which removes an existing sheet from a mesh, pillowing
inserts a new sheet into a mesh. As demonstrated in Figure 6, pillowing is
performed on a set of hexahedral elements which make up a ‘shrink’ set.
These elements are pulled away from the rest of the mesh and a new sheet
is inserted by reconnecting each of the separated nodes with a new edge and
creating new hexahedra utilizing all of the new created edges to fill in the
gap. The new sheet surrounds the shrink set and maintains a conforming
mesh.

Fig. 6. Pillowing: (a) A shrink set is defined. (b) The shrink set is separated from
the rest of the mesh and a sheet is inserted to fill in the gap. (c) The newly inserted
pillow sheet.

2.3 Fundamental Hexahedral Meshes

Another concept of importance to the methods outlined in this paper is the
notion of a fundamental hexahedral mesh. The definition of a fundamental
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sheet is relative to the geometric object associated with the mesh [1]. The
principle of a fundamental mesh is to have a single sheet for every surface,
and a single chord for every curve on a surface (see examples in Figure 7).
Such a mesh captures the geometry in such a way that every n-dimensional
geometric cell is captured by one or many n-dimensional dual cells with
particular restrictions. There is always at least one fundamental mesh for a
given geometry, but the fundamental mesh definition allows for many different
arrangements which satisfy the definition. If you translate this description in
the primal mesh, you get the following definition given in [2].

Definition 2.1 Let G and M be respectively a 3-dimensional geometric ob-
ject and a hexahedral mesh. A hexahedral mesh M is a fundamental mesh
with respect to G if and only if:

1. M is a strictly geometry-valid hexahedral mesh with respect to G;
2. For every geometric surface G2

k, the number of hexahedral elements inci-
dent to G2

k is equal to the number of quadrilaterals classified on G2
k;

3. For every curve G1
k and every surface G2

k′ , the number of quadrilaterals
on G2

k′ incident to edges on G1
k is equal to the number of edges classified

on G1
k.

Fig. 7. Fundamental and non-fundamental meshes of a cylindrical geometric ob-
ject. In the mesh on the right, multiple sheets are utilized to capture a single surface
producing a non-fundamental mesh. The image on the left has a single sheet asso-
ciated with the cylindrical surface and is fundamental.

Complementary explanations about this definition are given [2]. Note, for a
geometric object, there is not one unique fundamental mesh, and, in fact,
many geometry-valid hexahedral meshes will exist which are fundamental.
These meshes are different for two reasons: there are many permutations of
boundary sheets which satisfy the fundamental mesh requirements, and the
number and configurations of non-boundary sheets within the hexahedral
mesh is not restricted.

3 Theory and Assertions

In [1], the assertion is made that any non-fundamental hexahedral mesh can
be converted to a fundamental hexahedral mesh. A proof of this assertion was
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later given in [3]. In this paper, the goal is to show that a non-conforming
hexahedral mesh whose boundary is topologically equivalent and geometri-
cally similar to the composite boundary of a given solid geometry can be
converted to a fundamental hexahedral mesh of the geometry and maintain
reasonable quality metrics for the resulting hexahedra. We will discuss these
two conjectures (i.e., conversion and quality) in more detail in this section.

3.1 Non-conforming Meshes to Fundamental Meshes

In [3], it was shown that a non-fundamental hexahedral mesh of a geometric
object can always be converted to a fundamental hexahedral mesh of the
geometric object. Therefore, it remains to be shown how to convert a non-
conforming hexahedral mesh of a given object to a non-fundamental mesh of
the same object.

The process of converting a non-conforming mesh to a conforming hexahe-
dral mesh begins with two assumptions regarding the non-conforming mesh
and the geometric object to be captured. The first assumption is that the
boundary (composite) of the geometry and the boundary of the initial hex-
ahedral mesh must be equivalent. That is, if the geometry is topologically
spherical, then the boundary of the initial hexahedral mesh should also be
spherical (i.e., it is not possible to convert a hexahedral mesh whose boundary
is an n-toroid into a mesh of a spherical geometry). This assumption almost
goes without saying, but depending on the method utilized to form the initial
base mesh, may be commonly encountered.

