
On 3D Anisotropic Local Remeshing for

Surface, Volume and Boundary Layers

Adrien Loseille1 and Rainald Löhner1

CFD Center, Dept. of Computational and Data Sciences, College of Science, MS
6A2, George Mason University, Fairfax, VA 22030-4444, USA
{aloseill,rlohner}@gmu.edu

Abstract. A simple strategy for generating anisotropic meshes is introduced. The
approach belongs to the class of metric-based mesh adaptation procedures where
a field of metric tensors governs the adaptation. This development is motivated
by the need of generating anisotropic meshes for complex geometries and complex
flows. The procedure may be used advantageously for cases where global remeshing
techniques become either unfeasible or unreliable. Each of the local operations used
is checked in a variety of ways by taking into account both the volume and the
surface mesh. This strategy is illustrated with surface mesh adaptation and with
the generation of meshes suited for boundary layers analysis.

Two simple mesh operators are used to recursively modify the mesh: edge col-
lapse and point insertion on edge. It is shown that using these operators jointly
with a quality function allows to quickly produce an quality anisotropic mesh.
Each adaptation entity, ie surface, volume or boundary layers, relies on a specific
metric tensor field. The metric-based surface estimate is used to control the de-
viation to the surface and to adapt the surface mesh. The volume estimate aims
at controlling the interpolation error of a specific field of the flow. The boundary
layers metric-based estimate is deduced from a level-set distance function.

Keywords: Anisotropic Mesh Adaptation; Surface Remeshing; Metric-Based Error
Estimate; Boundary Layers Mesh Generation; Level-Set Function.

1 Introduction

Generating a valid tetrahedral mesh for a given domain Ω of R
3 of any arbi-

trary complexity is still a tedious task. The difficulty increases mainly with
the complexity of the boundary ∂Ω of Ω. In addition, a second factor that
impacts substantially the complexity is the way ∂Ω is meshed. Isotropically-
meshed surfaces with a smooth element-size variation are generally easier to
mesh than anisotropically-meshed surfaces with strong size variations. This
is particularly true when one considers the set of methods that have demon-
strated a good efficiency and reliability to produce a volume mesh from given
complex surface mesh: advancing front method [28, 34], constraint global De-
launay [4, 18, 19] or a combination of both [33]. These methods have now



612 A. Loseille and R. Löhner

attained a sufficient level of maturity to handle very complex geometries as
long as the surface mesh of ∂Ωh is isotropic. When dealing with anisotropic
surface meshes, the frontal methods generally do not succeed to close the
front, while the Delaunay-based generally will fail during the boundary re-
covery phase. Consequently, being able to certify that during an adaptive
procedure any of this methods will succeed is not at all guaranteed. Con-
sequently, it is of great interest to develop techniques that modify a mesh
locally [9, 13, 36] while keeping a valid 3D mesh. In this paper, the empha-
sis is put on anisotropic meshes that correspond to the case where previous
methods are the most susceptible to fail.

We concentrate on mesh-relative classical tasks required for a complete
adaptive CFD (Computational Fluid Dynamics) run: the surface remeshing,
the volume remeshing and the boundary layers mesh generation. Each task
on its own has blossomed into a large field of research in the mesh-generation
community. However, these tasks are often studied independently and with-
out the constraints of keeping a valid 3D mesh. The approach followed here
is to deal conjointly with these three tasks starting from an initial mesh and
using the metric-based framework. The paper is organized as follow. In Sec-
tion 1, the classical metric-based framework is recalled. Then, the main imple-
mentation choices for the adaptive mesh generator are discussed (Section 2).
Section 3 deals with the derivation of metric-based estimates for controlling
the interpolation error of a solution field, the deviation to a surface and for
monitoring the generation of a boundary layers grid. Mesh modification op-
erators are introduced in Section 4, along with numerical examples.

2 Metric-Based Anisotropic Local Remeshing

We briefly recall the main concepts of metric-based mesh adaptation. This is
done in a generic way without having a specific problem at hand. Thereafter,
the use of the local mesh generator is considered in the context of the full
adaptive process.

