
Embedding Features in a Cartesian Grid

Steven J. Owen and Jason F. Shepherd

�Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.
sjowen@sandia.gov, jfsheph@sandia.gov

Abstract. Grid-based mesh generation methods have been available for many
years and can provide a reliable method for meshing arbitrary geometries with
hexahedral elements. The principal use for these methods has mostly been limited
to biological-type models where topology that may incorporate sharp edges and
curve definitions are not critical. While these applications have been effective, ro-
bust generation of hexahedral meshes on mechanical models, where the topology is
typically of prime importance, impose difficulties that existing grid-based methods
have not yet effectively addressed. This work introduces a set of procedures that
can be used in resolving the features of a geometric model for grid-based hexahedral
mesh generation for mechanical or topology-rich models.

Keywords: grid-based, overlay grid, hexahedral mesh generation, topological
equivalence, topology embedding.

1 Background

The general problem of mesh generation involves discretizing a domain
into simple shapes such as tetrahedra and hexahedra. In most cases the
problem begins with a three-dimensional domain that is represented with
topology and geometry. The topology representation can be as simple as
a single surface or as complex as a mechanical assembly with hundreds of
interconnected volumes, surfaces, curves and vertices related by means of a
Boundary-representation (B-Rep) graph structure. In contrast the geometry
representation defines the core mathematical foundation of the curves and
surfaces and may be defined as a set of non-uniform rational b-splines or as
a simple connected set of triangles. The B-Rep graph usually provides the
frame on which the geometry is defined. Both geometry and topology should
be considered when developing a mesh.
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-

heed Martin Company for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.



118 S.J. Owen and J.F. Shepherd

Most modern software tools that provide mesh generation capabilities en-
force a requirement of geometry-mesh ownership. This provides a convenient
method by which the user can apply physical properties and attributes to the
topological features of the domain rather than dealing with the mesh itself.
While attributes must ultimately be represented on the nodes and elements
of the mesh for analysis, from a user’s perspective, it is more convenient to
assign attributes to the B-Rep entities rather than on individual mesh entities
that may change over the course of a study.

To accomplish this, individual mesh entities, including, nodes, faces, edges
and elements, must have a child-parent relationship with the B-Rep entities
in the model: vertices, curves, surfaces and volumes. Likewise, B-Rep entities
must have a parent-child relationship with the mesh entities that they own.
This association, in most cases is a one-to-many link; that is, a single B-Rep
entity may own multiple mesh entities, but a mesh entity can have only one
unique parent. This one-to-many relationship has driven most of the modern
meshing algorithms, where independent mesh entity groups can be generated
for each individual B-Rep entity in the model and subsequently joined to form
a contiguous mesh. Underlying the assumption of the B-Rep→mesh one-to-
many relationship is that each B-Rep entity does indeed provide important
information to the analysis and that a discrete representation of every B-Rep
entity in the model will be represented in the mesh. Unfortunately, geometry
creation procedures often developed in solid modeling tools frequently gen-
erate anomalous curves and surfaces that are not significant to the analysis.
Using these models in a mesh generation system that enforces one-to-many
ownership can lead to poor quality elements where the B-Rep will routinely
over-constrain the resulting mesh. This work assumes that all entities in the
geometric model are important to the analysis and that defeaturing or model
simplification procedures such as those illustrated in the overview by Thakur
et. al. [14] have already been accomplished.

The development of general-purpose unstructured hexahedral mesh gener-
ation procedures that effectively capture both geometry and topology for an
arbitrary domain have been a major challenge for the research community. A
wide variety of techniques and strategies have been proposed for this problem.
It is convenient to classify these methods into two categories: geometry-first
and mesh-first. In the former case, a topology and geometry foundation is
used upon which a set of nodes and elements is developed. Historically signif-
icant methods such as plastering [1], whisker weaving [12] and the more the
recent unconstrained plastering [11] can be considered geometry-first meth-
ods. These methods begin with a well defined boundary representation and
progressively build a mesh that ensures that properties of mesh ownership
are adhered to. Because these methods use the B-Rep entities themselves as
the foundation for the algorithm, the parent-child ownership of mesh entities
generated is easily built in to the procedures. Most of these methods define
some form of advancing front procedure that requires resolution of an interior
void and have the advantage of conforming to a prescribed boundary mesh.



Embedding Features in a Cartesian Grid 119

Although work in the area is on-going, the ability to generalize these tech-
niques for a comprehensive set of B-Rep configurations has proven a major
challenge and has yet to prove successful for a broad range of models.

In contrast, the mesh-first methods start with a base mesh configuration.
Procedures are then employed to extract a topology and geometry from the
base mesh. These methods include grid-overlay or octree methods. In most
cases these methods employ a Cartesian or octree refined grid as the base
mesh. Because a complete mesh is used as a starting point, the interior mesh
quality is high, however the boundary mesh produced cannot be controlled as
easily as in geometry-first approaches. As a result the mesh may suffer from
reduced quality at the boundary and can be highly sensitive to model orien-
tation. In addition, grid-overlay methods may not accurately represent the
topology and geometric features as defined in the geometric model. In spite
of these inherent deficiencies, mesh-first methods have proven a valuable con-
tribution to mesh generation tools for modeling and simulation. In contrast
to geometry-first techniques, fully automatic mesh-first methods have been
developed for some applications where boundary topology is simple or is not
critical to the simulation. In particular, bio-medical models [17] [18] [3], metal
forming applications [8] [4], and viscous flow [13] methods have utilized these
techniques with some success. Automating and extending mesh-first methods
for use with general B-Rep topologies would provide an important advance
in hexahedral meshing technology.

