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Abstract. In this paper we propose a simple technique for tetrahedral mesh im-
provement without inserting Steiner vertices, concentrating mainly on boundary
conforming meshes. The algorithm makes local changes to the mesh to remove
tetrahedra which are poor according to some quality criterion. While the algorithm
is completely general with regard to quality criterion, we target improvement of
the dihedral angle. The central idea in our algorithm is the introduction of a new
local operation called multi-face retriangulation (MFRT) which supplements other
known local operations. Like in many previous papers on tetrahedral mesh improve-
ment, our algorithm makes local changes to the mesh to reduce an energy measure
which reflects the quality criterion. The addition of our new local operation allows
us to advance the mesh to a lower energy state in cases where no other local change
would lead to a reduction. We also make use of the edge collapse operation in order
to reduce the size of the mesh while improving its quality. With these operations,
we demonstrate that it is possible to obtain a significantly greater improvement to
the worst dihedral angles than using the operations from the previous works, while
keeping the mesh complexity as low as possible.

1 Introduction and Motivation

For many types of physical simulation, the tetrahedral mesh representation
is the natural choice. For instance, finite element computations in 3D usually
employ tetrahedral meshes which are far better at adapting to boundaries
and changes in scale than e.g. regular voxel grids.

For 2D triangulations, Delaunay triangulation is often a natural choice
since it leads to a mesh which is optimal in the sense that the minimal
angles are maximized which is a reasonable quality criterion in 2D. In 3D
however, it is less clear what quality criterion we should strive for and a
3D Delaunay tetrahedralization may contain very flat sliver tetrahedra with
extreme dihedral angles, and extreme dihedral angles are often precisely what
we wish to avoid since they may lead to problems, such as great interpolation
errors or ill-conditioned stiffness matrices in some finite element computations
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(although in the anisotropic case they might be desirable) or problems with
interpolation accuracy [21].

Consequently, in this paper and in other recent work [12], the goal is
to optimize a tetrahedralization obtained through either Delaunay or other
methods in order to improve some criterion – particularly dihedral angles.
However, little is known about globally optimal meshes in the sense that
the smallest dihedral angle is maximal or that the largest dihedral angle is
minimal. Consequently, one strives instead for a set of simple, local trans-
formations which improve the mesh by removing poorly shaped tetrahedra.
The best one can hope for in this case is a good local minimum, and whether
one attains such a minimum is highly dependent on one’s vocabulary of local
transformations. It is this vocabulary which we extend by the addition of
two local transformations which are highly beneficial to the mesh quality yet
have not previously been used in tetrahedral mesh optimization.

The most powerful way of improving triangle or tetrahedral meshes is
through the insertion of more vertices (as shown in [12]). Indeed this is some-
times the only way to improve quality. Unfortunately, one pays the price of
adding (sometimes significantly) more tetrahedra, and finding the optimal
place to put a vertex can be hard. Besides, many applications (such as dy-
namic meshes) require their own Steiner vertex insertion routines. For these
reasons, we opine that it is very worthwhile to explore to what extent our
mesh improvement vocabulary can be augmented without adding vertices.

Our main contribution is the multi-face retriangulation operation. Assume
a set of tetrahedra which we can divide into upper and lower tetrahedra. Any
upper tetrahedron shares a face with precisely one lower tetrahedron (and
vice versa) and the upper tetrahedra all share a vertex (the upper vertex) as
do the lower tetrahedra (the lower vertex). We can say that the set of tetra-
hedra is sandwiched between the upper and the lower vertex (as illustrated in
Figure 1). The union of the triangular faces shared between upper and lower
tetrahedra can be seen as a triangulation of a polygon. Our proposed oper-
ation simply retriangulates this polygon to obtain better sets of upper and
lower tetrahedra. Multi-face retriangulation can also be seen as a composition
of the known multi-face removal and edge removal operations (as shown in
Figure 1) [9, 12]. However, multi-face retriangulation is more powerful than
the concatenation of these two operations: in the case of some configurations
multi-face removal followed by edge removal would never be selected because
very poor or inverted tetrahedra would result from the multi-face removal op-
eration (as illustrated in Figure 2). Additionally, multi-face retriangulation
works on boundaries whereas concatenation of multi-face removal and edge
removal does not.

The other contribution is the use of the well known edge collapse oper-
ation. Curiously, to the best of our knowledge, this operation has not been
incorporated into any tetramesh improvement algorithm previously. It sig-
nificantly reduces the complexity of the mesh and it also might improve the
worst quality within the set of affected tetrahedra.
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Fig. 1. Multi-face removal, edge removal and their superposition – multi-face re-
triangulation.