2.1 Metric Tensors in Mesh Adaptation

Metric-based mesh adaptation is an elegant concept introduced in the pio-
neering works [10, 20]. It (theoretically) allows to transform any unstructured
uniform mesh generator into an anisotropic one. This is done by computing
the distance in a Riemannian space instead of the classical Euclidean met-
ric space. The adaptive mesh generator aims at creating a unit-mesh in this
space. In the following, we recall the continuous definition inherited from
differential geometry considerations [7, 12] with their implementation in the
mesh generator [17]. Each continuous definition is then accompanied with its
discrete counterpart.

A metric tensor field of Ω is a Riemannian metric space denoted by
(M(x))x∈Ω, whereM(x) is a 3× 3 symmetric positive definite matrix. Tak-
ing this field at each vertex xi of a mesh H of Ω defines the discrete field



On 3D Anisotropic Local Remeshing 613

Mi =M(xi). If N denotes the number of vertices of H, the linear discrete
metric field is denoted by (Mi)i=1...N . AsM(x) andMi are symmetric def-
inite positive, they can be diagonalized in an orthonormal frame, such that

M(x) = tR(x)Λ(x)R(x) and Mi = tRiΛiRi,

where Λ(x) and Λi are diagonal matrices composed of strictly positive
eigenvalues λ(x) and λi and R and Ri orthonormal matrices verifying
tRi = (Ri)−1. Setting hi = λ−1

i allows to define the sizes prescribed by
Mi along the principal directions given by Ri. Note that the set of points
verifying the implicit equation txMi x = 1 defines a unique ellipsoid. This
ellipsoid is called the unit-ball of Mi and is used to represent geometrically
Mi as in Figure 1.

Fig. 1. Some unit-elements with respect to a 3D metric represented by its unit-ball.

The two fundamental operations in a mesh generator are the computation
of length and volume. The distance of an edge e = [xi,xj ] and the volume of
an element K are continuously evaluated in (M(x))x∈Ω by:

�M(e) =
∫ 1

0

√
teM(xi + t e) e dt and |K|M =

∫

K

√
det(M(x)) dx

From a discrete point view, the metric field needs to be interpolated [17]
to compute approximate length and volume. For the volume, we consider a
linear interpolation of (Mi)1...N and the following edge length approximation
is used:

|K|M ≈
√
√
√
√det

(
1
4

4∑

i=1

Mi

)

|K| and �M(e) ≈
√

teMi e
r − 1
r ln(r)

, (1)

where |K| is the Euclidean volume of K and r stands for the ratio√
teMi e/

√
teMj e. The approximated length arises from considering a

geometric approximation of the size variation along end-points of e: ∀t ∈
[0, 1]h(t) = h1−t

i ht
j .

The task of the adaptive mesh generator is then to generate a unit-mesh
with respect to (M(x))x∈Ω. A mesh is said unit when it is only composed of



614 A. Loseille and R. Löhner

unit-volume elements and unit-length edges. Practically, these two require-
ments are combined in a quality function computed in the metric field. A
mesh H is said to be unit with respect to (M(x))x∈Ω when each tetrahedron
K ∈ H defined by its list of edges (ei)i=1...6 verifies:

∀i ∈ [1, 6], �M(ei) ∈
[

1√
2
,
√

2
]

and QM(K) ∈ [α, 1] with α > 0 , (2)

with:

QM(K) =
36
3

1
3

|K| 23M∑6
i=1 �

2
M(ei)

∈ [0, 1]. (3)

A classical and admissible value of α is 0.8. This value arises from some
discussions on the possible tessellation of R

3 with unit-elements [30]. Some
unit-elements with respect to a 3D metric are depicted in Figure 1.

2.2 Adaptive CFD Simulations

The complete adaptive algorithm for steady simulations is composed of the
following steps.

