
Collars and Intestines:
Practical Conforming Delaunay Refinement

Alexander Rand and Noel Walkington

Carnegie Mellon University

Abstract. While several existing Delaunay refinement algorithms allow acute 3D piecewise
linear complexes as input, algorithms producing conforming Delaunay tetrahedralizations (as
opposed to constrained or weighted Delaunay tetrahedralizations) often involve cumbersome
constructions and are rarely implemented. We describe a practical construction for both “col-
lar” and “intestine”-based approaches to this problem. Some of the key ideas are illustrated
by the inclusion of the analogous 2D Delaunay refinement algorithms, each of which differs
slightly from the standard approach. We have implemented the 3D algorithms and provide
some practical examples.

1 Introduction

Acute input angles pose significant challenges to Delaunay refinement algorithms
for quality mesh generation in both two and three dimensions. In 2D, the formation
of a conforming mesh is relatively simple: acutely adjacent input segments must be
split at equal lengths. Research extending Ruppert’s algorithm [16] to accept small
input angles [17, 8] focused on finding algorithms which involve simple modifi-
cations of Ruppert’s algorithm and produce the “best” output meshes in practice.
In 3D, producing a conforming tetrahedralization of an arbitrary piecewise linear
complex (PLC) involves a substantial construction [10, 6] and quality refinement
algorithms have been developed in the context of this construction [5, 11]. Alter-
native algorithms involving weighted [4, 3] and constrained [17, 19, 18] Delaunay
tetrahedralization have also been developed. Due to these different challenges, the
algorithms for 3D Delaunay refinement of acute domains are markedly different
than those in 2D.

In this paper, we describe two related strategies for the protection of acute angles
during 3D Delaunay refinement: collars and intestines. The collar approach general-
izes the construction of Murphy, Mount, and Gable [10] and that of Cohen-Steiner,
Colin de Verdière, and Yvinec [6] and produces a quality mesh following the ideas
of Pav and Walkington [11]. The intestine approach is closely related to the quality
refinement algorithm of Cheng and Poon [5]. Unlike these previous algorithms for
3D Delaunay refinement of acute input, our algorithms are motivated by analogous
2D versions and, more notably, have been implemented.

482 A. Rand and N. Walkington

Algorithm 1. Quality Refinement of Acute Input
(PROTECT) Protect acute input angles.
(REFINE) Perform a protected version of Ruppert’s algorithm.

Algorithm 1 is the template for both the collar and intestine based refinement al-
gorithms. The (PROTECT) step requires information about the (d − 2)-dimensional
features of the input complex. We note that a brute force computation of this infor-
mation can be avoided using estimates resulting from certain Delaunay refinement
algorithms [13, 14] or an exact computation during sparse Voronoi refinement [9].

Section 2 contains necessary preliminaries for our analysis. Section 3 describes
both collar and intestine based Delaunay refinement algorithms in two dimensions,
and the three-dimensional algorithms are given in Section 4. Finally, some examples
and practical issues are discussed in Section 5.

2 Preliminaries

2.1 Definitions

Our algorithms accept an arbitrary PLC as input and involve an intermediate piece-
wise smooth complex (PSC), defined below.

Definition 1. In three dimensions [or two dimensions]:

• A piecewise linear complex (PLC), C = (P,S,F) [(P,S)], is a triple [duple]
of sets of input vertices P, input segments S, and polygonal input faces F such
that the boundary of any feature or the intersection of any two features is the
union of lower-dimensional features in the complex.

• A PLC C′ = (P′,S′,F ′) [(P′,S′)] is a refinement of the PLC C = (P,S,F) if
P ⊂ P′, each segment in S is the union of segments in S′, and every face in F
is the union of faces in F ′.

• A piecewise smooth complex (PSC), C = (P,S,F) [C = (P,S)], is a triple
[duple] of sets of input vertices P, non-self-intersecting smooth input curves S,
and non-self-intersecting smooth input faces F such that the boundary of any
feature or the intersection of any two features is the union of lower-dimensional
features in the complex.

Definition 2. Let C be a PLC.

• The i-local feature size at point x with respect to C, lfsi(x,C), is the radius of
the smallest closed ball centered at x which intersects two disjoint features of C
of dimension no greater than i.

• The 1-feature size of segment s with respect to C, fs1(s,C), is the radius of the
smallest closed ball centered at a point x ∈ s intersecting a segment or input
vertex of C which does not intersect s.