Fig. 2. Configuration in which multi-face removal would not be performed. Vertices
a, b, c and d are nearly coplanar. Performing multi-face removal in such a config-
uration would lead to creating a very poorly shaped tetrahedron abcd (highlighted
in orange) of extremely low quality. Also, by perturbing vertex a or b we can easily
create a situation in which tetrahedron abcd would be inverted. In both situations
multi-face removal would not be performed by a greedy algorithm – hence the arrow
is crossed out. The strength of multi-face retriangulation is in tunneling through
these kinds of hills in the energy landscape.

2 Related Work

Clearly, whether mesh improvement is needed depends on how the mesh was
generated. Broadly speaking, there are three ways of producing tetrahedral
meshes from a boundary representaion of an object. First, if the bound-
ary is a piecewise linear complex (in particular – triangulated manifold), we
could use constrained Delaunay tetrahedralization to produce a conforming
mesh [19,22]. Alternatively, we could use an advancing fronts method which
would build the tetrahedralization out from the boundary. As mentioned,
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the former approach will often have problems with sliver tetrahedra even
after Delaunay refinement, unless the boundary satisfies a set of strict condi-
tions [3,19] limiting the practical applications of this approach, and the latter
tends to produce some bad tetrahedra around areas where the front collides
on itself [16]. These problems are compounded if the boundary mesh has
poorly shaped triangles. An alternative approach is the centroidal Voronoi
tessellation based Delaunay tetrahedralization [6] which can, however, still
leave some poorly shaped tetrahedra. We conclude that the mesh optimiza-
tion is likely to be useful as a step following both Delaunay based methods
and also advancing fronts based methods.

A third and alternative strategy is to force the boundary to conform to an
isosurface of an implicit function rather than a mesh. The spatial domain is
first divided into tetrahedra, and a subset which approximates the shape well
is selected. In a subsequent compression step, the boundary vertices of this
subset are forced to lie precisely on the isosurface [15]. However, we note that
the compression step is an optimization procedure because, generally, not
only the boundary vertices are moved but also the interior vertices in order
to improve the quality of the mesh. In recent work, Labelle and Shewchuk
were able to demonstrate good provable bounds on the dihedral angles using
such a method [13]. However, methods which fit meshes to isosurfaces [15,13]
cannot be expected to capture sharp edges and corners because the vertices
are not constrained to lie in particular positions. Consequently, in some cases
they simply do not apply.

Most of the existing work for tetrahedral mesh improvement uses the fol-
lowing three types of mesh operations:

1. Mesh smoothing – relocation of the mesh points in order to improve mesh
quality without changing mesh topology.

2. Topological operations – reconnection of the vertices in the mesh (without
displacing them).

3. Vertex insertion – adding extra vertices into the mesh (through eg. split-
ting of the edges, faces or tetrahedra) and reconnecting affected regions
of the mesh.

2.1 Mesh Smoothing

One of the best known smoothing methods, Laplacian smoothing, in which
a vertex is moved to the centroid of the vertices to which it is connected,
is a popular and quite effective choice for triangular meshes. In tetrahedral
meshes, however, it often produces poor tetrahedra [7]. Optimal (with regard
to linear interpolation error) Delaunay vertex placement has been investi-
gated by Chen and Xu [2]. More general mesh smoothing algorithms are
based on numerical optimization. One of the most popular local algorithms
for mesh smoothing was suggested by Freitag et al. [8]. This method relo-
cates one vertex at a time. Given one vertex, its new position is found, so
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that the minimum quality of all the tetrahedra adjacent to this vertex is max-
imized (this requires non-smooth optimization). This procedure is performed
for each vertex in the mesh and can be iterated until a stable configuration
is attained. It can also be performed on the boundary of the mesh, given
extra constraints for the position of the vertex. Another optimization based
approach, using generalized linear programming, was presented by Amenta
et al. [1], but this one is not as general as Freitag’s and is not well suited for
dihedral angles optimization. Mesh smoothing can also be performed by con-
tinuous optimization in the space of coordinates of all vertices of the mesh
(as in [10]), but Freitag’s method has advantages over this approach – it
is easier to use with non-smooth quality measures, and its characterised by
stable behavior even if the initial quality of the mesh is very low.