As one of the first to propose an automatic overlay-grid method, Schneiders
[8] developed techniques for refining the grid to better capture geometry. He
utilized template-based refinement operations, later extended by Ito [3] and
H. Zhang [16] to adapt the grid so that geometric features such as curvature,
proximity and local mesh size could be incorporated. Y. Zhang [17] [18] and
Yin [15] independently propose an alternate approach known as the Dual-
contouring method that discovers and builds sharp features into the model
as the procedure progresses. This is especially effective for meshing volumetric
data where a predefined topology is unknown and must be extracted as part
of the meshing procedure.

The dual contouring method for establishing a base mesh described by Y.
Zhang [17] begins by computing intersections of the geometry with edges in
the grid. Intersection locations are used to approximate normal and tangent
information for the geometry. One point per intersected grid cell is then
computed using Hermite interpolation from tangents computed at the grid
edges. The base mesh in this case is defined as the dual of the Cartesian grid,
using the cell centroids and interpolated node locations at the boundary.
While attractive as a method for extracting features from volumetric data, it
does not guarantee capture of a pre-existing topology such as that contained
in a CAD solid model.

Recent work on mesh-first approaches have focused more on the capturing
of features of the geometry. A common thread among many of these methods
[17] [3] [9] is the introduction of a buffer layer of hex elements to improve



120 S.J. Owen and J.F. Shepherd

element quality near the boundary. This approach, while effective, still relies
on a base mesh that is topologically equivalent to the features of a B-Rep. A
drawback of many of these methods is that they tend to neglect the parent-
child geometry-to-mesh ownership principals which are important for meshing
algorithms to effectively engage with CAD-based modeling tools. With the
assumption that all features of a B-Rep are indeed important in modeling the
domain, the focus of this study is to propose a procedure whereby topological
features can be accurately represented in a finite element mesh using a mesh-
first method.

Shepherd [10] describes an approach to mesh-first hexahedral mesh gener-
ation utilizing geometric capture procedures. This work utilizes theory and
assertions developed in [5] [6] . He asserts that a mesh must be topologically
equivalent and geometrically similar to its geometry and B-Rep definition in
order to develop a valid conformal mesh of the domain. To be topologically
equivalent there must be a consistent correlation between the graph of the
mesh and the graph of the B-Rep. This can be accomplished by establishing
a one-to-many parent-child relationship between B-Rep and mesh entities.
B-Rep entities of dimension r must contain a set of one or more contigu-
ous mesh entities of dimension r, where r = 0, 1, 2, 3. Although not strictly
required, geometric similarity between the mesh and the geometry of the do-
main is desired in order to maintain reasonable mesh quality. For example,
aligning the base mesh with the principal orientations of curves and surfaces
of the model will minimize the characteristic stair-step effect and increase
mesh quality once mapped to the original geometry.

2 Feature Embedding

For convenience we have limited the base mesh for this study to a Cartesian
grid. While it is often desirable to begin with an enriched octree grid or
an aligned swept mesh, the Cartesian grid offers simplicity and automation
that is easy to generalize for any model. For implementation purposes, a
Cartesian grid is very light-weight and fast, avoiding full unstructured mesh
data structures required for more general methods. While it is inevitable that
mesh enrichment will be needed to more accurately capture small features and
high valence vertices and curves, there is value in understanding the principles
needed to embed topology through the use of a Cartesian grid. Indeed, it is
expected that through careful application of topology embedding, that the
need for mesh enrichment will be reduced.

Shepherd [10] outlines an algorithm which is convenient to use as the
context for this work. The overall procedure is illustrated in figure 1. Begin-
ning from a CAD model, a Cartesian grid is defined enclosing the model.
A 2-manifold is then established from an inside-out procedure on which a
topology capture algorithm is performed and subsequently projected to the
geometry. A series of one or more buffer layers known as fundamental sheets
are then inserted at the boundary, followed by a series of mesh optimization



Embedding Features in a Cartesian Grid 121

Fig. 1. Mesh generation procedure. (a) Initial CAD B-Rep model. (b) Enclosing
Cartesian grid is established. (c) Base grid established and topology embedded. (d)
Base grid projected to geometry. (e) Fundamental sheets inserted on boundaries.

steps to improve mesh quality. This work will focus specifically on the topol-
ogy capture procedure illustrated in figure 1(c) and leave the sheet insertion
and mesh optimization procedures for a future study.

Establishing a 2-manifold on which topology is captured implies developing
a base mesh and using the bounding set of quadrilaterals from a contiguous
set of hexahedra on which vertex and curve topology is embedded. Shepherd
suggests that tailoring a base mesh to the features and characteristics of the
domain is advantageous. For example, where the bulk outline of a model
is generally cylindrical, then a base mesh constructed from the sweep of a
bounding cylinder would yield better results than using a Cartesian grid.
However, this procedure is not easily generalized nor automated and would
also be a valuable topic for future study. Instead, most current literature
indicates that a base mesh is established from a Cartesian grid. In these cases
individual hexes are tested for inclusion or exclusion based on common in-
out procedures. In-out procedures classify each cell in the grid based upon its
centroid’s relative position with respect to the boundary of the domain. The
continuous set of hexes that are completely contained within the geometry
and optionally combined with hexes that are intersecting the domain are used.
In many cases, mesh enrichment procedures using octree decomposition are
used at this stage to ensure the geometry is effectively represented. In many
cases special procedures are used to ensure non-manifold connections and
non-contiguous regions within the hex mesh are eliminated.