1. Compute the flow field (i.e. converge the flow solution on the current
mesh);

2. Compute the metric estimates: surface, volume, boundary layers, etc.
3. Generate a unit mesh with respect to these metric fields;
4. Re-project the surface mesh onto the true geometry using the CAD data;
5. Interpolate the flow solution on the new adapted mesh;
6. Goto 1.

We briefly describe steps 1., 4. and 5. while steps 2. and 3. are discussed in
details in Sections 3 and 4. Note that all operations are done on a volume
mesh. Furthermore, any of these operations delivers a valid volume mesh,
even for the surface mesh adaptation or the projection of the continuous
surface using the CAD.

Flow solver. The flow solver employed is FEFLO. FEFLO was conceived as
a general-purpose CFD code based on the following general principles:

1 Use of unstructured grids (automatic grid generation and mesh refine-
ment);

2 Linear finite element discretization of space (one element-type code for
simplicity and speed);

3 Edge-based data structures for speed;
4 Separate flow modules for compressible and incompressible flows;
5 ALE formulation for moving grids;
6 Embedded surface or immersed body options for complex, dirty geome-

tries;
7 Overlapping grids or gliding regions for rotating bodies;



On 3D Anisotropic Local Remeshing 615

8 Bottom-up coding from the subroutine level to assure an open-ended,
expandable architecture to consider new turbulence models, Riemann
solvers and limiters;

9 Optimal data structures for different architectures.

The code has had a long history of relevant applications [5, 6], and has been
ported to both shared memory [24] and distributed memory [38] machines.

Surface representation. The surface representation is given by either ana-
lytical surfaces (Coon’s patches, planes, ...) or discrete triangulations (STL,
tri-files, ...). Each patch is bound by a set of unique lines that are shared
between patches. After introducing of new points on the surface, the surface
is interrogated and the point is placed on the correct surface position. This
may yield elements with negative volumes, particularly if the mesh is coarse.
Therefore, an iterative algorithm is employed to project smoothly the point
to the true surface while keeping only positive-volume elements.

Solution interpolation. The solution interpolation step uses a simple linear
interpolation scheme.

Comments on the data structures. During step 3., a discrete geometry is
used, so that (costly) requests to CAD are only done during step 4.. Nor-
mals, tangents, ridges and corners are stored on each boundary point. Then
elements surrounding elements and triangles surrounding triangles are used.
With these data structures, the ball of elements for a vertex, the shell of an
edge, and the topological neighbors of a vertex are recovered on-the-fly very
quickly. We refer to [17] for the practical algorithms.

3 Metric-Based Estimates

As stated in Section 2, using a metric-based adaptive mesh generator provides
an elegant way to keep the mesh generator independent of the problem at
hand. In the sequel, we illustrate and review the derivation of several metric
fields for the following tasks: adapting the mesh to a solution field by con-
trolling the interpolation error, adapting the mesh to control the deviation
to a surface, and, finally, adapting a mesh to create a boundary layers mesh
as required in RANS (Reynolds-Average Navier-Stokes) simulations. We first
introduce two techniques intensively used the sequel: the anisotropic mesh
gradation and the Log-Euclidean framework.

3.1 Techniques for Enhancing Robustness and Performance

The metric field provided has a direct, albeit complex, impact on the qual-
ity of the resulting mesh. A smooth and well-graded metric field makes the
generation of the anisotropic mesh generation easier and generally improves
the final quality. We consider two techniques that tend to give a substan-
tial positive impact on the quality of the resulting mesh: The anisotropic



616 A. Loseille and R. Löhner

mesh gradation tends to smooth the metric field, while the Log-Eucidean
interpolation allows to properly define metric tensors interpolation, thereby
preserving the anisotropy even after a numerous interpolations.