2.2 Topological Operations

Reconnection of the mesh can be pictured as picking a set of adjacent tetra-
hedra and replacing them with another set of tetrahedra, of higher minimum
quality, filling in the same volume. This can be performed in a more or less
arbitrary manner (as small polyhedron re-tetrahedralization in [14]), or can
be organized into a set of topological operations, such as:

• 2-3 flip and its inverse, 3-2 flip, as shown in Figure 3.
• 4-4 flip and its version for boundary configuration, 2-2 flip, illustrated in

in Figure 3 – ambiguous, requires specifying which edge pair of vertices
is going to be connected after the operation.

• Edge removal is illustrated in Figure 1 – generalizes 3-2 flip, 4-4 flip and
2-2 flip; ambiguous, requires specifying the final triangulation of the link
of the removed edge, which can be performed by using triangulation tem-
plates, as in [9] or by using Klincsek’s algorithm [11] in order to maximize
the minimal quality of the created set of tetrahedra, as in [12]. Edge re-
moval can be performed for boundary edges.

• Multi-face removal of de Cougny and Shephard [5] is the inverse to the
edge removal, as shown Figure 1 – generalizes 2-3 flip and 4-4 flip; requires
dynamic programming in order to select the subset of faces sandwiched
between two vertices, which gives the best improvement.

The original paper of Freitag and Ollivier-Gooch [9] uses the first three op-
erations. It can easily be noticed, that multi-face removal can actually be
decomposed into a sequence of a single 2-3 flip followed by a certain number
of 3-2 flips. However, this can not always be performed in the hill-climbing
approach (which is usually the choice for the tetrahedral mesh-improvement
algorithms) if one of the operations in the sequence decreases quality locally.
Klingner and Shewchuk [12] use all the operations from the list above.

2.3 Vertex Insertion

Klingner and Shewchuk showed in [12] that mesh improvement is far more
effective with the inclusion of transformations that introduce Steiner vertices.
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Fig. 3. Simple topological operations.

Proper placement of Steiner vertices is a hard problem. Klingner and
Shewchuk describe a sophisticated and rather complex algorithm for vertex
insertion which mimics Delaunay vertex insertion and, together with opti-
mization based smoothing and topological operations, allows them to im-
prove the meshes so that all dihedral angles are between 31◦ and 149◦, or,
using a different objective function, between 23◦ and 136◦.

3 Tetrahedral Mesh Quality Improvement

Our mesh improvement algorithm is based on the algorithm proposed by
Klingner and Shewchuk [12] (which in turn extends one by Freitag and
Ollivier-Gooch [9]) which uses vertex smoothing by Freitag et al. [8], edge
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removal, multi-face removal and vertex insertion (most of the operations they
use can be performed on the boundary of the mesh). In turn, our algorithm
uses the following set of operations:

• Vertex-smoothing as in Freitag et. al [8],
• Topological operations:

– edge removal,
– multi-face removal,
– multi-face retriangulation.

• Edge collapse.

Vertex smoothing and edge removal can be performed for the boundary
vertices and edges, if the boundary is sufficiently flat around them. Addition-
ally, vertex smoothing can be performed along straight ridges on the boundary
of the mesh, if the surface patches separated by the ridge are sufficiently flat.
Multi-face removal and edge removal are implemented essentially the same
way as in [20].

3.1 Multi-face Retriangulation

Multi-face retriangulation can be seen as a composition of multi-face removal
and edge removal, however, it can be also performed on the boundary of the
mesh. It includes the 4-4 and 2-2 flips. Multi-face retriangulation does not
change the number of tetrahedra in the mesh. So far as we know, it has never
appeared in the literature.

The reasons in favor of using MFRT alongside multi-face removal and edge
removal are:

• In some cases, the configuration produced by multi-face removal is of
lower quality, as illustrated in Figure 2. Thus a greedy approach would
not select that configuration even if the subsequent edge removal led to a
state of lower energy than the initial configuration.

• In some cases the configuration produced by multi-face removal includes
inverted tetrahedra, and no approach would select that (also shown in
Figure 2). However, MFRT cannot produce inverted tetrahedra, as the
best triangulation of the multi-face cannot be worse than the initial one
and we assume we run our algorithm on valid tetrahedral meshes.

• MFRT can be applied to boundary configurations. To see this, let us
only consider a set of lower tetrahedra in Figure 1. In such a configu-
ration, multi-face consists of boundary faces and it cannot be removed
using multi-face removal, but it can easily be retriangulated. However, if
the multi-face is not sufficiently flat, which is the case when the angles
between the normals to the faces are greater than 0◦, MFRT can change
the geometry of the boundary of the mesh, which is usually not desirable.