Collars and Intestines: Practical Conforming Delaunay Refinement 483

If the argument supplied to the local feature size function is a set of points, rather
than a single point, then the result is defined to be the infimum of the function
over the set, i.e. lfsi(s,C) := infx∈s lfsi(x,C). Often the PLC argument supplied to
the local feature size is that of the input complex and in this case the argument will
be omitted. The subscript will be omitted when it is equal to (d − 1) where d is the
dimension, i.e. lfs(x) := lfs2(x) in 3D.

For a PSC we will use the same definition of local feature size as for a PLC.
Typically the definition of local feature size for a PSC also involves the radius of
curvature or the distance to the medial axis. Since we will only use a very restricted
class of PSCs the simpler definition is sufficient. In our particular constructions
the radius of curvature is proportional to (and often equal to) the local feature size
defined above.

2.2 Generic Delaunay Refinement Algorithm

The Delaunay refinement algorithms which we will consider have the form of Al-
gorithm 2. Additionally, we require that each of the operations involve only local
computations in the Delaunay triangulation of the current vertex set. To specify an
algorithm from Algorithm 2, it is necessary to carefully describe the following four
statements.

Algorithm 2. Delaunay Refinement
Create an initial Delaunay triangulation.
Queue all unacceptable simplices.
while the queue of simplices is nonempty do

if it is safe to split the front simplex then
Take an action based on the front simplex.
Queue additional unacceptable simplices.

end if
Remove the front simplex from the queue.
Dequeue any queued simplices which no longer exist.

end while

Action Where should a vertex be inserted to “split” a simplex? Should
other simplices be added to the queue?

Priority In what order should the queue be processed?
Unacceptability Which simplices are unacceptable?

Safety Which simplices are safe to split?

3 Delaunay Refinement in 2D

Before describing the full 3D algorithms, analogous 2D Delaunay refinement al-
gorithms are given. The resulting algorithms are similar to those typically used for

484 A. Rand and N. Walkington

Delaunay refinement in the presence of acute input angles [17, 8], but avoid certain
challenges which are difficult to extend to 3D.

We will describe the two steps in the refinement of an arbitrary PLC given in
Algorithm 1: acute input angles are first protected, and then Delaunay refinement
is performed. We assume that an appropriate estimate of the local feature size is
available at each input vertex. Specifically, we require that for each q0 which is the
vertex of an acute input angle, we are given a distance dq0 which satisfies b· lfs(q0) ≤
dq0 ≤ min(c0 · lfs0(q0), c1 · lfs(q0)) for some constants b > 0, c0 ∈ (0, .5) and
c1 ∈ (0, 1).

3.1 Collar Protection Region

A collar protection region involves forming “collar” segments of equal length
around each input vertex so that the Delaunay triangulation conforms to the input
near this vertex. The subsequent Delaunay refinement algorithm will then prevent
the insertion of any vertices which encroach this collar region.

(PROTECT) Formation of the Protection Region

For each q0 which is the vertex of an acute input angle, each input segment con-
taining q0 is split at a distance dq0 away from q0. Figure 3.1 depicts an example of
the points inserted during this step.

Each end segment containing the vertex of an acute input angle will be called a
collar simplex and vertices inserted during this step are called collar vertices. First,
we observe that the collar simplices are sufficiently far away from disjoint input
features of C.

Lemma 1. For any input point q0 ∈ P,

dist
(
B(q0, dq0), B(q′0, dq′0)

)
≥ (1 − 2c0) lfs(q0) for all P � q′0 � q0 and

dist
(
B(q0, dq0), s

)
≥ (1 − c1) lfs(q0) for all segments s � q0.

Let α be the smallest angle between adjacent segments in C and let C̄ denote the
refined PLC obtained after inserting all of the collar vertices. The next lemma quan-
tifies the relationship between the local feature size of C̄ and C.

(a) Collar approach (b) Intestine approach

Fig. 1. Two different protection approaches

Collars and Intestines: Practical Conforming Delaunay Refinement 485

Lemma 2. There exists K > 0 depending only on b and c0 such that for all x,

lfs(x, C̄) ≤ lfs(x,C) ≤ K
sin(α)

lfs(x, C̄).

With the protection region in place, Delaunay refinement can now be performed.