Whether a base grid is defined using traditional in-out procedures or
through a dual contouring procedure, topologic equivalence may not be ad-
equately taken into account. Figures 2 to 4 show examples where standard
methods for defining a base grid may be inadequate. The single hexahedra
at the apex of the pyramid in figure 2 provides a maximum of a 3-valent
node on which to embed a 4-valent vertex. Without subsequent mesh en-
richment, topology capture would be impossible at this location. Although
Shepherd [10] proposes local pillowing operations to enrich the valence, it also
requires an unstructured mesh data representation consequently reducing the



122 S.J. Owen and J.F. Shepherd

Fig. 2. Base grid defined from a pyra-
mid geometry. Resulting 2-manifold
does not provide rich enough mesh
to capture 4-valent vertex at pyramid
apex.

Fig. 3. B-Rep used to generate the
base grids shown in figure 4.

Fig. 4. Two different base grids defined from a C-shaped geometry (figure 3) using
common in-out procedures. The grid on the left is defined from the inside and
intersected hexes while the grid on the right is defined from only the hexes on the
inside of the geometry. Neither satisfies the requirement of topologic equivalence.

efficiency of the proposed procedures and can also result in marginal quality
hexahedra to achieve the required valence.

Figures 3 and 4 illustrate another potential issue with traditional base
mesh definitions for mesh-first procedures. Neither the cells intersecting the
geometry, nor the cells on the interior of the geometry produce a set of hexes
that can build a topologically equivalent mesh without special procedures to
combine the results from the two cases. In examples such as these, mesh en-
richment strategies can be employed to locally refine the grid using template-
based refinement techniques [3]. In order to provide complete generality, these
methods typically require a 1→ 27 refinement strategy. That is, each hex in
the refinement region is decomposed into 27 hexahedra. In addition to intro-
ducing artificially high gradients on the local mesh size, transition elements,



Embedding Features in a Cartesian Grid 123

typically of marginal quality, are needed to ensure a conformal mesh between
coarse and fine regions.

In an attempt to better control some of these issues, this work proposes
using the full three dimensional Cartesian grid on which the B-Rep topology
is progressively extracted. Initially limiting the topology extraction problem
to a 2-manifold, as originally proposed by Shepherd [10] and others, may
over constrain the problem such that specialized procedures are required to
enrich the grid where otherwise a full 3D approach would naturally extract
topologic equivalence from the grid. However, it is clear that mesh enrichment
strategies will still need to be employed, particularly for features significantly
smaller than the grid cell size and for vertex valence greater than 6. We con-
tend that the use of such procedures may be reduced by limiting specialized
mesh enrichment procedures that impose high valent or marginal transition
elements, ultimately improving overall mesh quality.

3 Embedding Procedures

Beginning from the solid model boundary representation of the model, the
current implementation may first employ defeaturing as described by Quadros
et. al. [7] and then extract the facets from the model to use as an approximate
geometry representation. Using the faceted form of the model allows for easy
integration of this procedure with the discrete feature suppression procedures
also described in [7]. Also beneficial is that geometry evaluation during the
embedding procedures can be limited to evaluation of planar triangles and
linear edges rather than evaluations using a full B-spline library. A Cartesian
grid that completely encloses the geometry with a user-defined resolution
is then established. While there is no explicit requirement on grid cell size,
for practical purposes the cells should be approximately smaller than the
smallest feature size in the geometry. The grid may also be optionally oriented
so that a tight fitting bounding box is established to help align curves and
surfaces with the principal axes of the grid. To maintain the advantages of a
Cartesian grid, rather than transforming the grid itself, the geometry can be
transformed into the Cartesian space during the embedding procedures and
transformed back when complete.

The approach taken for embedding features follows roughly the bottom-
up method of mesh generation, where successive dimensions are embedded
starting from vertices and continuing through curves, surfaces and volumes.
If we define a Cartesian grid ΩM = {M r

i |r = 0, 1, 2, 3} and a B-Rep ΩG =
{Gr

i |r = 0, 1, 2, 3}, our objective is to find groups of grid entities, M r
i of

dimension r that will be owned by corresponding B-Rep entities, Gr
i of the

same dimension. Corresponding grid and B-Rep entities are enumerated in
table 1. The embedding EG→M ⊆ ΩM is defined as EG→M = {M r

i : M r
i �→

Gr
i }, where the non-unique mapping, M r

i �→ Gr
i , is a set of procedures for

each dimension that assigns grid entities to individual B-Rep entities. This



124 S.J. Owen and J.F. Shepherd

Table 1. Corresponding B-Rep and Cartesian grid entities

B-Rep Symbol Cartesian Symbol
Entity Grid Entity
Vertex G0 Node M0

Curve G1 Edge M1

Surface G2 Face M2

Volume G3 Cell M3

mapping will necessarily be collision-free; that is, a grid entity, M r
i may be

mapped to one and only one B-Rep entity, Gr
i .