• MFRT does not change the number of tetrahedra. This property is a direct
consequence of a well known fact that every triangulation of a polygon
has the same number of triangles.
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In our implementation, the input is a single face f we wish to remove. We
find the apices a and b of the two tetrahedra adjoining f . Among the set
of all faces sandwiched between a and b we find the connected component
that contains f . For the multi-face defined like that, we find the optimal
triangulation of its bounding polygon using Klincsek’s algorithm. The routine
is similar for a boundary face f , although in this case we have to make sure
that the retriangulated multi-face is sufficiently flat (otherwise geometry of
the boundary might change).

3.2 Edge Collapse

Edge collapse (also known as edge contraction or half-edge contraction) is a
well known mesh operation which has been used as a primary tool for simpli-
fying 2D and 3D meshes in numerous works, such as [4, 17]. It identifies one
of the vertices of an edge e with the other, removes e and all faces and tetra-
hedra which contain it. This can, however, lead to invalid configurations (vi-
olating the simplicial complex criterion) or alter the surface geometry of the
mesh, unless certain conditions are fulfilled, described in detail by Natarajan
and Edelsbrunner in [17]. If edge collapse is not performed for the boundary
edges, which is the case in our implementation, those conditions simplify to
the following:

Lk(e) = Lk(a) ∩ Lk(b),

where a and b are the vertices of the edge e, and Lk(σ) denotes the link of
a simplex σ which, in tetrahedral meshes, can be defined as a set of those
simplices (vertices, edges and faces) in the mesh, that do not intersect with
σ, but are contained by the one of the tetrahedra containing σ. In our imple-
mentation this is performed if the minimum quality of the set of tetrahedra
affected by the operation increases, or if it does not decrease below a certain
quality threshold qmin, which is a global parameter of our algorithm.

3.3 Quality Measures

Both the smoothing algorithm and the topological operations which we are
using are indifferent to the tetrahedron quality measure. In order to be able
to compare our results to those provided in [12] and [9], we are using:

• The minimum sine measure – the minimum sine of a tetrahedron’s six
dihedral angles, penalizes both small and large dihedral angles.

• The minimum biased sine measure, which is like the minimum sine mea-
sure, but if a dihedral angle is obtuse, its sine is multiplied by 0.7 (before
choosing the minimum). This quality measure penalizes large angles more
aggressively than the small angles.

Many quality measures have been proposed for tetrahedral meshes reviewed
by [21], [10]. Our two choices are well behaved and very intuitive, although
non-smooth.
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4 Implementation

Our mesh improvement schedule follows that of Klingner and Shewchuk [12]
(pseudo code is shown in Algorithm 1). Same as in their work, we use a
short list of quality indicators in order to measure progress in lowest quality
tetrahedra improvement. Those are: the quality of the worst tetrahedron
in the entire mesh and seven thresholded means of the qualities of all the
tetrahedra in the mesh. A mean q̄θ with threshold θ is computed the following
way:

q̄θ =
1

#{tetrahedra in M}
∑

t∈M

min(q(t), θ),

whereM is the mesh and q is the tetrahedron quality measure we use. For our
quality measures we use thresholded means with thresholds sin(1◦), sin(5◦),
sin(10◦), sin(15◦), sin(25◦), sin(35◦) and sin(45◦). A quality indicator de-
signed like that is a good measure of how narrow the distribution of the
tetrahedron qualities is and allows us to detect the quality improvement even
if the minimum quality does not change. The minimum quality alone is much
less efficient as a mesh quality indicator – it leads to premature termination
of the mesh improvement algorithm and significantly worse final results. We
consider the improvement in the mesh quality sufficient if either the qual-
ity of the worst tetrahedron improves, or if one of the thresholded means
increases by at least 0.0001.

We begin mesh improvement with a vertex smoothing pass, followed by a
topological pass. In the topological pass, pseudo code of which is shown in
Algorithm 2, we first obtain the list of all the tetrahedra in the mesh and then
try to remove every tetrahedron t on the list by first trying to remove its edges
using the edge remove operation and then, if we have not succeeded, by try-
ing to remove its faces using multi-face retriangulation followed by multi-face
removal. Such an ordering of the operations is justified by the fact that first
performing multi-face retriangulation still leaves room for extra improvement
through multi-face removal, while it does not work the other way round. The
optimal multi-face for multi-face removal is chose using dynamic program-
ming, accordingly to an algorithm described in [20]. Any of those operations
are performed only if they locally improve the quality. If that happens, we
proceed to the next tetrahedron on the list. Every topological operation that
we use can destroy more tetrahedra than the one for which it was called, so
before attempting to remove any tetrahedron we have to make sure that it
still exists in the mesh.