(REFINE) Protected Delaunay Refinement

This step is the Delaunay refinement algorithm described in Algorithm 3 (by
specializing Algorithm 2). Each new end segment is “protected” during refinement:
no vertices will be inserted in the diametral ball of these segments. To ensure this,
circumcenters which encroach these end segments are rejected by the safety criteria.
Lemma 1 ensures that no inserted midpoints encroach upon a collar simplex and thus
the diametral disk of each collar simplex will be empty throughout the algorithm.

Algorithm 3. 2D Delaunay Refinement With Collar

Action Insert the circumcenter of a simplex unless it causes a lower-dimensional
simplex to be unacceptable. In this case, queue the lower-dimensional sim-
plex.

Priority Segments are given higher priority than triangles.
Unacceptability A segment with a non-empty diametral disk is unacceptable.

A triangle with radius-edge ratio larger than τ is unacceptable.
Safety Collar simplices are not safe to split.

The termination of the algorithm and properties of the resulting mesh are de-
scribed in Theorems 1 and 2. The first theorem ensures that the algorithm terminates
and the resulting mesh is graded to the local feature size, and the second theorem
asserts that the mesh conforms to the input PLC and specifies which triangles near
collar simplices may have poor quality.

Theorem 1. For any τ >
√

2, there exists K > 0 depending only upon τ, b, and c0

such that for each vertex q inserted by Algorithm 3,

lfs(q,C) ≤ K
sin(α)

rq.

Remark 1. The inequality lfs(q, C̄) ≤ Krq is shown using an argument identical
to the standard analysis of Ruppert’s algorithm. Then Lemma 2 yields the desired
inequality.

Theorem 2. Algorithm 3 produces a conforming Delaunay triangulation of C. The
circumcenter of any remaining triangle with radius-edge ratio larger than τ lies in
the diametral disk of a collar simplex.

486 A. Rand and N. Walkington

3.2 Intestine Protection Region

The intestine protection region yields the added result that no triangles in the result-
ing mesh have angles larger than π−2κ, where κ := sin−1

(
1
2τ

)
is the minimum angle

corresponding to the radius-edge threshold τ.

(PROTECT) Formation of the Protection Region

For each input vertex q0 at an acute input angle, all input segments containing q0

are split at a distance dq0 away from q0. Additionally, vertices are added such that
all arcs of the circle centered at q0 with radius dq0 are no larger than π2 . This ensures
that the diametral ball of each arc of the circle does not contain q0 and requires at
most three additional vertices per input vertex.

We will now consider a PSC Ĉ defined by the input PLC, vertices inserted on
each segment at distance dq0 from each input vertex q0 (as in the collar protection
region), and the boundary arcs of each disk B(q, dq) as depicted in Figure 3.1. The
essential property of the PSC Ĉ is that all acute angles between features occur be-
tween segments of C and are contained in

⋃
q0

B(q0, dq0). Let α again denote the
smallest angle between adjacent segments of C. The local feature sizes with respect
to C and Ĉ are related, as described in the next lemma.

Lemma 3. There exists K > 0 depending only on b, c0, and c1 such that for all x,

lfs(x, Ĉ) ≤ lfs(x,C) ≤ K
sin(α)

lfs(x, Ĉ).

A suitably sized protection region has been formed and now the subsequent Delau-
nay refinement algorithm can be described and analyzed.

(REFINE) Protected Delaunay Refinement

Ruppert’s algorithm can be performed outside of
⋃

q0
B(q0, dq0) and each of the

boundary arcs of any disk B(q0, dq0) is protected by the diametral disk of its end-
points. This is described completely in Algorithm 4. Refinement of general PSCs
in 2D by algorithms similar to Ruppert’s has been considered [1, 2, 12] and our
analysis follows these developments.

Algorithm 4 terminates and produces a conforming graded mesh as described in
the following two theorems.

Algorithm 4. 2D Delaunay Refinement With Intestine

Action Insert the circumcenter of a simplex unless it causes a lower-dimensional
simplex or arc to be unacceptable. In this case, queue the lower-
dimensional object. Insert the midpoint of an arc.

Priority Segments and arcs are given higher priority than triangles.
Unacceptability A segment or arc with a non-empty diametral disk is unacceptable.

A triangle with radius-edge ratio less than τ is unacceptable.
Safety All simplices and arcs are safe to split.

