
A Comparison of Parametric Space vs. Real
Space Triangular Meshing Algorithms

Karl G. Merkley1 and Mark L. Dewey2

1 Elemental Technologies, Inc karl@elemtech.com
2 Elemental Technologies Inc. mildewey@elemtech.com

Summary. We present a triangulation algorithm that is a hybrid between a Delau-
nay triangulation and an advancing front algorithm. The Delaunay triangulation is
performed in parametric space and Steiner points are inserted based on an advanc-
ing front criteria. This Advancing Steiner Point (ASP) algorithm is compared with
the three-space advancing front algorithm that is currently implemented in Cubit, a
mesh generation tool developed at Sandia National Laboratories. We find that the
two algorithms are comparable in both speed and quality on analytic surfaces while
the ASP algorithm has significant speed advantages on parametric and complex
surfaces.

Key words: Triangle meshing, parametric space, advancing front mesh

1 Introduction

The Cubit meshing toolkit [1] is a research and production meshing tool de-
veloped at Sandia National Laboratories. In recent years, most of the Cubit
development efforts have been directed at developing quadrilateral and hex-
ahedral meshing methods. Cubit has supported triangular and tetrahedral
meshing but this has not been a primary focus. However, as the Cubit user
base increases there are more requests to support improved triangular mesh-
ing methods. Cubit has supported Delaunay methods [2] but pure Delaunay
is limited to planar surfaces. It has also supported an advancing front algo-
rithm [3][4] that is very robust but in some cases it is very slow compared
with commercial meshing packages.

In this paper we introduce a parametric space triangular meshing algo-
rithm that is being developed as part of the Cubit Adaptive Meshing Al-
gorithms Library (CAMAL) . The algorithm introduced here is a hybrid of
Delaunay and advancing front techniques. It creates a Delaunay triangulation
in parametric space and inserts Steiner points into the triangulation based on
an advancing front technique. The methods used by the Advancing Steiner
Point (ASP) algorithm are similar to AFLR developed by Marcum.[5][6].



2 Karl G. Merkley and Mark L. Dewey

2 Advancing Steiner Points

The Advancing Steiner Point (ASP) algorithm is a combination of the Delau-
nay algorithm and the advancing front algorithm. The algorithm creates an
initial Delaunay triangulation as in steps 1 to 4 of the Delaunay algorithm and
then inserts Steiner points chosen based on the techniques of the advancing
front algorithm. The algorithm proceeds as follows.

1. Specify node placement on the surface boundaries.
2. Create a bounding polygon extending beyond the surface boundaries
3. Generate a valid triangulation of the bounding polygon including the

nodes on the surface boundaries and recover the boundary.
4. Assign a point distribution function to each boundary point based on

the local point spacing. 5) Determine boundary point normals and add
additional boundary normals where the boundaries are discontinuous.

5. Based on the normals at the boundary insert points along the front. Stop
point insertion if the spacing has grown to the desired size. Also, stop if
fronts overlap.

6. Subdivide elements of the initial triangulation at the inserted point.
7. Optimize the connectivity using recursive edge swaps. For each element

pair, compare the reconnection criterion (min-max) for all possible con-
nectivities and swap edges using the most optimal one.

8. Repeat steps 7 and 8 until the stopping criteria are met.
9. Smooth the nodal coordinates using a simple Laplacian algorithm.

10. Check for any other required edge swaps to optimize the grid.

The smoothing and edge swap optimizations in steps 9 and 10 improve
the overall quality of elements in the grid. Care must be taken to avoid swap-
ping across areas of high curvature and smoothing should be performed in
parametric space to avoid time-consuming computations in real space.

3 Results

The Advancing Steiner Point algorithm outperforms the existing Cubit ad-
vancing front algorithm in both speed and element quality in every case except
for a simple square. In the case of the square the two algorithms are nearly
equal with a slight speed advantage to the advancing front algorithm. In every
other case the ASP algorithm is faster than the advancing front algorithm.
The following cases document the performance of the both algorithms in a
variety of cases. Speed is measured as user experience. This measures the time
the meshing process is started until the graphics display is completed.



Title Suppressed Due to Excessive Length 3

3.1 Well Field

Figures 1 and 2 show the projection of a complex well field onto the z-plane.
The 1 shows the results of an ASP grid using a natural neighbor [7] sizing
algorithm. Since there is an underlying grid that exists at every point in
the algorithm this is an obvious algorithm for calculating element sizes. The
existing linear sizing algorithm in Cubit is based on a linear weighting of the
points on the boundary. In this example, the combination of algorithm and
sizing function forces a rapid change in element size near the boundary as
shown in figure 2. As opposed to the more gradual change in element size
shown in figure 1.

Table 1 shows the resulting time and element quality for the resulting
mesh. We see that the ASP algorithm is about three times faster. In addition
the minimum angle is quality criteria is much better for the ASP algorithm.

