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Abstract.  

The paper addresses the problem of the 3D meshing of the complex free form 

Boundary Representation geometry with multiple domains. It introduces a generic graph 

based method of the CAD model analyses with optimal boundary recovery. A three stage 

approach is used: firstly, an underlying geometry is repaired to provide a conformal 

model without gaps and overlaps. Secondly, the model is analyzed and a special 

topological graph is introduced. Finally, an unstructured 3D Delaunay mesh is generated 

using the properties of the spanning tree of the domain graph to provide an optimal 

boundary recovery during meshing with a minimal number of inserted nodes. The 

properties of the domain graph are discussed in the context of unstructured mesh 

generation. The paper provides examples, showing efficiency of the method for optimal 

meshing of complex Geological Geometry. 

1. Introduction 

In recent years the development of robust mesh generation and CAD healing 

techniques [1] has significantly increased the complexity of meshed geometry. Now it is 

possible to perform 3D unstructured meshing of different CAD models - Constructive 

Solid and Boundary Representation (BREP) - with multiple sub-domains in different 

application areas. Moreover, recent developments have extended applicability of the 

CAD solid models from traditional engineering domains to natural sciences, such as 

geology, reservoir engineering, and hydrology. Meshing of such complex geometry (see, 

for example, Fig. 1) faces challenges of efficient boundary recovery and the problem is 

mostly related to the absence of a generic methodology of the CAD model analyses for 

meshing [1]. 

The presence of multiple geometrical constraints in the CAD model (Fig. 1) results in 

insertion of excessive nodes during boundary recovery in the traditional meshing 

approaches similar to [2]. All-hexahedral meshing faces more difficulties, related to the 

generic complexity of the unstructured hexahedral meshing algorithms for free form 

domains. The Control Volume (CV) node-centered discretisation is also non-optimal [3-

4], as near the boundary a node (see Fig. 2) is typically shared by a large number of 

elements, and the CV flux computation for the node-centered schemes involves large 
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numbers of the CV cell polyhedral faces, as shown in Fig. 2. This significantly slows the 

computation [4]. 

Abstraction of the BREP models has been addressed in different spheres of 

engineering. For example, Similarity Analyses of the CAD models provide an interesting 

background for the CAD model analyses for meshing (see [5] for an overview of the 

methods). Shape abstraction techniques summarize topological properties of the CAD 

model partition of space to sub-volumes. 

   

Fig. 1. Typical geological BREP geometry with multiple (N>100) domains: the CAD 

model (fractured stone) and hex-dominant mesh of the fault. Numerous CAD constraints 

make the boundary recovery difficult and induce large number of nodes and elements. 

 
 

  a)     b) 

Fig. 2. The node centered CV polyhedral cell: a) with a complex (38 facets) boundary for 

all-tetrahedral and b) boundary-optimal (20 facets) hybrid cell. 

A conformal BREP CAD model provides a 3D partition of space to free-form sub-

domains, further CAD meshing ensures domains subdivision to computational primitives 

– tetrahedrons, hexahedrons, etc. So far systematic connection of the CAD partition with 
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computational meshing has not been established and our work attempts to close this gap 

using the graph-theoretical approach. 

2.  Proposed Method  

The idea of the method is based on application of the Shape Similarity Assessment 

Algorithms [5] to the underlying BREP model. Similar methods are used in the area of 

product design and manufacturing. In this area, a number of efficient CAD model 

abstractions have been developed to define a measure of CAD model similarity for 

production purposes. One of the measures is using topological graphs of the solid CAD 

model to provide a summary of the object shape for downstream applications, i.e. for 

mesh generation. In our implementation the method uses a direct interface to the BREP 

CAD model, when a solid is defined by a special data structure [6], providing the 

geometry and topology of its bounding faces. Recently the BREP approach has become 

the representation of choice in solid modeling for engineering and natural science 

applications due to its flexibility and robustness [4,6]. 

Previously graph approach have been used in mesh generation for hybrid meshing [7], 

mesh optimization [2] and other problems, taking advantage of the efficiency and 

robustness of the graph based algorithms. However, diversity and complexity of existing 

CAD models still pose a challenge for an efficient CAD analyses for meshing. 

       

Fig. 3. The MSG graph (the blue nodes and edges, left and right) for a synthetic cube 

geometry with multiply connected domains, partitioned by green free form surfaces (left). 