The second assumption is more subjective. That is, the boundary of the
initial base mesh should be geometrically similar to the boundary (composite)
of the geometry to be captured. Satisfaction of this assumption is not binary
(i.e., yes or no) like the topology equivalence assumption, and can involve a
continuous range of satisfactory values. However, high geometric similarity
between the base mesh and the geometry results in decreased modification
to the base mesh and an associated higher probability that the quality of the
resulting modified mesh will match the quality of the initial base mesh.

Given a base mesh that is non-conforming to the geometry, but topolog-
ically equivalent and geometrically similar, the process for converting the
mesh to a conforming mesh involves the following steps:

1. Find an embedding of the geometric topology into base mesh.
2. Map the embedded geometric topology in the base mesh to the geometry

For the first item - finding an embedding of the geometric topology into the
base mesh - we treat the boundary of the base mesh (e.g., the quadrilaterals,
edges and nodes on the boundary of the mesh) as a graph (the mesh graph)
and the geometric topology of boundary of the geometric object as a second
graph (the geometric graph), and work to find an embedding of the second
graph into the first graph. In some cases, this may require an enrichment
of the the mesh graph when embedding the curves at high valent vertices
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from the geometric graph. This enrichment can be accomplished utilizing a
pillowing operation in the hexahedral mesh that will be described in the next
section.

The second item - Map the embedded geometric topology in the base mesh
to the geometry - is accomplished by finding an appropriate location for each
of the nodes on the boundary of the base mesh to the appropriate geometric
location determined from the embedding in the first step. At this point the
mesh is now conforming to the geometry, although it likely has very poor
quality (especially, near the new mesh boundary where most of the nodal
movement took place in the last step). This quality will be improved during
the conversion from the conforming, non-fundamental mesh to a fundamental
mesh, and will be described in the next section.

3.2 Assertion on Hexahedral Quality

The second conjecture is in regards to the hexahedral element quality result-
ing from the conversion process outlined above. While it is very difficult to
provide guarantees on potential hexahedral element quality, we refer back to
an observation made in [11]. The ideal isotropic mesh contains perfectly pla-
nar sheets. Sheet curvature induces ‘keystoning’ of the hexahedral element
(where the edges on one side of the hex are shorter than the opposite edges
which are lengthened by the curvature). Sheets that do not intersect each
other orthogonally induce element ‘skewing’ (see Figure 8). However, if only
one of the three sheets defining the hex is subject to increased curvature or
if there is only a single sheet with non-orthogonal intersections to the other
sheets, then the feasible region for non-positive Jacobians remains large and
it is likely that a smoothing or mesh optimization algorithm will be able to
find a satisfactory nodal placement resulting in suitable hexahedral quality.

Fig. 8. Non-orthogonal intersections between sheets results in element ‘skewing’.

We attempt to capitalize on this conjecture. That is, if the base mesh
utilized consists of sheets with very low curvature and the sheets intersect
each other with near orthogonality, then the sheets which are inserted during
the conversion from non-fundamental to fundamental mesh will be the only
sheets with any curvature or potential for non-orthogonality. If these inserted
sheets are not interacting with each other, then the probability for creating
a mesh which cannot be optimized to have reasonable quality is very low.



92 J.F. Shepherd

4 Algorithm

In this section, we describe an algorithm for performing the conversion of
the non-conforming mesh to a conforming, non-fundamental mesh, and then
finally to a fundamental mesh. We will also provide discussion on optimizing
the mesh following the fundamental conversion. The algorithm described is
presented for a generalized approach and various alterations can be made
which limit generality but improve quality or desired mesh topology. These
differences will be discussed in a later section.

The algorithm has four basic steps:

1. Establish the 2-manifolds for volumetric capture.
2. Convert the non-conforming mesh to a conforming mesh through geo-

metric topology capture.
3. Convert the non-fundamental mesh to a fundamental mesh.
4. Mesh optimization to improve mesh quality.

4.1 Establishing 2-Manifolds

The first step in the algorithm is to capture a geometric solid from a pre-
existing base mesh. We start by considering the boundary of the geometric
solid as a closed, 2-manifold surface. We desire a base mesh whose boundary
is topologically equivalent to the boundary of the geometric solid, as well as
minimizing the geometric dissimilarities between these two boundaries. We
only restrict this base mesh to topological equivalence, except to say, that
the resulting quality of the final mesh will be heavily dependent on the geo-
metric similarity between the base mesh and the geometric solid. Therefore,
tailoring a base mesh (topologically and geometrically) to improve similar-
ities between the base mesh and the geometric solid can provide dramatic
quality differences in the final mesh.