The embedding procedures M r
i �→ Gr

i for each dimension have similar
characteristics. Each uses a combination of local geometric and topologic in-
formation to determine grid entities that will map to a given B-Rep entity.
The procedures generally proceed by looping through each B-Rep entity Gr

i

for dimension r and capturing grid entities M s
i for dimensions s ≥ r. For

example, the vertex embedding procedure, while incorporating node capture,
also includes methods to capture nearby edge, face and cell entities. Similarly,
the curve embedding procedure includes the capture of faces and cells. This
has proven effective in avoiding or controlling collision conditions as the al-
gorithm proceeds. The overall procedure is illustrated in algorithm 1, where
the function {M s

j } ← Capture(s,Gr
i ) defines procedures for mapping grid

entities of dimension s to the geometry entities of dimension s immediately
at or adjacent to the geometry entity Gr

i . The following sections detail the
Capture(s,Gr

i ) procedures for each dimension.

Input: B-Rep ΩG, Cartesian Grid ΩM

Output: Embedding EG→M ⊆ ΩM

for dimension r ← 0 to 3 do1

for dimension s← r to 3 do2

foreach geometry entity Gr
i ∈ ΩG do3

{M s
j } ← Capture(s,Gr

i);4

EG→M+ = {M s
j };5

end6

end7

end8

Algorithm 1. Algorithm for computing embedding set EG→M ⊆ ΩM

3.1 Embedding Vertices

Capturing nodes at vertices

Vertices can be embedded in most cases by simply finding the closest node
in the grid to each vertex in the B-Rep. Collisions may occur where multiple



Embedding Features in a Cartesian Grid 125

vertices may claim the same grid node. Collision resolution in this case is han-
dled by selecting the closest vertex to the node in question and successively
assigning ownership to nearby grid nodes based on their relative distance.

Capturing edges at vertices

Once vertex locations are assigned, grid edges at the selected grid node must
be matched with appropriate curves. Figure 5 shows an example where the
vertex G0

0 at the apex of a pyramid maps grid node M0
0 . For this vertex,

four grid edges must be selected that match the four curves that share the
vertex. At this location, any of the curvesG1

i=0,1,2,3 may choose any one of the
six grid edges M1

j=0,1,..5 sharing grid node M0
0 . Clearly vertices with valence

greater than six would not be permitted when utilizing a Cartesian grid. To
facilitate edge selection at a selected grid node, the metric μij is computed
as follows:

μij =
1 + (VMj ·VGi)

2
(1)

where μij is a value 0 ≤ μij ≤ 1 that represents how well curve G1
i matches

geometrically with edge M1
j where μij = 1 is a perfect match and μij = 0

is very poor. In equation 1 the variables VMj and VGi are the normalized

Fig. 5. A representation of the local grid near the apex of a pyramid. Four of the
grid edges selected from M1

j=0,1,...5 that are connected to the node M0
0 must be

paired to the four curves in the B-Rep G1
i=0,1,2,3.



126 S.J. Owen and J.F. Shepherd

outward pointing vectors of the grid edges M1
j and curves G1

i at the node
M0

0 and vertex G0
0 respectively. This equation simply incorporates the dot

product of edge and curve vectors to indicate how well each grid edge is
oriented with respect to a particular curve. In practice, since the B-Rep is
comprised of facets, the curve vector VGi can be approximated from the first
facet edge that shares the vertex G0

0 and curve Gj
i .

Once the metric μij has been computed for each edge with respect to each
curve at the vertex, all permutations of pairings between edges and curves
are computed and the sum of μij for each permutation is determined. The
pairings can then be ranked from best to worst based on their μij sums. For
example, in figure 5 a ranking of all possible curve-edge pairings are compiled.
Given 6 possible edges assigned to 4 curves, the total number of permutations
of edge pairings would be 6 ·5 ·4 ·3 = 360 permutations. For the worst case of
a 5 or 6 valent vertex, the total number of permutations would be 6! or 720.
The curve-edge pairing with the highest μij sum is used as the candidate set
of edges to be used to represent the curves at the vertex. For the example in
figure 5 the selected candidate edge-curve pairings are shown at right. Note
that multiple edge-curve permutations may yield identical μij sums as in this
simple example.

Capturing faces at vertices

Even after selecting the best candidate edge-curve pairing for a given vertex,
there is no guarantee that a valid topology that matches the local surface con-
figuration can be established. For this reason a face-surface pairing procedure
is also used. The best candidate edge-curve pairing is used as the starting
point for this procedure. For any B-Rep graph of a three-dimensional do-
main, each vertex will have an equal number of edges and surfaces sharing
the common vertex. Having defined edge-curve pairings, it remains to find a
path of faces at the vertex between existing edge-curve pairs such that each
surface is represented by at least one face.

Figure 6 shows the same example of a pyramid apex and the local grid
topology at node M0

0 . Also shown are the faces M2
j=0,1,...11 sharing the node.