After two initial passes we begin the main loop, in which we first smooth
all the vertices until there is no more improvement detected by our mesh
quality indicators. Then we start the topological pass again. If it improves the
quality of the mesh sufficiently, we start the loop again, otherwise we start
the thinning pass (pseudo code is shown in Algorithm 3). In the thinning
pass we attempt to collapse every edge which is not a boundary one, does
not connect two boundary vertices and fulfills the edge collapse feasibility
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Algorithm 1. Improve(M)
{M is a mesh}
1: Smooth each vertex of M .
2: TopologicalPass(M)
3: failed⇐ 0
4: while failed < 3 do
5: Smooth each vertex of M .
6: if M improved sufficiently then
7: failed⇐ 0
8: else
9: TopologicalPass(M)

10: if M improved sufficiently then
11: failed⇐ 0
12: else
13: ThinningPass(M)
14: if M improved sufficiently then
15: failed⇐ 0
16: else
17: failed⇐ failed + 1
18: end if
19: end if
20: end if
21: end while

Algorithm 2. TopologicalPass(M)

1: Create the list of all tetrahedra in M .
2: for each tetrahedron t on the list, that still exists in M do
3: for each edge e of t (if t still exists) do
4: Attempt to remove edge e.
5: end for
6: for each face f of t (if t still exists) do
7: Attempt to remove face f by first using multi-face retriangulation

followed by multi-face removal.
8: end for
9: end for

condition. We perform the collapse only if it improves the quality locally or
if the quality of the affected tetrahedra after the operation is not smaller
than a threshold value q0 = 0.5. If the thinning pass improved the quality of
the mesh sufficiently, we start the loop again, otherwise we record that the
sequence of smoothing, topological and thinning passes did not manage to
improve the quality of the mesh. If that happens three times in a row, the
algorithm stops.
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Algorithm 3. ThinningPass(M)

1: for each edge e ∈M that is not on the boundary do
2: if e still exists then
3: Find the vertices a and b of e.
4: if b is not a boundary vertex then
5: Attempt to collapse edge e: a← b.
6: if success then
7: Smooth a.
8: end if
9: end if

10: if a is not a boundary vertex and e still exists then
11: Attempt to collapse edge e: b← a.
12: if success then
13: Smooth b.
14: end if
15: end if
16: end if
17: end for

5 Tests and Results

We tested our schedule on the following meshes:

• Boid, Teapot and Deer are Delaunay tetrahedralizations generated by
TetGen [22] with extremely bad dihedral angles due to the lack of interior
vertices.

• Rand1 – used by Freitag and Ollivier-Gooch and also by Klingner and
Shewchuk to evaluate their mesh improvement algorithms.

• P and TFire – used by Klingner and Shewchuk to evaluate their mesh
improvement algorithm.

• Glass – medium size mesh generated using TetGen [22] with few interior
vertices and low quality boundary triangles.

Unfortunatelly, Klingner and Shewchuk published the results of mesh im-
provement without vertex insertion only for a very few meshes, so the possi-
bility of comparing our results to theirs was limited.

The results of mesh improvement for those meshes are presented in the
Tables 1, 2 and 3. For the Boid mesh we tried to maximize the minimum
biased sine quality measure for this mesh. The boundary of the mesh is
nowhere flat so smoothing and topological operations are not allowed on the
boundary. There are no interior vertices, so in fact smoothing and thinning
cannot take place at all, as they would alter the surface geometry. Not much
improvement can be achieved without vertex insertion in this case, but still we
can see that the topological pass with MFRT is significantly more effective at
fighting the worst dihedral angles than the topological pass without MFRT.
The situation and the results are similar in the case of the Teapot mesh.
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Table 1. Mesh quality improvement results for meshes: Boid, Teapot and Deer.
Minimum biased sine measure was used for the first two and minimum sine quality
measure was used for the last one. Pictures in the first row show the initial surface
geometry of our meshes. Surface geometry remains the same after the mesh im-
provement, although the tesselation might change in flat regions. Histograms show,
from the top to the bottom, the distribution of all dihedral angles in the original
mesh, mesh improved without MFRT and mesh improved using MFRT.