There are several options for establishing the initial base mesh. Perhaps the
easiest method is to create a structured grid in the bounding box representa-
tion of the solid geometry and eliminating hexahedra outside the boundary
of the solid geometry (see Figure 9. This type of approach also allows base
meshes to be created using standard octree-meshing techniques.

A similar approach can be utilized by creating simplified solid models and
using standard hexahedral meshing algorithms on the simplified geometries
and then eliminating hexahedra in the simplified geometry that do not match
the original geometry (see example in Figure 10).

This approach can also be used to establish bounding 2-manifolds for multi-
volume meshing. The only difference in multi-volume is to ensure that the
topology of the all the volumetric base-meshes conform equivalent to the
volumes in the solid model. Some initial work by Zhang, et al., demonstractes
a method for establishing the base meshes for multi-volume biological models.
A similar methodology can be utilized for solid models, although in some
cases where the edges in the mesh do not have sufficient topology to match
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Fig. 9. An original geometry (on left) can be embedded in a regular mesh and
the elements contained in the geometry is one alternative for defining a initial base
mesh.

Fig. 10. A base mesh for an original geometry (on left) can also be created using
standard hex primitive algorithms, including sweeping. The elements not contained
in the mesh on the right can be removed and the resulting mesh would be suitable
for a base mesh.

the curves in the solid model, a mesh enrichment step may be needed to
provide the additional topology such that the base meshes are equivalent to
the solid model.

4.2 Capturing Geometric Topology

Once the base mesh for the solid model has been established, the process of
converting the non-conforming base mesh into a conforming base mesh can
begin. Essentially, what we want to do in this step is to embed the curves
and vertices from the boundary of the solid model into the boundary of the
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base mesh. This also can be done in one of several ways. We will discuss one
approach in this section.

Because the desire is to embed the geometric topology of the boundary
into the base mesh, the logical first step is to first find an embedding of
each of the geometric vertices into the boundary of the base mesh. In our
case, we have done this by a geometric search, and find the closest node in
the boundary of the base mesh to the geometric vertex. The number of edges
emanating from each of the nodes is also taken into account and if the number
of curves emanating from the geometric vertex is greater than the number of
edges at the node and a nearby node captures the geometric topology more
adequately, then a re-assignment may be made.

If the number of edges emanating from the closest node to a geometric
vertex is fewer than the number of curves emanating from the vertex, a
mesh enrichment procedure may be utilized to increase the nodal valence.
Increasing the nodal valence consists of pillowing a collection of hexes in the
neighborhood of the node resulting in additional edges emanating from the
node (see Figure 11). This process can be repeated multiple times as needed
to increase the nodal valence; however, care should be taken as possible, since
the insertion of a small pillow will have reasonably high local curvature (the
pillow in this case is essentially hemispherical). The curvature of the pillowed
sheet may result in element quality reductions in the final mesh based on the
conjecture discussed in Section 3.2.

Once an embedding of the geometric vertices is found and the nodal valence
is equal to or greater than the vertex valence, we can begin to work on
embedding each of the geometric curves into the mesh. If the quadrilateral
boundary of the base mesh is treated as a graph, and the vertices have been
embedded in this graph, then this problem can be viewed as similar to a
collision-free network search. That is, we want to find a path between the
embedded nodes which minimizes the geometric distance from the geometric
curve and contains no collisions with the paths for each of the other curves.
We demonstrate an example of this process in Figure 12.

Fig. 11. Nodal valence can be increased using a simple pillowing operation. The
original mesh is shown on the left and the resulting nodal valence increase after
pillowing is displayed on the right.
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Fig. 12. The geometric graph is embedded into the base mesh using a conflict-
free search of the mesh edges on the boundary of the base mesh to ensure topo-
logic equivalence of the new embedding. Once the embedding has been established,
the bounding mesh elements are ‘snapped’ to the appropriate geometry (image on
right).