Topological graphs represent the connectivity information of the solid boundary such 

as adjacency of faces. Meshkat and Talmor [7] used graphs, representing adjacency of 

volumes (region-face graph technique) for hybrid meshing, but it is hardly applicable to 

meshing-related CAD model analyses. Indeed, the techniques, proposed in [7] provide 

the formalism for hexahedra and pentahedra composition from existing tetrahedrons. 

However, the so called Model Signature Graph (MSG) is capable of providing useful 

information on geometric constraints of the CAD model. The MSG is directly 

constructed from the BREP structure [5]: each node of the MSG represents a face of the 

BREP solid. The edge between two nodes of the graph corresponds to adjacency of two 

faces. This graph forms a synthetic surface-volume abstraction of the model boundary 

and can be used in the process of boundary recovery or domain decomposition for 
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meshing (Fig.3). Along with the topological connectivity between faces any extra 

information like average distance to neighboring faces, faces area, and other CAD model 

properties can be stored at the graph nodes, linking the MSG with the other known graph 

formalism of CAD model description – the so called Multiresolutional Reeb Graph 

(MRG) [5]. This graph is defined by obtaining a suitable function over the 3D object 

boundary (i.e. geodesic curvature or distance to neighboring faces). Then the function 

value range over the object is split into a number of sub ranges. A region of the solid 

object corresponds to each sub range, and each region forms the node of the MRG. Edges 

of the MRG are obtained from the BREP model connectivity of shells (topological sub-

volumes) [6]. The MRG can be stored as additional information at MSG graph nodes. 

We use Delaunay 3D mesh generation [8] and boundary recovery is based on the 

known node insertion technique [2]. In a standard implementation model faces are 

recovered using the ad-hock order obtained directly from the BREP model without 

reference to meshing. However, analyses of the Signature graph provide extra data on the 

influence of internal geometrical constraints on boundary recovery. Here the boundary is 

reconstructed selectively, using a special order of faces to be recovered. A minimum 

spanning tree of the MSG is constructed [9] and edges of the tree provide the order of 

face reconstruction during boundary recovery. Due to the properties of the graph [5] and 

its tree [9], in problematic geometrically over-constrained region boundaries are 

recovered in an optimal way, resulting in insertion of fewer nodes. To summarize, in our 

proposed approach the following steps are performed: 

• CAD repair of the BREP model to ensure model conformity 

• Generation of the MSG with attributes for the BREP model 

• Construction of the MSG minimal spanning tree 

• Surface mesh generation on the external and internal boundary faces 

• Delaunay volumetric mesh generation 

• Boundary recovery for the MSG tree faces using the node insertion technique 

• Boundary recovery for the remaining faces, not belonging to the tree. 

3. Results and Discussion 

The method has two distinct advantages. Firstly, it provides a generic graph method for 

description of the BREP geometrical complexity. Secondly, it formulates an algorithm 

for optimal boundary recovery of the geometry with multiply connected domains. The 

algorithm also ensures significant reduction in the number of nodes (around 43 per cent), 

inserted in the vicinity of the internal and external boundaries, as shown in Table 1.  

Table1. Number of nodes in traditional and proposed boundary recovery. 

Model Domains Traditional Proposed Reduction, 

% 

Partitioned Cube 734 9327 6249 49.26 

Fault 57 256349 182008 40.84 

Fractured stone 289 1178252 853223 38.94 
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The cube geometry is a synthetic test case with internal faces corresponding to 

quadratic curvilinear patches. For details we are referring the reader to a full version of 

the paper to appear next year. Interestingly, the reduction in the number of nodes as 

expected improves the speed of the numerical flux calculation for the numerical solvers 

of hyperbolic transport problems [3]. Using our new meshing approach for flux 

computations, based on the Schlumberger analytical pressure solver (GREAT) for the 

diffusion equation (Darcy flow) we managed to obtain nearly 50% speed increase in flux 

computation for multiphase simulations due to the reduced number of nodes. 

4. Conclusion 

We have developed a new graph approach for the BREP model analyses, ensuring 

significant reduction of the number of nodes during selective boundary recovery, based 

on the properties of the minimal spanning tree of the MSG graph. 

The author would like to thank Schlumberger for the permission to publish this partly 

independent research on the MSG graph method and for the support during preparation of 

the paper, especially my colleagues - Dr. B. Samson, Dr. J.P. Gilchrist and R. Banerjee. 
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