Fig. 1. Well field projected onto the z-plane and meshed with the ASP algorithm
and a close-up of the resulting mesh.

Table 1. Advancing Front vs. Advancing Steiner Point on planar well mesh.

Algorithm Time (sec) Minimum Angle (degrees)

Advancing Front 7.27 8.4

ASP 2.34 20.46

3.2 Wing Surface

The wing surface shown in figure 3 is a NURBS surface with a high curvature
on the leading edge. Table 2 shows that there is an order of magnitude in speed



4 Karl G. Merkley and Mark L. Dewey

Fig. 2. Well field projected onto the z-plane and meshed with the Cubit advancing
front algorithm and a closeup of the resulting mesh.

between the advancing front algorithm and the ASP algorithm. The difference
in speed derives from several points. First, the ASP algorithm computes in-
tersections in parameter space. Second, the ASP algorithm does not require
an inverted element check that calculates normals on the surface for every
triangle. Finally, the ASP algorithm performs smoothing in parametric space.
Smoothing in real space requires a calculation to ensure that smoothed points
are moved to the surface. By reducing the number of real space evaluations
on the NURBS surface we see a dramatic improvement in performance.

Fig. 3. NURBS wing surface meshed with the ASP algorithm.



Title Suppressed Due to Excessive Length 5

Table 2. Advancing Front vs. Advancing Steiner Point on wing surface.

Algorithm Time (sec) Minimum Angle (degrees)

Advancing Front 67.03 19.1

ASP .62 29.6

3.3 Cubit Test Suite

Cubit has an extensive set of test problems. Most of these problems are me-
chanical parts such as those shown in figure 4. These parts are primarily
composed of analytical surfaces such as planes, cylinders, and cones. Timing
results were computed for time to mesh all of the surfaces in a set of fifty-four
of these test problems. The advancing front algorithm performs very well on
the majority of these surfaces. There was one model that skewed the timing
results. In this model the advancing front algorithm required 2500 seconds
to complete the mesh. The ASP algorithm completed this same model in 20
seconds. Table 3 shows that the overall quality for these type of surfaces are
comparable with the ASP algorithm being about 20% faster overall. Quality
metrics for these models were also computed but the minimum angle com-
putation is skewed because there are sliver surfaces that are not removed by
either algorithm.

Table 3. Advancing Front vs. Advancing Steiner Point on 54 parts in the Cubit
test suite.

Algorithm Time (sec) Minimum Angle (degrees)

Advancing Front 160.34 .9

ASP 198.82 .5

4 Conclusion

The current Cubit advancing front algorithm performs intersections compu-
tation in real space whereas the Advancing Steiner Point algorithm does these
same calculations in parameter space. While the parameter space computa-
tion is somewhat faster, it appears that the main time drivers are related to
finalizing the mesh. The Cubit advancing front algorithm has to do a normal
check to ensure that the <3 intersections have not created inverted triangles.
It also does an optimization based smoothing <3 that can be very compu-
tationally expensive. The most expensive call is a normal calculation on a
NURBS surface. This same call is inexpensive on analytic surfaces and thus
we see that the two algorithms are comparable on analytic surfaces.

The Advancing Steiner Point algorithm creates better elements at the
closure conditions because it maintains a continuous Delaunay mesh at every



6 Karl G. Merkley and Mark L. Dewey

Fig. 4. Sample models from the Cubit test suite.

point in the process. Thus the closure process for the advancing is simply
bounded by the element size indicating when no further points should be
inserted. The Advancing Steiner Point algorithm provides both speed and
improved element quality over the existing Cubit advancing front algorithm.

References

1. The CUBIT Geometry and Mesh Generation Toolkit, Sandia National Labora-
tories, http://cubit.sandia.gov/, 2009.

2. Alper Üngör. Off-centers: A new type of steiner points for computing size-
optimal quality-guaranteed delaunay triangulations. Comput. Geom. Theory
Appl., 42(2):109–118, 2009.

3. S.H. Lo. A new mesh generation scheme for arbitrary planar domains. IJNME,
21:1403–1426, 1985.

4. T.S. Lau and S.H. Lo. Finite element mesh generation over analytical surfaces.
Computers and Structures, 59(2):301–309, 1996.

5. Marcum and Nigel P. Weatherill. Unstructured grid generation using iterative
point insertion and local reconnection. AIAA Journal, 33(9):1619–1625, 1995.

6. D.L. Marcum. Point insertion methods. In J.F. Thompson, B.K. Soni, and N.P.
Weatherill, editors, Handbook of grid generation. CRC Press, Boca Raton, 1999.

7. Steven J. Owen and Sunil Saigal. Surface mesh sizing control. International
Journal for Numerical Methods in Engineering, 47(1):497–511, 2000.