Collars and Intestines: Practical Conforming Delaunay Refinement 487

Theorem 3. For any τ >
√

2, there exists K > 0 depending only upon τ, b, c0, and
c1 such that for each vertex q inserted by Algorithm 4,

lfs(q,C) ≤ K
sin(α)

rq.

Remark 2. Unlike Theorem 1, the proof of Theorem 3 is substantially more involved
than the usual proof for Ruppert’s algorithm. This is a result of the smooth input
features of Ĉ. Using the techniques of Theorem 1, Theorem 3 can be shown with
the strong restriction that τ > 2.

Theorem 4. Algorithm 4 produces a conforming Delaunay triangulation of C. Any
remaining triangle with radius-edge ratio larger than τ is inside B(q0, dq0) for some
input vertex q0. The resulting triangulation contains no angles larger than π − 2κ.

4 Delaunay Refinement in 3D

Producing a conforming Delaunay tetrahedralization of a 3D PLC requires a con-
sistent mesh along segments between acutely adjacent features. To initially form
this consistent mesh we require the feature size to be known along segments of the
input mesh. Given a PLC C = (P,S,F), we will assume that we have a refinement
C1 = (P1,S1,F) such that

(H1)
(P′ \ P) \ (∪s∈Ss) = ∅,

(H2) for any q0 ∈ P, all s1 ∈ S1 such that q0 ∈ s1 have equal length satisfying
|s1| ≤ c0 · lfs0(q0), and

(H3) for all s1 ∈ S1, b ·min(fs1(s1), lfs(s1)) < |s1| < c1 ·min(fs1(s1), lfs(s1)),

where b > 0, c0 ∈ (0, .5), and c1 ∈ (0, 1) are some constants.

4.1 Collar Protection Region

(PROTECT) Formation of the Protection Region

For each input face, the collar is formed by inserting vertices according to the
following rules.

1. If s and s′ are adjacent non-end segments which meet at vertex q, then a
vertex p is inserted at distance max(|s|,|s′|)

2 from q, in any direction into the
face perpendicular to s.

2. If s is an end segment and s′ is an adjacent non-end segment, both contain-
ing vertex q, then insert vertex p at the intersection of any line parallel to s
in the face at distance |s

′|
2 away from s and on the circle of radius |s| around

the input point on s.
3. For any input vertex q0 on a segment s, insert collar vertices such that the

sphere of radius |s| around q0 restricted to the face has no arcs of angle
larger than π2 .

488 A. Rand and N. Walkington

Collar Vertex

Collar Simplex

Collar Segment

Collar Region

Collar Arc

Input Vertex Input Segment

(a) Collar definitions (b) Typical collar simplices

Fig. 2. Collar region

Below is a list of objects defined to describe the collar based on the vertices
inserted during this step. These objects are depicted in Figure 2(a).

Collar Vertex A vertex inserted during the (PROTECT) step or as a midpoint
of a collar segment or arc during the (REFINE) step.

Collar Segment A segment between collar vertices corresponding to adjacent
vertices on an input segment.

Collar Arc An arc between adjacent collar vertices corresponding to the
same input vertex.

Collar Region The region between input segments and collar segments and
arcs.

Collar Simplex A simplex in the Delaunay triangulation of the face which lies
inside the collar region.

Following the insertion of the collar vertices, the resulting Delaunay tetrahedral-
ization satisfies a number of properties given in the following lemma.

Lemma 4. After inserting collar vertices, the following properties hold.

(I) All adjacent collar segments and arcs meet at non-acute angles.
(II) The diametral disk of each collar segment contains no vertices in P′.

(III) The circumball of any collar simplex contains no vertices in P′.
(IV) The circumball of any collar simplex does not intersect any disjoint faces or

segments.

Remark 3. The circumball of a simplex refers to the smallest open sphere such that
all vertices of the simplex lie on the boundary of the sphere.

Since the circumball of each collar simplex is empty, the collar simplices conform
to the input. Collar segments meet non-acutely and thus the complement of the col-
lar region in each face is well-suited for Ruppert’s algorithm. The final property is

Collars and Intestines: Practical Conforming Delaunay Refinement 489

needed to guarantee that subsequent vertices inserted for conformity will not en-
croach upon disjoint collar simplices.