For this problem we use the cyclic ordering of curves and surfaces at the vertex
to guide a traversal. Staring with curve G1

0, its corresponding grid edge (in
this case M1

4 ) is selected to begin the traversal. Using the B-Rep topology,
we know that surface G2

1 is the next counter-clockwise surface adjacent curve
G1

0; which in turn shares the curve G1
1 that is associated with grid edge M1

0 .
To find the face(s) at node M0

0 that will map to surface G2
1 we must find

a set of faces bounded by edges M1
4 and M1

0 . For this case, the choice is
relatively trivial, as face M2

5 appears to satisfy our criteria. For the general
case, however there are several solutions that will satisfy this criteria. For
example the set of faces {M2

7 ,M
2
6 ,M

2
4}, {M2

11,M
2
1 } and {M2

10,M
2
3} are each

bounded by edges M1
4 and M1

0 . Figure 7 is a representation of the edge-face
graph at any node in a Cartesian grid. Using this connectivity information,



Embedding Features in a Cartesian Grid 127

Fig. 6. A representation of the local grid near the apex of a pyramid. Four of the
grid faces selected from M2

j=0,1,...11 that are connected to the node M0
0 must be

paired to the four surfaces in the B-Rep G2
i=0,1,2,3.

a complete set of unique paths can be derived between any two edges. A
metric mij , where 0 ≤ mij ≤ 1, can be computed for each possible path
P 2

ij ⊆M2
j=0,1,...11 based on the following criteria:

mij =
1 + 0.5(TG2

i
·TP 2

ij
)

1 +
∣
∣
∣Ji −NP 2

ij

∣
∣
∣

(2)

where TG2
i

is the normalized outward pointing tangent vector at the common
vertex G0

i and in the plane of the surface G2
i that bisects curves G1

i and G1
i+1;

TP 2
ij

is the average normalized outward pointing tangent vector at node M0
i

to the faces in P 2
ij ; NP 2

ij
is the number of faces in P 2

ij and Ji is defined as:

Ji =

⎧
⎨

⎩

1, θi ≤ 3π
4

2, 3π
4 ≤ θi ≤ 5π

4
3, θi >

5π
4

(3)

where Ji is an integer that represents the ideal number of faces that should
represent surface G2

i given the angle θi between curves G1
i and G1

i+1 on the
surface. Equation 2 computes the relative alignment between the path P 2

ij



128 S.J. Owen and J.F. Shepherd

Fig. 7. The graph of local faces and edges at a node illustrating all possible paths
of faces that can be selected representing the set of surfaces around a vertex. The
path used in figure 6 is highlighted.

and the surface G2
i and assigns a penalty for paths that are longer or shorter

than the ideal path defined by Ji.
A suitable path P 2

i can now be selected that effectively matches surface
G2

i by selecting the path P 2
ij with the maximum mij . Subsequent paths can

also be computed in a similar manner. The fact that edges and faces can only
be used once, may block an optimal path between any given pair of edges,
however alternate paths can generally be found. The final set of paths is
represented in figure 7 as thicker lines and are illustrated as faces in figure 6.

Once a valid set of faces and edges have been determined using the preced-
ing algorithm, there is still no guarantee that an optimal solution has been
found. Given the fact that equation 1 may yield identical or similar metrics
μij for different permutations of edge-curve pairings, it may be necessary
to check multiple edge-curve pairings by determining their associated face-
surface pairings. This can be done by keeping track of the sum of mij for
the face-surface pairings associated with each edge-curve pairing. For most
cases, a limited number of edge-curve pairings will need to be tested before
an optimal is determined.

Capturing cells at vertices

The final step in matching grid topology at a vertex is to capture the grid cells
that will be inside the volume. In practice this is done by finding the face that
is well-aligned with its associated surface. We can determine alignment based
on the dot product of the face with the surface normal. Using the surface
normal we can then determine which side of the face is defined as inside
and which is defined as outside. By selecting the inside cell and traversing
to neighboring cells sharing the node M0

i that are on the same side as the
inside cell, all cells at the node inside the volume can be selected.



Embedding Features in a Cartesian Grid 129

An example of topology captured at the vertices of the simple pyramid
problem is shown in figure 8.

Fig. 8. The grid topology captured for vertices of a simple pyramid model is
illustrated. The procedure described here has been used to select the appropriate
grid topology.

3.2 Embedding Curves

Capturing edges at curves

The next step of the procedure involves embedding curves into the grid topol-
ogy, or specifically the set EG→M = {M1

i : M1
i �→ G1

i }. We can gather a set
of grid edges for each curve by starting from the grid edge associated with
the curve at each vertex that we determined in the previous step and finding
a collision free path between the start and ending grid edges on the curve.
For this procedure, knowing the edge at position k on the curve, we can de-
termine the next grid edge at position k + 1 by examining the 5 connected
edges at its end. Equation 6 can then be used to select the best next edge in
the path.

Tij =
1 + (VMj ·VGi)

2
(4)

Dij =

∣
∣PMj −PGi

∣
∣−2

∑5
j=1

∣
∣PMj −PGi

∣
∣−2 (5)

μij = Tij

(

1− di

2s

)

+Dij
di

2s
(6)

The variables in equations 4 to 6 are illustrated in figure 9. Equation 6
incorporates both a tangent component, Tij in equation 4 and a distance



130 S.J. Owen and J.F. Shepherd

component, Dij in equation 5. The tangent component is the same as that
used in equation 1 to determine alignment of edges at a vertex. The distance
component is used to ensure the selected grid edges do not deviate too far
from its parent curve. Equation 5 incorporates proximity information, where
a normalized inverse distance weighted value between 0 and 1 is computed so
that edges that are close are given a larger weight than those farther away.
The vector PMj in this case is defined as the midpoint of edge M1

j and the
vector PGi is a point on curve G0

i a distance 1
2 length(M1

j ) from a projection
of the end point of edge M1

k on the curve G1
i .