Anisotropic mesh gradation. The mesh gradation is a process that smoothes
the initial metric field that is generally noisy as it is derived from discrete
data. Gradation strategies for anisotropic meshes are available in [1, 8, 22].
From a continuous point of view, the mesh gradation process consists in
verifying the uniform continuity of the metric field:

∀(x,y) ∈ Ω2 ‖M(y)−M(x)‖ ≤ C‖x− y‖2,
where C is a constant and ‖.‖ a matrix norm. This requirement is far more
complex that imposing only the continuity of (M(x))x∈Ω . From a practical
point of view, this done that by ensuring that for all couples (xi,Mi) defined
on H verify:

∀(xi,yj) ∈ H2 N (‖xi−yj‖2)Mi∩Mj =MjandN (‖xi−yj‖2)Mj∩Mi=Mi,

where N (.) is a matrix function defining a growth factor and ∩ is the classical
metric intersection based on simultaneous reduction [17]. This standard al-
gorithm has O(N2) complexity. Consequently, less CPU-intensive correction
strategies need to be devised; we refer to [1] for some suggestions. Note that
bounding the number of corrections to a fixed value is usually sufficient to
correct the metric field near strongly anisotropic areas as the shocks. Two op-
tions are used in this paper giving either an isotropic growth or an anisotropic
growth acting:

N (dij)Mi =

⎛

⎝
η1(dij)λ1

η2(dij)λ2

η3(dij)λ3

⎞

⎠

with

(i) ηk(dij) = (1 +
√

teij Mi eij log(β))−2 or (a) ηk(dij) = (1 + λk dij log(β))−2,
(4)

where dij = ‖xj − xi‖2, eij = xj − xi and β the gradation parameter > 1.
The isotropic growth is given by law (i) while the anisotropic by law (a).
Note that (i) is identical for all directions, contrary to anisotropic law (a)
that depends on each eigenvalue along its principal direction. In the sequel,
we use the gradation to smooth the transition between the various metric
fields: surface and volume, surface and boundary layers, etc.

Log-Euclidean framework. After each point insertion or during the compu-
tation of edge-lengths, a metric field must be interpolated. Interpolation
schemes based on the simultaneous reduction [17] lack several desirable the-
oretical properties. For instance, the unicity is not guaranteed. A framework
introduced in [3] proposes to work in the logarithm space as if one were in



On 3D Anisotropic Local Remeshing 617

the Euclidean one. Consequently, a sequence of n metric tensors can be in-
terpolated in any order while providing a unique metric. Given a sequence
of points (xi)i=1...k and their respective metrics Mi, then the interpolated
metric in x verifying

x =
k∑

i=1

αi xi, with
k∑

i=1

αi = 1,

is

M(x) = exp

(
k∑

i=1

αi ln(Mi)

)

. (5)

On the space of metric tensors, logarithm and exponential operators are
acting on metric’s eigenvalues directly:

ln(Mi) = tRi ln(Λi)Ri and exp(Mi) = tRi exp(Λi)Ri.

Numerical experiments confirm that using this framework during interpo-
lation allow to preserve the anisotropy. Note that the evaluation of length
given by (1) corresponds to the Log-Eucldiean interpolation between the two
metrics of the edge extremities.

3.2 Lp Norm Interpolation Error

Controlling the linear interpolation error of a given flow field allows to derive
a simple anisotropic metric-based estimate [10] by considering an error bound
involving a recovered Hessian [37] of the numerical solution. Note that this
approach has already demonstrated its efficiency on numerous 3D real-life
problems [2, 9, 14, 31, 35, 39, 41]. In this paper, instead of classical error equi-
distribution issued from an L∞ norm, we prefer to control the Lp norm of the
interpolation error. Such control allows to recover the order of convergence of
the scheme on flows with shocks and to capture of the scales of the numerical
solution [31].

Given a numerical solution uh (density, pressure, mach numbers, . . . ), the
point-wise metric tensor is given by:

MLp(uh) = det(|HR(uh)|) −1
2p+3 |HR(uh)|, (6)

where HR(.) stands for an operator that from uh recovers some approximated
second derivatives of uh. Then |HR(uh)| is deduced from HR(uh) by taking
the absolute value of the eigen-values of HR(uh). Most common operators
are deduced from a double L2 projection or by the use of the Green formula.
A numerical review of HR operators is given in [42]. When applied to a
given smooth continuous function u, it has been proven [11, 29] that for any
unit-mesh H of Ωh with respect to MLp will verify the following bound:



618 A. Loseille and R. Löhner

‖u−Πhu‖Lp(Ωh) ≤ C N− 2
3

(∫

Ω

det(|H(u)|) p
2p+3

) 2p+3
p

, (7)

where here H(u) is the true Hessian of u, Πhu the linear interpolate of u on
H and C a constant that only depends on the quality (computed inMLp) of
H. Note that (7) gives a practical way to control the level of error ε that is
desired. Estimating the right-hand-side of (7) with HR(uh) instead of H(u)
gives a first ε0 error level so that to get an ε level of error, it is sufficient to
scale (6):

MLp(uh, ε) =
(ε0
ε

)
det(|HR(uh)|) −1

2p+3 |HR(uh)|,

In the sequel, the interpolation error is controlled in L2 norm exclusively,
while the HR operator is based on the Green formula.

3.3 Geometric Estimate for Surfaces

Controlling the deviation to a surface has been studied in previous works. We
may cite [23] for isotropic remeshing and [16, 15] for anisotropic remeshing.
Apart from their efficiency, these methods were initially thought to work only
on surface meshes, i.e without keeping a valid volume mesh. This additional
requirement just implies another constraint that consists in verifying that
each modification engenders a valid mesh (with a positive volume element
check). Following these previous works, we introduce a metric-based error
estimate such that the length in these surface metric measures the distance to
the surface. Moreover, we assume that the initial mesh has an in-homogeneous
error level control to the surface deviation. This assumption is particularly
true in many engineering application where designers know a priori areas
of interest. For instance, in aerodynamics the wings are generally meshed
finer than the fuselage. The proposed error estimate is thought to preserve
this initial in-homogeneity in the error distribution during the adaptation
process.

We recall that the surface remeshing is done by considering only discrete
data in order to avoid requests to CAD (done in another phase). Prior to sur-
face remeshing, normals and tangents are assigned to each boundary point.
We denote by ni the normal of the vertex xi. As in [16], a quadratic surface
model is computed locally around a surface point xi. Starting from the topo-
logical neighbors of xi, the coordinates of each point are mapped onto the lo-
cal orthonormal Frenet frame (ui,vi,ni) centered in xi. Vectors (ui,vi) lie in
the orthogonal plane to ni. We denote by (uj , vj , σj) = (txj .ui,

txj .vi,
txj .ni)

the new coordinates of vertex xj . xi is set as the new origin so that
(ui, vi, σi) = (0, 0, 0). The surface model consists in computing by a least
squares approximation a quadratic surface:

σ(u, v) = au2 + bv2 + cuv, where (a, b, c) ∈ R
3. (8)



On 3D Anisotropic Local Remeshing 619

The least squares problem gives the solution minimizing

min
(a,b,c)

∑

j

|σj − σ(uj , vj)|2,

where j is the set of neighbors of xi. Note that 3 neighbors points are neces-
sary to recover the surface model. With our insertion strategy (see Section 4),
the degree of the surface point is 4. Even if this number seems sufficient, some
information are added in order to be more robust. The normals (that are not
recovered from discrete data except from discrete attached surface type) are
then added. To this end, mid-edge points are recovered from the following
quadratic formula:

x = (1− t)2(1 + 2t)x1 + t(1− t)2r1 + t2(3− 2t)x2 − t2(1 − t)r2, with

ri = ‖e‖2 ni × (e× ni)
‖ni × (e× ni)‖2 and t ∈ [0, 1],

(9)

where e is an edge issued from xi and xj a neighbor of xi. Finally, if the
degree of xi is d the size of the linear system to solve becomes 2d. The linear
system involving the d neighbors and d mid-points is:

AX = B ⇐⇒

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u2
1 v2

1 u1v1
...

...
...

u2
d v2

d udvd

u2
1
2

v2
1
2

u 1
2
v 1

2

...
...