The collar divides each face into two regions: the collar region and the non-collar
region. Let C̄ be the PSC including each face divided into its collar and non-collar
regions and all collar segments and arcs. Let α1 be the smallest angle between an
input segment and another adjacent input feature in the mesh and let α2 be the small-
est angle between adjacent input faces. The next lemma asserts that this augmented
complex C̄ preserves the initial local feature size, up to a factor depending on α1

and α2.

Lemma 5. There exists a constant K > 0 depending only upon b, c0, and c1 such
that

lfs(x, C̄) ≤ lfs(x,C) ≤ K
sinα1 sinα2

lfs(x, C̄).

As usual, the protection procedure is followed by a Delaunay refinement algorithm.

(REFINE) Protected Delaunay Refinement

The PSC C̄ is now refined based on both quality and conformity criteria using a
modified version of Ruppert’s algorithm. Similarly to the non-acute case, any max-
imum radius-edge threshold τ > 2 can be selected for determining poor quality
tetrahedra. The Delaunay refinement algorithm is specified in Algorithm 5.

Algorithm 5. 3D Delaunay Refinement With Collar

Action Insert the circumcenter of a simplex unless it causes a lower-dimensional
simplex, collar segment, or collar arc to be unacceptable. In this case,
queue the lower-dimensional object. Insert the midpoint of a collar arc.

Priority Collar segments and arcs are given the highest priority. Other simplices are
prioritized by dimension with lower-dimensional simplices processed first.

Unacceptability A simplex, collar segment, or collar arc is unacceptable if it has a nonempty
circumball. A tetrahedron is unacceptable if its radius-edge ratio is larger
than τ.

Safety It is not safe to split any collar simplex (this includes both triangles in input
faces and subsegments of input segments).

The key difference between Algorithm 5 and the 3D version of Ruppert’s algo-
rithm is the safety criteria. This prevents the cascading encroachment associated
with acutely adjacent segments and faces. Since collar arcs must be protected, anal-
ysis of the 3D refinement with the collar protection scheme is closely related to the
2D refinement with the intestine protection scheme.

During the algorithm, it is important to ensure that the properties of the collar
in Lemma 4 continue to hold while allowing refinement of the non-collar region
of each face to create a conforming mesh. In the 2D collar protection procedure,
the collar simplices (i.e. the end segments) never change during Algorithm 3. In

490 A. Rand and N. Walkington

3D however, the set of collar simplices does change. This occurs when the standard
Delaunay refinement algorithm seeks to insert a vertex in a face that encroaches
upon a collar segment or collar arc. Instead of adding this encroaching vertex, this
collar segment or arc is split. This new vertex is a collar vertex and the collar seg-
ment or arc is replaced with two new collar segments or arcs. The collar region has
not changed but the set of collar simplices has changed. Further, this new vertex
may encroach upon the circumball of another collar simplex in an adjacent face.
In this face, the collar segment associated with this encroached circumball is also
split so that the collar simplices on adjacent faces again “line up.” So conformity of
the mesh is maintained by only splitting the collar segments and thus the algorithm
never attempts to insert the circumcenter of an encroached collar simplex.

Several key properties hold throughout the algorithm whenever there are no collar
segments or collar arcs on the queue.

Lemma 6. If the queue of unacceptable simplices does not contain any collar seg-
ments or collar arcs, the following properties hold.

(I) Adjacent collar segments and arcs meet at non-acute angles.
(II) The circumball of any collar element contains no vertices in P′.

The first property is important to guarantee the termination of the algorithm, while
the second property is important for ensuring the resulting tetrahedralization con-
forms to the input. These two facts are stated precisely in the next two theorems.
Recall that α1 is the smallest angle between an input segment and an adjacent fea-
ture while α2 is the smallest angle between adjacent input faces.

Theorem 5. For any τ > 2, there exists K > 0 depending only upon τ, b, c0, and c1

such that for each vertex q inserted by Algorithm 5,

lfs(q,C) ≤ K
sinα1 sinα2

rq.

Remark 4. Since C̄ includes smooth arcs, the proof of Theorem 5 involves many of
the techniques used in Theorem 3.

Theorem 6. Algorithm 5 produces a conforming Delaunay tetrahedralization of C.
The circumcenter of any remaining tetrahedra with radius-edge ratio larger than τ
lies in the circumball of a collar simplex.

4.2 Intestine Protection Region

The intestine approach for protecting acute input angles mirrors that in 2D described
in Section 3.2. Smooth features will be added to the input to isolate all input seg-
ments and vertices (or at least those contained in acutely adjacent features) from the
region to be refined for tetrahedron quality.