Fig. 9. The selection of the next
edge in a sequence following edge
M1

k is illustrated. The five edges at-
tached to this edge are the only can-
didates. Equations 4 to 6 are used
to select the edge.

Equation 6 incorporates both the tangent and distance components from
equations 4 and 5 by using a simple linear blending function pair 1−di/2s and
di/2s where di is the projected distance from the end point of edge M1

k and
the parent curve G1

i and s is the constant grid spacing size as illustrated in
figure 9. This ensures that when the curve is close to the grid edges, that the
tangent component will control, while for distances beyond the grid spacing,
s, the distance component will control.

Some of the possible edge selections may be eliminated by examining the
end node of each of the edges to see if they are already in use. While this
will avoid collisions, in some cases a non-optimal path may be selected. Pos-
sible alternative paths may be generated by starting from opposite ends of
the curve or by changing the order in which curves are processed. Optimal
curve paths may be generated by minimizing the direction changes between
grid edges representing the curve, and attempting to modify the edge-curve
pairing of those curves where μij is small while attempting to maximize the
average μij . This may require multiple iterations to define an optimal curve
path.

Figure 10 left shows edge paths representing the curves for the pyramid
problem. Where curves are not naturally aligned with one of the coordinate
axes, multiple direction changes between grid edges are unavoidable, which
will ultimately reduce final mesh quality.



Embedding Features in a Cartesian Grid 131

Fig. 10. Continuing with the embedding procedures, the figure on the left illus-
trates the edges selected to represent each of the curves in the model. On the right,
the cells adjacent each of these edges has been selected and illustrated here.

Capturing faces and cells at curves

Another important aspect of the curve capture problem is selecting the cells
at the curve that will be interior to the volume. Knowing the orientation and
angle between surfaces at the curve, we can attempt to control the number
and position of each grid cell so that final mesh topology will match as close as
possible to the B-Rep. Figure 11(a) illustrates two edges M1

k and M1
k+1 that

have been selected to represent a segment on a curve G1
i . The four shaded

cells adjacent edge M1
k represent the possible choices for cells where at least

one and no more than three cells must be selected to represent the interior
of the volume at the curve. Figure 11(b) shows the 4 cells adjacent edge M1

k .
Ji from equation 3 may be used to determine the number of cells to select
where θi is the interior angle formed by adjacent surfaces G2

i and G2
i+1 at the

curve. If we compute vector Bi as the bisecting vector at edge G1
i projected

onto the plane normal to edge M1
k , then the quadrant in which Bi falls with

respect to the four cells adjacent edge M1
k will determine which initial cell

M3
i to select. Where Ji > 1, then one or two additional cells adjacent the

cell M3
i at edge M1

k may be selected based on the relative orientation of Bi

within the cell. Once cells at the edge have been selected, then faces M2
i , also

shown in figure 11(b), can be selected and associated with their respective
surfaces G2

i and G2
i+1

Another issue which must be resolved is potential collisions between cells
as the algorithm proceeds. This is common especially at adjacent edges where
a 90 degree turn is required to better capture geometry. This is illustrated in
figure 11(a), where edge M1

k is oriented 90 degrees to M1
k+1. In this case it

is not uncommon for Bi and Ji to be computed such that the cells selected
adjacent M1

k+1, conflict with those selected adjacent M1
k . Where conflicts

arise, they are resolved by using the cell selection from the edge whose tangent
most closely aligns with that of the curve at its closest point.



132 S.J. Owen and J.F. Shepherd

Fig. 11. (a) Representation of the curve G1
k in the geometry and two edges M1

k

and M1
k+1 that have been associated with the curve. The cell selected at the edges

representing the interior of the volume is highlighted. (b) The side view of the four
cells adjacent the same edge M1

k along with the curve G1
i and its adjacent surfaces.

The angle θi between the surfaces and its bisecting vector Bi are used to determine
which of the four cells at the edge will be captured.

3.3 Embedding Surfaces

Capturing faces at surfaces

The next stage of the algorithm is to ensure that a continuous set of faces
M2

i is associated with their respective surfaces G2
i . For this we seek the set

of faces EG→M = {M2
i : M2

i �→ G2
i }. Since both vertex and curve embedding

procedures also included selection of adjacent faces, we can begin with the
assumption that at least one continuous layer of faces has been captured
at each surface. This is illustrated in figure 12 where the image on the left
shows one of the surfaces with only the faces near the curves that have been
captured.

This procedure can be compared to an advancing front algorithm where
boundary faces are first captured and interior faces to the surfaces are pro-
gressively discovered and added to the surface until a continuous set of grid
faces have been established that represent the surface. It is advantageous to
order the procedure such that loops of faces progressively advance towards
the interior of the surface until they close on themselves. Figure 13 illustrates
the procedure for advancing a single front where a current front edge de-
fined by M1

i has adjacent face M2
i which has already been associated with

its parent surface G2
i . The objective here is to determine which of the three

faces, illustrated as M2
i→up, M

2
i→forward, or M2

i→down, should be selected as
the next face onto which the front will advance. The candidate face can be



Embedding Features in a Cartesian Grid 133

Fig. 12. Continuing with the same pyramid example, the figure at left illustrates
the faces that have been captured near the curves of one of the surfaces. The figure
on the right illustrates the final grid topology with all features embedded.