Boid Teapot Deer

2179 tets 3677 tets 2678 tets

1831 tets 3123 tets 2342 tets

1854 tets 3060 tets 2327 tets

We also obtain a significant extra improvement (6.4◦) by the use of MFRT
for the Deer mesh, while in this case we tried to maximize the minimum
sine quality measure.

For Rand1 the use of MFRT allows us to narrow the dihedral angles range
by as much as 8◦ for both sine and biased sine quality measures. Additionally,
edge collapse allows us to decrease the complexity of the meshes by almost
35% and to narrow the dihedral angles range by almost 3◦ for sine quality
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Table 2. Mesh quality improvement results for meshes: P (using minimum biased
sine quality measure) and Rand1 (left column – using minimum biased sine quality
measure, right column - using minimum sine quality measure). Histograms show,
from the top to the bottom, the dihedral angle distribution in the original mesh,
mesh improved without MFRT, mesh improved using MFRT, meshed improved
using MFRT and thinning. Red bars indicate particularily abundant dihedral angles
and were scaled down to increase the readability of the histograms.

P Rand1

926 tets 5104 tets

855 tets 5736 tets 5730 tets

855 tets 4739 tets 4574 tets

782 tets 3358 tets 3327 tets
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Table 3. Mesh quality improvement results for meshes: Glass (using minimum
biased sine quality measure) and TFire (left column – using minimum biased sine
quality measure, right column - using minimum sine quality measure). Histograms
show, from the top to the bottom, the dihedral angle distribution in the origi-
nal mesh, mesh improved without MFRT, mesh improved using MFRT, meshed
improved using MFRT and thinning.

Glass TFire

77632 tets 1104 tets

72542 tets 1099 tets 1101 tets

71016 tets 1095 tets 1094 tets

69776 tets 1071 tets 1034 tets
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measure – ultimately we obtain 15.8◦–162.4◦, and by 2◦ for biased sine qual-
ity measure – ultimately we obtain 15.1◦–157.6◦. For comparison, the best
results Freitag and Ollivier-Gooch [9] obtained for the same mesh was 15.0◦–
166.7◦ for minmax cosine quality measure (and 12.5◦-167.3◦ for sine quality
measure). Mesh P also benefits significantly from the use of MFRT – it nar-
rows the dihedral range by 6◦, but in this case the thinning pass does not
improve the extreme quality values.

The TFire mesh also benefit from adding the MFRT and the edge col-
lapse operation, although not as significantly as the previous ones. Still, our
result 24.9◦–139.7◦ is better than 21.3◦–147.1◦ obtained by Klingner and
Shewchuk [12].

In case of the Glass mesh, we can notice that our mesh improvement
algorithm actually expands the dihedral angles range. This is due to the lack
of extremely obtuse angles in the original mesh, and due to the fact, that the
mesh operations we use choose to “sacrifice” good quality tetrahedra in order
to locally improve the worst tetrahedron. However, we can notice that the we
still benefit from inclusion of MFRT and thinning in the mesh improvement
algorithm.

6 Discussion and Future Work

Our results show that using the multi-face retriangulation operation along-
side smoothing and topological operations from the previous works can lead
to better improvement of the dihedral angles and should be included in the
standard repertoire of the topological operations for tetrahedral meshes. For
the meshes we tested, we obtained a narrowing of the range of dihedral angles
by up to 8◦ without inserting a single Steiner vertex. Additionally, edge col-
lapse can also improve the worst dihedral angles and decrease the complexity
of the mesh by up to 35%, esspecially when the initial quality of the mesh is
very poor.

However, during our experiments we have noticed that the mesh improve-
ment algorithm is still prone to get stuck in the local minima, even if we use
multi-face retriangulation – in a few cases, running the algorithm with some
mesh operations “switched off” (for instance operations on the boundary of
the mesh) leads to better results than running the algorithm with the full
repertoire of mesh operations. This is, of course, a consequence of using a
greedy, hill-climbing approach. This could possibly be improved by applying
a randomized approach.

It is also important to notice that our algorithm is designed for valid input
meshes. If the initial mesh has inverted tetrahedra the algorithm might fail
to remove them. Also, the tetrahedron quality measures we used are not
particularily well suited for meshes with inverted tetrahedra, since they lose
continuity as the tetrahedron gets inverted.
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In the future we are going to further investigate the possibilities of mesh
improvement without Steiner vertex insertion, also with other quality mea-
sures, such as the volume-length measure [18] V/l3rms, where V is the signed
volume of a tetrahedron and lrms is the root-mean-squared edge length.
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