Collars and Intestines: Practical Conforming Delaunay Refinement 491

(PROTECT) Formation of the Protection Region

The vertices and features which are added to the mesh in this step are a superset
of those added during the (PROTECT) step of the collar approach (which created
the PSC C̄). In addition to features of C̄, the following objects are included to form
a new PSC Ĉ.

• For each input vertex q0 which belongs to some segment let dq0 be the length of
all segments containing q0. Then Ĉ includes ∂B(q0, dq0).

• For each collar segment s let c be the surface of revolution produced by re-
volving segment s about its associated input segment. The features c and ∂c are
included in Ĉ.

The region inside each sphere and cylindrical surface added to the mesh will
be called the intestine region and the remaining volume is called the non-intestine
region. This is depicted in Figure 3. This construction is designed to ensure the
following fact.

Lemma 7. The non-intestine region of the PSC Ĉ contains no acute angles between
features.

This lemma is necessary to ensure that the usual proof of termination and grading
will apply to Delaunay refinement in the non-intestine region. Let α1 and α2 denote
the smallest angles in the input as discussed previously.

Lemma 8. There exists K > 0 depending only on b, c0 and c1 such that for all x,

lfs(x,C) ≤ lfs(x, Ĉ) ≤ K
sinα1 sinα2

lfs(x,C).

Remark 5. Recall that C̄ is the PSC containing the input and the collar construction.
Lemma 8 is shown by first showing

lfs(x, Ĉ) ≤ lfs(x, C̄) ≤ K lfs(x, Ĉ),

and then applying Lemma 5.

Fig. 3. Intestine Protection Region

492 A. Rand and N. Walkington

(REFINE) Protected Delaunay Refinement

In a similar fashion to the Delaunay refinement algorithm of Cheng and Poon [5],
the PSC Ĉ has been constructed without any acute angles in the non-intestine re-
gion so that Delaunay refinement can be performed. The analysis of this approach
involves an understanding of the Delaunay refinement of smooth surfaces in 3D.
The intermediate PSC C̄ including the collar region is much simpler from this per-
spective as all 2D faces in the complex are affine. While the collar approach in-
volved elements of the analysis for 2D PSCs, the analysis of the intestine approach
more closely resembles the much less complete theory of the refinement of 3D
PSCs [5, 3, 15, 7].

We now consider two different approaches to performing a quality refinement of
the non-intestine region. The first is to perform the usual Delaunay refinement and
split smooth surfaces by projecting the circumcenter of any Delaunay triangle in the
face to the surface. This is described in Algorithm 6. This approach suffers from
one minor drawback: the Delaunay tetrahedralization inside the cylindrical regions
of the intestine may not conform to the input. To eliminate this issue, the second
approach is to impose more structure on the refinement of these cylindrical regions.
This algorithm is given in Algorithm 7. Figure 4 shows the difference between the
refinement around required cylindrical surfaces of the two algorithms.

Algorithm 6. 3D Delaunay Refinement With Intestine - Unstructured

Action Project the circumcenter of a simplex to its associated surface or curve
and insert this vertex, unless it causes a lower-dimensional simplex to be
unacceptable. In this case, queue the lower-dimensional object.

Priority Simplices are prioritized by dimension, with lower-dimensional items pro-
cessed first.

Unacceptability A simplex in the non-intestine region is unacceptable if it has a nonempty
circumball. A tetrahedron is unacceptable if its radius-edge ratio is larger
than τ.

Safety All simplices are safe to split.

(a) Unstructured Approach of
Algorithm 6

(b) Structured Approach of Al-
gorithm 7

Fig. 4. Refinement of cylindrical surfaces around the intestine.

Collars and Intestines: Practical Conforming Delaunay Refinement 493

These algorithms terminate and produce meshes which are graded to the local
feature size. This is summarized in the following theorem.

Theorem 7. For any τ > 4, there exists K > 0 depending only upon τ, b, c0, and c1

such that for each vertex q inserted by Algorithm 6 or Algorithm 7,

lfs(q,C) ≤ K
sinα1 sinα2

rq.

Remark 6. The restriction τ > 4 is stronger than the restriction τ > 2 seen in The-
orem 5. The techniques of Theorem 3 have not yet been extended to the case of
curved surfaces, and without these techniques, the stronger condition on τ is neces-
sary. Extending this result to admit all τ > 2 is a topic of ongoing research.