Fig. 13. The cells adjacent a grid edge and face M2
i that has been associated with

the surface G2
i is illustrated to represent the current front of the advancing front

procedure. The next face in the surface will be selected from the three faces M2
i→up,

M2
i→forward or M2

i→down.

selected by computing μij using equation 6 as we did for edges. In this case
the vectors VMj and VGi are the normal vectors of the grid face and surface,
and the points PMj and PGj is the midpoint of the face and its projection
to the surface G2

i respectively.
The selection of the next front is also effected by the placement of the exist-

ing cells associated with the volume. From our definition of the cells captured
at curves, we will always have a volume cell M3

i,0 immediately adjacent the



134 S.J. Owen and J.F. Shepherd

face M2
i . It is however conceivable, that the cell M3

i,1 has already been se-
lected for the volume. Should this case arise, then the face M2

i→down would
be eliminated as a candidate for the next advancement. Likewise should M3

i,2

and M3
i,1 be in use, the only candidate for advancement would be M2

i→up. To
ensure non-manifold connections are not created, we would ensure that cases
where only M3

i,0 and M3
i,1 are selected at any grid edge are not permitted.

Similarly, we ensure that the case where cells M3
i,0 and M4

i,1 are both used by
the volume would not be permitted, as this would create a condition where
a hanging or dangling face would exist in the volume.

Capturing cells at surfaces

Also part of this procedure is the selection of the cells adjacent new faces
as the algorithm progresses. Cells can be selected by choosing from the two
adjacent cells at the new face. Depending on which of the three candidate
faces is selected, zero, one or two new cells may be added to the volume with
each new face added to a surface.

3.4 Embedding Volumes

Capturing cells in a volume

The final step of the algorithm is to ensure that all remaining cellsM3
i interior

to the volume G3
i have been captured and appropriately assigned. Similar to

other procedures this can be represented by the mapping M3
i �→ G3

i . At this
stage, all surfaces will have been captured and have exactly one adjacent cell.
The remaining cells can now be captured by selecting one known interior cell
and recursively traversing to collect all cells that are bounded by the grid faces
that are associated with surfaces. All cells in the Cartesian grid not selected
as part of this procedure are discarded. An example of a base grid with

Fig. 14. A completed embedding procedure is illustrated using the C-geometry
model shown in figure 3. Note that topological equivalence is maintained through
the thin sections and narrow gap.



Embedding Features in a Cartesian Grid 135

embedding procedures completed is shown in figure 14 where the different
colors (shades) represent the separate captured surfaces in the Cartesian grid.

4 Completing the Mesh

The embedding procedures discussed in this work focus specifically on pro-
viding a base mesh that is topologically equivalent to a given boundary
representation. Once this is achieved, subsequent sheet insertion and mesh
optimization steps would be employed to build a final mesh as described by
Shepherd [10]. Up to this point in the procedure, a Cartesian grid has been
used because of its efficiency and low memory requirements. Sheet insertion
procedures, however, require a full unstructured mesh data representation to
insert appropriate layers of hexes. As a result, the base mesh is transferred
to an unstructured data representation before sheet insertion and mesh op-
timization algorithms are executed. A simple implementation of a completed
mesh on the example C-Geometry model illustrated in figure 4 is shown in
figure 15. On the left is the base mesh shown in figure 14 with its associated
grid entities projected to its parent geometry. The curves in the original ge-
ometry are also shown demonstrating the ability of the procedure to embed
arbitrary B-Rep topology within a grid. This figure also illustrates that poor
quality elements arise as a result of multiple edges and faces from a single cell
being projected to the same geometric parent. Although not specifically part
of this study, the figure on the right illustrates the insertion of buffer lay-
ers or sheets to improve element quality near the boundary using the pillow
operation in the CUBIT [2] Meshing Toolkit. Future work will focus on the
automatic insertion of boundary sheets.

Fig. 15. The mesh is completed by projecting grid nodes to their associated parent
geometry, inserting sheets or layers at the boundaries and then smoothing.



136 S.J. Owen and J.F. Shepherd

Fig. 16. Examples of embedding results on three solid models. Solid model is shown
top with its resulting topologically equivalent base mesh on the bottom. Projection,
smoothing and sheet insertion operations have not yet been performed.

A few examples of B-Rep topology captured using the proposed embedding
procedures are also illustrated in figure 16. The top row shows the original
CAD model, while the bottom row illustrates the topologically equivalent set
of grid cells that will be used in the final meshing procedures. Different colors
(shades) in the grids illustrate the distinct surfaces that have been captured
from the grid and associated with its parent geometry.

5 Conclusion

Hexahedral methods that begin with a Cartesian grid as a base mesh are
attractive because of their potential for automation. Their primary use, how-
ever has been for bio-medical applications that do not include significant
topology. These methods have not been as effective for topology rich models
such as those common to three-dimensional CAD solid models described by
a boundary representation. While some work has been done to ensure curves
and surfaces are captured in a Cartesian-based mesh, this work proposes
a new systematic approach to ensure that features of a B-Rep model are
adequately represented in a final hexahedral mesh.



Embedding Features in a Cartesian Grid 137

This work introduces an approach to embedding features in a Cartesian
grid. Without such procedures there is no guarantee that important features
defined in a CAD model will be captured in the simulation model. Using
traditional in-out procedures can often neglect topological equivalence, re-
sulting in non-manifold or disjoint cells, as well as insufficient local node
valence for a given B-Rep topology. Current methods generally resolve these
issues by using mesh enrichment strategies that can introduce highly refined
and poorly shaped elements. The embedding procedures described here build
a base mesh from a Cartesian grid that is intended to meet topological equiv-
alence requirements of a B-Rep while reducing the need for mesh enrichment.