Once an embedding of the vertices and curves has been accomplished, the
surface embedding is calculated by finding all of the quadrilaterals contained
within the boundary of the embedded curves. This should complete the em-
bedding of the geometric boundary into the boundary of the base mesh. At
this point, all of the nodes on the boundary of the base mesh are moved to the
correct geometric entity based on the previous embedding. This results in a
conforming, but non-fundamental mesh of the geometry, from the previously
non-conforming base mesh (see example in Figure 12).

4.3 Fundamental Conversions

Given a the embedding of the vertices and curves into the base mesh, we can
begin the process of converting the base mesh to a fundamental mesh of the
given geometry. A proof that this conversion can always occur is given in [2],
and a construction of this proof can be utilized as follows in two steps:

1. Add a single sheet for each closed shell of boundary surfaces in the geom-
etry. Assuming that the shell is manifold, this operation can be accom-
plished with a simple pillowing operation.

2. Add a single sheet for the collection of hexahedra contained by quadrilat-
erals associated with each surface of the geometry. Again, assuming that
the collection of quadrilaterals is topologically equivalent to the associ-
ated geometric surface and the boundary of this collection of hexahedra
if manifold, a simple pillowing operation will suffice for this sheet in-
sertion. It should be noted that the first sheet insertion guarantees that
there is a single hexahedron associated with each boundary quadrilateral,
which is critical for this construction. Additionally, the embedding step
described earlier can be used to guarantee topological equivalence of the
quadrilateral collection with the geometric surface.



96 J.F. Shepherd

Fig. 13. The pyramid mesh following before (left) and after (right) conversion to
a fundamental mesh.

The mesh following the fundamental conversion should be free of flattened
(triangle-shaped) quadrilateral elements, and similar improvements will be
noted in the interior hexahedra. The mesh for the pyramid example is shown
in Figure 13 with the improved quality elements around the boundary.

This particular method for converting the mesh to fundamental is general-
ized, or in other words, it will work in all cases. However, it should be noted
that fundamental meshes are not always required for satisfactory quality, and
alternative manipulations of the mesh may be possible and desirable for im-
proved quality. We will discuss this further in Section 6. Additionally, if the
mesh in the second step is already fundamental, then no sheet insertion is
required and the pillowing operation can be skipped.

4.4 Mesh Optimization

The conversion of the mesh to fundamental has the advantage of giving im-
proved flexibility for mesh optimization near the boundary of the mesh. This
is seen quite markedly in earlier papers [12, 1, 8], where dramatic improve-
ments in the scaled Jacobian values are realized following the sheet insertion
process and mesh smoothing/optimization. The pillowing process involves
non-uniformly scaling elements in order to allow space for the newly inserted
elements to occupy. This scaling often causes element inversions; however, the
new topology introduced by the sheet insertion allows for greater flexibiliy by
increasing the positive quality feasible regions for each of the elements near
the boundary. In order to take advantage of this flexibility, mesh optimization
algorithms with L2 and L-inf guarantees are recommended. In particular, we
have heavily utilized the results of Knupp in mesh untangling [13], condition
number optimization [14], and mean-ratio optimization [15, 16]. Addition-
ally, it has been shown [17] that we can dramatically improve the speed of
these algorithms by first utilizing a relaxation-based smoother (e.g. Laplacian
smoothing), or using a focused-smoothing operation to reduce the number of
elements being optimized. A recipe typically utilized following the conversion
to fundamental is as follows:
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1. Centroidal smoothing [18] each of the surfaces on the mesh boundary.
2. Untangling/optimization for each surface on the boundary (as needed).
3. Laplacian smoothing of the volumetric mesh.
4. Focused untangling of any pockets of mesh with inverted elements.
5. Focused L-inf optimization for any pockets of mesh elements with scaled

Jacobian less than 0.2.
6. Additional mesh optimization as desired.

5 Examples

In this section, we demonstrate the process for one more example with
slightly increased complexity (Figures 14 and 15). Following this example, we

Fig. 14. The original ‘sbase’ geometric model shown in shaded and transparent
modes. (Model provided courtesy of Ansys [19].)

Fig. 15. A base mesh created for the ‘sbase’ geometry. The base mesh was created
by creating a regular mesh in the bounding box of the geometry and eliminating all
hexahedra located exterior of the geometry. This image also shows an embedding
of the geometric graph in the boundary edges of the base mesh (the blue edges).
The final mesh after conversion of the base mesh to a fundamental mesh is shown
on the right.
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Fig. 16. A mesh of a 6 generation airway of a human lung. The mesh on the right
is a close-up view showing the sharp curves generated at the end caps of the model.
(Model provided courtesy of Kwai Lam Wong, Oakridge National Laboratories.)