...
u2

d
2

v2
d
2

u d
2
v d

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎝
a
b
c

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1

...
σd

σ 1
2
...
σ d

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where (u i
2
, v i

2
, σ i

2
) are mid-points local coordinates recovered using (9). The

least square formulation consists in solving tAA = tAB. From this point, one
may applied the surface metric given in [16]. We propose here a simplified
version. We can first remark that the orthogonal distance from the plane
n⊥i onto the surface is given by σ(u, v) by definition. The trace of σ(u, v)
on n⊥i is a function that gives directly the distance to the surface. The 2D
surface metricM2D

S such that the length �M2D
S

((u, v)) is constant equal to ε
is easy to find starting from the diagonalization of the quadratic function (8).
Geometrically, it consists in finding the maximal area metric included in the
level-set ε of the distance map. We assume that M2D

S admits the following
decomposition:

M2D
S = (ūS , v̄S)

(
λ1,S 0
0 λ2,S

)
t(ūS , v̄S), with (ūS , v̄S) ∈ R

2×2.

If we want to achieve the same error as the initial mesh, we compute ε =
minj |σ(uj , vj)| among the neighbors of xi. The 2D metric achieving an ε
error becomes:



620 A. Loseille and R. Löhner

M2D
S (ε) =

1
ε
M2D

S .

The final 3D surface metric in xi is:

MS(ε) = (uS ,vS ,ni)

0
BBBB@
λ1,S

ε
0

0
λ2,S

ε
0

0 0 h−2
max

1
CCCCA t(uS ,vS ,ni),

(
uS = ūS(1)ui + ūS(2)vi,

vS = v̄S(1)ui + v̄S(2)vi.

(10)

The parameter hmax is initially chosen very large (e.g. 1/10 of the domain
size). This normal size is corrected during various steps. A first anisotropic
gradation using (4)(a) is applied on surface edges only. The surface metric
is then intersected with any computation metrics as given by (6). These two
steps set automatically a proper element size in the normal direction.

3.4 Boundary Layers Metric

Boundary layers mesh generation has been devised to capture accurately the
speed profile around a body during a viscous simulation. The width of the
boundary layer depends on the local reynolds number [26]. So far, the gener-
ation of the boundary layer grids has been carried out by an extrusion of the
initial surface along the normals to the surface [25] or by local modification of
the mesh [32]. Note that using the normals as sole information requires several
enrichments to obtain a smooth layers transition on complex surfaces [27]. In
this paper, boundary layer mesh generation is based on a continuous field:
the distance to the body. A classical adaptive strategy is then devised to
recover by local modification the boundary layers. This distance to the body
allows automatically to deactivate the boundary layers mesh generation on
geometry details that are smaller than the boundary layer size. Using the
gradient of the distance map allows to approximate the normals to the initial
body surface, whatever the initial position in space. This strategy can be
used on an existing volume mesh that could be adapted. Note that typical
studies in areodynamics consists in running a fisrt computation without the
boudary layers mesh (Euler mesh). The viscous simulation is done in a second
step. Consequently, it may be of interest to be able to generate, for complex
geometries, a boundary layer while keeping intact the previous adaptation
issued from non viscous simulations.

We now introduce the required steps to compute the boundary layers met-
ric ensuing from a body:

- Compute the distance map Φ to the body,
- Recover the surface mesh metric with a mean size in the normal direction,
- Compute the boundary layers metric Mbl.

Step 1. is done using classical algorithms of level-set methods [26, 40]. This
step can be done quickly and has generally a complexity of O(N ln(N)) where



On 3D Anisotropic Local Remeshing 621

N is the number of points in the current mesh. (Furthermore, note that from
a practical point of view, this function is evaluated only in the vicinity of
the body). From this scalar field, its linear gradient is recovered using a L2

projection. Note that we have ‖∇Φ(x)‖2 = 1, ∀x ∈ Ω. The gradient is used
to emulate normals to the body. For no extra cost, the body’s face for which
the minimum distance is reached is also stored for each point of the volume.