While a Cartesian grid provides efficiency and ease-of-use, for complete
generality, it is clear that mesh enrichment strategies will need to be ap-
plied. However it is expected that the proposed embedding procedures will
limit the use of such strategies. Future work will need to extend these proce-
dures to combine mesh enrichment with topology embedding to ensure that
topological equivalence is maintained for an arbitrary B-Rep configuration.

In contrast to traditional in-out procedures for generating a base mesh,
using the proposed embedding algorithms also provides more control over
mesh topology, such that numbers of hexes placed at curves and vertices can
better account for local geometry. Future work will study how sheet insertion
procedures can work together with embedding algorithms to better control
placement of sheets to maximize element quality.

The topology embedding problem, while a key component of automatic
hexahedral meshing, is clearly only one part of a fully automatic procedure.
Careful insertion of boundary sheets as well as projection and mesh optimiza-
tion methods are necessary to provide a robust, quality hexahedral mesh.
Ongoing work to couple the proposed procedures into a fully automatic hex-
ahedral meshing algorithm for topology rich models is still necessary and
under development along with its extension to muti-volume assemblies.

Acknowledgements

We express appreciation to the Computer Science Research Foundation at
Sandia National Laboratories for funding this work. Also to the CUBIT re-
search and development team at Sandia for their input and feedback to the
algorithms proposed and to Jenna Kallaher and Brett Clark for their insight-
ful review of the manuscript.

References

1. Blacker, T.D., Meyers, R.J.: Seams and Wedges in Plastering: A 3D Hexahedral
Mesh Generation Algorithm. Engineering with Computers 2(9), 83–93 (1993)

2. CUBIT Meshing and Geometry Toolkit, Version 11.1, Sandia National Labo-
ratories (2009), http://cubit.sandia.gov

http://cubit.sandia.gov


138 S.J. Owen and J.F. Shepherd

3. Ito, Y., Shih, A.M., Soni, B.K.: Octree-based reasonable-quality hexahedral
mesh generation using a new set of refinement templates. International Journal
for Numerical Methods in Engineering 77(13), 1809–1833 (2009)

4. Kwak, D.Y., Im, Y.T.: Remeshing for metal forming simulations - Part II:
Three-dimensional hexahedral mesh generation. International Journal for Nu-
merical Methods in Engineering 53, 2501–2528 (2002)

5. Ledoux, F., Shepherd, J.F.: Topological and geometrical properties of hexahe-
dral meshes. Submitted to Engineering with Computers (2009)

6. Ledoux, F., Shepherd, J.F.: Topological modifications of hexahedral meshes via
sheet operations: A theoretical study. Submitted to Engineering with Comput-
ers (2009)

7. Quadros, W.R., Owen, S.J.: Geometry Tolerant Mesh Generation. Accepted to
18th International Meshing Roundtable (2009)

8. Schneiders, R., Schindler, F., Weiler, F.: Octree-based Generation of Hex-
ahedral Element Meshes. In: Proceedings of the 5th International Meshing
Roundtable, pp. 205–216 (1996)

9. Shepherd, J.F.: Topologic and Geometric Constraint-based Hexahedral Mesh
Generation, PhD Thesis, University of Utah, Utah (2007)

10. Shepherd, J.F.: Conforming Multi-Volume Hexahedral Mesh Generation
via Geometric Capture Methods. Accepted to 18th International Meshing
Roundtable (2009)

11. Staten, M.L., Kerr, R.A., Kerr, O.S., Blacker, T.D.: Unconstrained Paving
and Plastering: Progress Update. In: Proceedings, 15th International Meshing
Roundtable, pp. 469–486 (2006)

12. Tautges, T.J., Blacker, T.D., Mitchell, S.A.: The Whisker Weaving Algorithm:
A Connectivity-Based Method for Constructing All-Hexahedral Finite Element
Meshes. International Journal for Numerical Methods in Engineering 39, 3327–
3349 (1996)

13. Tchon, K.F., Hirsch, C., Schneiders, R.: Octree-based Hexahedral Mesh Gen-
eration for Viscous Flow Simulations. American Institute of Aeronautics and
Astronautics A97-32470, 781–789 (1997)

14. Thakur, A., Banerjee, A.G., Gupta, S.K.: A survey of CAD model simplifi-
cation techniques for physics-based simulation applications. Computer Aided
Design 41(2), 65–80 (2009)

15. Yin, J., Teodosiu, C.: Constrained mesh optimization on boundary. Engineering
with Computers 24, 231–240 (2008)

16. Zhang, H., Zhao, G.: Adaptive hexahedral mesh generation based on local do-
main curvature and thickness using a modified grid-based method. Finite Ele-
ments in Analysis and Design 43, 691–704 (2007)

17. Zhang, Y., Bajaj, C.L.: Adaptive and Quality Quadrilateral/Hexahedral Mesh-
ing from Volumetric Data. Computer Methods in Applied Mechanics and En-
gineering 195, 942–960 (2006)

18. Zhang, Y., Hughes, T.J.R., Bajaj, C.L.: Automatic 3D Mesh Generation for
a Domain with Multiple Materials. In: Proceedings of the 16th International
Meshing Roundtable, pp. 367–386 (2007)