Algorithm 7 produces a conforming Delaunay tetrahedralization of the input. This
is shown in the next theorem.

Theorem 8. Algorithm 7 produces a conforming Delaunay tetrahedralization of C.
All tetrahedra with radius-edge ratio larger than τ lie in the intestine region.

The previous result does not hold for Algorithm 6, as the resulting mesh may not
conform to the input. This may occur when a vertex on the boundary of the cylindri-
cal region encroaches upon a triangle in a required face inside the intestine region.

However, a simple conforming (but not Delaunay) tetrahedralization of the intes-
tine region does exist. The spheres around input vertices are tetrahedralized using
the Delaunay tetrahedra. For the cylindrical sections, let p1 and p2 be the endpoints
of the corresponding input segment. The tetrahedralization is produced with two
types of tetrahedra.

• For any Delaunay triangle t on the boundary of the cylinder, include the tetrahe-
dron with base t and vertex at p1.

Algorithm 7. 3D Delaunay Refinement With Intestine - Structured

Action Project the circumcenter of a simplex to its associated surface or curve
and insert this vertex, unless it causes a lower-dimensional simplex to be
unacceptable. In this case, queue the lower-dimensional object.
EXCEPTION: when handling a triangle associated with a cylindrical re-
gion which did not yield to another simplex, divide this cylindrical region
into two cylinders of equal length and include the new boundary circle in
the PSC. Moreover, insert vertices on this circle in the same fashion as in
the construction of the intestine region.

Priority Simplices are prioritized by dimension, with lower-dimensional items pro-
cessed first.

Unacceptability A simplex in the non-intestine region is unacceptable if it has a nonempty
circumball. A tetrahedron is unacceptable if its radius-edge ratio is larger
than τ.

Safety All simplices are safe to split.

494 A. Rand and N. Walkington

p1 p2

t

s

Fig. 5. Two types of tetrahedra are used to produce a conforming tetrahedralization of the
intestine region following Algorithm 6

• For any arc s on the circle around p2, include the tetrahedra with vertices p1, p2

and the endpoints of s.

These tetrahedra are depicted in Figure 5. This construction yields a mesh which
conforms to the input. This is summarized in the following theorem.

Theorem 9. Algorithm 6 produces a conforming Delaunay tetrahedralization of the
non-intestine region of Ĉ. The previous construction yields a conforming tetrahe-
dralization of the intestine region of Ĉ which matches the Delaunay tetrahedraliza-
tion on the boundary of the intestine region. All tetrahedra with radius-edge ratio
larger than τ lie in the intestine region.

5 Implementation Details and Examples

In 3D, we have implemented both collar and intestine based protection schemes.
Our implementation relies on estimates of the local feature size given by a different
Delaunay refinement algorithm [13, 14]. Algorithm 6 (rather than Algorithm 7) has
been implemented and will be referred to as the intestine approach in the exam-
ples below. In the future, we hope to implement both algorithms and do a thorough
comparison.

Figure 6 demonstrates both protection strategies on a very simple PLC: a single
tetrahedra. Figure 7 shows the refinement of a single face of the pyramid during this
refinement using the collar. The result looks very similar when using the intestine
approach.

An essential method for reducing the number of vertices in the final mesh is to
protect only input segments and vertices which are part of acute input angles. This
yields a substantial improvement in the output mesh size. Figure 8 shows an input
PLC, the resulting mesh when all segments are protected, and the resulting mesh
when only acute input segments are protected. The resulting mesh with full protec-
tion contains 18079 vertices while the mesh with partial protection only contains
3216 vertices.

Finally, Figure 9 contains six examples produced by Algorithm 5. Data on the
input and output sizes of the meshes produced for each of these examples is con-
tained in Table 1. Each of the meshes produced only uses the partial collar described

Collars and Intestines: Practical Conforming Delaunay Refinement 495

(a) Initial PLC (b) PSC with intes-
tine

(c) Initial collar (d) Final collar (e) Initial intestine (f) Final intestine

Fig. 6. Refinement of a simple pyramid

Fig. 7. Refinement of the base of the pyramid

(a) Input PLC (b) Full protection (c) Partial protection

Fig. 8. Comparison of full and partial collar protection

above. While the refinement is performed in a bounding box, this bounding box was
removed for the PLCs which enclose a volume. This is indicated in the “Box” col-
umn of Table 1.