Fig. 17. Mesh of the valve model (Model courtesy of Kyle Merkley, Elemental
Technologies, Inc.), and hook model (on right).

Fig. 18. Mesh of the ‘a027’ and ‘ucp’ models (‘A027 Model courtesy of Ansys [19]).
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demonstrate several other meshes that have been generated using this
methodology (Figures 16, 17, and 18).

6 Alternate Methods

The method outlined in the previous sections of this paper are meant to be
generalized. That is, these methods should work for all geometries with man-
ifold boundaries. However, alternate conversions may produce better mesh
quality, but may not be suitable for general cases. We will discuss some of
these cases here, although it should be noted that the list provided below is
not exhaustive, and additional methods may be developed and utilized.

6.1 Tri-valent Vertices

As indicated before, the method described in this paper is a generalized
method. However, the price for generalization is decreased quality in some
cases that could be improved with different sheet configurations that may
not work generally. A tri-valent geometric vertex is a good example of this
trade-off. In Figure 19(left) a mesh is shown that might be developed using
the method outlined in this paper. At the trivalent vertex in the forefront
of the image, the fundamental sheets are drawn (red, green, and yellow) for
capturing the curves associated with this vertex. This configuration of sheets
produces 2*v hexahedra, where v is the vertex valence. So, in this case, there
are six hexahedra produced at this vertex location (i.e. the node at the vertex
is contained in six hexahedra). An alternate sheet configuration (shown in
Figure 19 (right) where the sheets are allowed to intersect one another is
also shown. This configuration of sheets produces a single hexahedron at the
vertex, and still fundamentally captures all of the curves associated with the

Fig. 19. Allowing changes in the sheet structure can improve the mesh quality. In
the image on the left, the three sheets do not intersect resulting in six hexahedra
at the vertex in the forefront of the image. On the right, the three sheets intersect
and a single hexahedron is produced offering better opportunity for improved mesh
quality at the vertex.
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vertex. The resulting mesh has a higher potential for quality because of the
change in the sheet topology.

Allowing the sheets to intersect one another is, in many cases, an im-
proved strategy for inserting the sheets; however, the disadvantage to this
alternate strategy is that it will only work if every vertex is trivalent. There-
fore, applying the generalized algorithm is a better option for the original
mesh generation algorithm, but it may be possible to ‘clean-up’ the mesh by
re-arranging the sheet topology to improve the mesh quality locally at some
of these tri-valent vertices. Additionally, it may be possible to develop similar
recipes to reduce the element count and improve the quality potential while
still maintaining a valid hexahedral mesh at each of the vertices by allowing
some local sheet reconfigurations.

6.2 Regularizing Mesh Near Boundaries

Multiplying the number of sheets can also be utilized to increase the regularity
of the mesh near the boundaries (see Figure 20). Balancing the arrangement
of the sheets, can have a dramatic effect on the quality of the mesh. It will
be advantageous to re-arrange the sheet topology following the initial mesh
generation in order to improve regularity of the mesh and quality of the
elements while still maintaining conformity with the geometry.

Fig. 20. Allowing for changes to sheet arrangements can improve the quality of
the final mesh. In this image, several additional sheets were added near the interior
cranial boundary to improve the regular structure of the mesh in this region. Other
such additions, rearrangements, and removals of sheets may provide improved qual-
ity and topology of the final mesh.

7 Conclusion

We have outlined a method for building all-hexahedral meshes in arbitrary ge-
ometries. The procedure involves embedding geometric topology information
into the given non-conforming base mesh and then converting the mesh to a
fundamental hexahedral mesh. The procedure is extensible to multi-volume
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meshes with minor modification, and can also be utilized in a geometry-
tolerant form (i.e., unwanted features within a solid geometry can be ignored
with minor penalty by the meshing procedure). Utilizing an octree-type al-
gorithm for producing the base mesh, it may be possible to show asymptotic
convergence to a guaranteed closure state for meshes within the geometry.
Due to the prevalence of octree algorithms in parallel systems, the algorithm
should also be extensible to a parallel version with minor modification.
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