496 A. Rand and N. Walkington

(a) Tetrahedron (b) Wheel (c) Non-manifold

(d) Duck (e) Rabbit (f) Gazebo

Fig. 9. Examples meshes produced by Algorithm 5

Table 1. Results of Algorithm 5 on six PLCs with acute angles.

Input Output
Name Vertices Segments Faces Vertices Tetrahedra Box

Tetrahedron 24 54 28 3700 11476 No
Wheel 46 65 21 4397 27182 Yes

Non-manifold 22 35 10 2498 15142 Yes
Duck 93 273 182 3216 11001 No

Rabbit 453 1353 902 18968 69001 No
Gazebo 97 148 57 4868 15318 No

References

1. Boivin, C., Ollivier-Gooch, C.: Guaranteed-quality triangular mesh generation for do-
mains with curved boundaries. International Journal for Numerical Methods in Engi-
neering 55(10), 1185–1213 (2002)

2. Cardoze, D.E., Miller, G.L., Olah, M., Phillips, T.: A Bezier-based moving mesh frame-
work for simulation with elastic membranes. In: Proceedings of the 13th International
Meshing Roundtable, pp. 71–80 (2004)

3. Cheng, S.-W., Dey, T.K., Levine, J.A.: A practical Delaunay meshing algorithm for a
large class of domains. In: Proceedings of the 16th International Meshing Roundtable,
pp. 477–494 (2007)

Collars and Intestines: Practical Conforming Delaunay Refinement 497

4. Cheng, S.-W., Dey, T.K., Ramos, E.A.: Delaunay refinement for piecewise smooth com-
plexes. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1096–1105 (2007)

5. Cheng, S.-W., Poon, S.-H.: Three-dimensional Delaunay mesh generation. In: Proceed-
ings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 295–304
(2003)

6. Cohen-Steiner, D., de Verdière, E.C., Yvinec, M.: Conforming Delaunay triangulations
in 3D. Computational Geometry: Theory and Applications 28(2-3), 217–233 (2004)

7. Hudson, B.: Safe Steiner points for delaunay refinement. In: Research Notes of the 17th
International Meshing Roundtable (2008)

8. Miller, G.L., Pav, S.E., Walkington, N.J.: When and why Ruppert’s algorithm works. In:
Proceedings of the 12th International Meshing Roundtable, pp. 91–102 (2003)

9. Miller, G.L., Phillips, T., Sheehy, D.: Fast sizing calculations for meshing. In: 18th Fall
Workshop on Computational Geometry (2008)

10. Murphy, M., Mount, D.M., Gable, C.W.: A point-placement strategy for conforming
Delaunay tetrahedralization. International Journal of Computational Geometry and Ap-
plications 11(6), 669–682 (2001)

11. Pav, S.E., Walkington, N.J.: Robust three dimensional Delaunay refinement. In: Proceed-
ings of the 13th International Meshing Roundtable, pp. 145–156 (2004)

12. Pav, S.E., Walkington, N.J.: Delaunay refinement by corner lopping. In: Proceedings of
the 14th International Meshing Roundtable, pp. 165–181 (2005)

13. Rand, A., Walkington, N.: 3D Delaunay refinement of sharp domains without a local
feature size oracle. In: Proceedings of the 17th International Meshing Roundtable, Pitts-
burgh, PA (2008)

14. Rand, A., Walkington, N.: Delaunay refinement algorithms for estimating local feature
size (submitted, 2009)

15. Rineau, L., Yvinec, M.: Meshing 3D domains bounded by piecewise smooth surfaces.
In: Proceedings of the 16th International Meshing Roundtable, pp. 443–460 (2007)

16. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh genera-
tion. Journal of Algorithms 18(3), 548–585 (1995)

17. Shewchuk, J.R.: Mesh generation for domains with small angles. In: Proceedings of the
16th Annual Symposium on Computational Geometry, pp. 1–10 (2000)

18. Si, H.: On refinement of constrained Delaunay tetrahedralizations. In: Proceedings of the
15th International Meshing Roundtable, pp. 510–528 (2006)

19. Si, H., Gartner, K.: Meshing piecewise linear complexes by constrained Delaunay tetra-
hedralizations. In: Proceedings of the 14th International Meshing Roundtable, pp. 147–
163 (2005)