The surface metric recovery of step 2 takes advantage of the Log-Euclidean
framework. Starting from the ball of surface elements (K)P∈K of body point
P , the unique surface metric tensor MK (for which K is unit) is computed
by solving the following 3× 3 linear system:

(S)

⎧
⎪⎨

⎪⎩

�2M2D
K

(e1) = 1
�2M2D

K
(e2) = 1

�2M2D
K

(e3) = 1 .

where (ei)i=1,3 are elements edges expressed in the local surface plane coor-
dinates. (S) has a unique solution as long as the aera of K is not null. 2D
metrics (M2D

K )P∈K metrics are transcribed into 3D metrics (MK)P∈K by
prescribing a mean size in the normal direction to the face. The logarithm of
each metric is computed so that a classical Euclidean mean weighted by the
elements’ area is done. Finally, the body point metric MP is mapped back
using the exponential operator:

MP = exp
(∑

P∈K |K| ln(MK)
∑

P∈K |K|
)

.

Step 3 gives the final boundary layers metric. We describe it for a continuous
exponential law of the form h0 exp(αφ(.)), where h0 is the initial boundary
layer size and α the growing factor. Note that its application for any discrete
law is straightforward to implement. For a volume point xi, the boundary
layers metric depends on the body point Pi for which the minimum distance
is reached. The following operations conclude this step:

3.1 Compute the local Frenet frame (ui,vi,∇Φ(xi)) associated with ∇Φ(xi)
3.2 Set the size in the normal direction to hni = h0 exp(αΦ(xi)), the sizes in

the orthogonal plane to:

hui = (tuiMPi ui)
−2
,

hvi = (tviMPi vi)
−2
,

3.3 The final metric is given by:

Mbl(xi) = t(ui,vi,∇Φ(xi))

⎛

⎝
h−2
ui

h−2
vi

h−2
ni

⎞

⎠ (ui,vi,∇Φ(xi)). (11)



622 A. Loseille and R. Löhner

4 Quality-Driven Local Mesh Operators

This section describes the local operators used to adapt the mesh. For each
operator, numerical results using the metric estimates derived in Section 2
are shown.

4.1 Insertion and Collapse

To generate a unit-mesh in a given metric field (Mi)i=1...N , two operations
are recursively used: edge collapse and point insertion on edge.

The starting point for the insertion of a new point on an edge e is the
shell of e composed of all elements sharing this edge. Each element of the
shell is then divided into two new elements. The new point is accepted if
each new tetrahedron has a positive volume. When a point is inserted on
an boundary edge, either a linear approximation of the surface is used or a
quadratic recovery using the edge point normals (9).

The edge collapse starts from the ball of the vertex to be deleted. Again,
for the deletion of points inside the volume, the only possible rejection is
the creation of a negative volume element. A special care is also required to
avoid the creation of an element that already exists, see Figure 2 (left and
middle). The rejections are more complicated in the case of a surface point.
We first avoid each collapse susceptible to modify the topology of the object.
This is simply done by assigning an order on each surface point types: corner,
ridge (line), inside surface. The collapse can also be rejected if the normal
deviation between old and new normals becomes too large. Currently, if n
denotes the normals to an old face, we allow the collapse if each new normal
ni verifies tnni > cos(π/4). Note that the control to the surface deviation is
given by the surface metric and so it does not need to be handled directly in
the collapse operation.

With these operations, the core of the adaptive algorithm consists in scan-
ning each edge of the current mesh and, depending on its length, creating a
new point on the edge or collapsing the edge. An edge is declared too small
or too large according to the bounds given in (2). Without any more consid-
erations, such adaptive mesh generator is known not to be efficient and to
require a lot of CPU consuming optimizations as point smoothing and edge
swapping. This inefficiency is simply due to the locality of these operations.
Comparing to an anisotropic Delaunay kernel [13], when an edge needs to be
refined, the metric lengths along the orthogonal directions are controlled by
the creation of the cavity. Consequently, in one shot, the area of refinement
must be large. With the present approach, the size is controlled along one
direction only (along the edge being scanned). Consequently, one can reach
intractable configurations where the same initial edge is refined successively
to get the desired size whereas the sizes in the other directions get worse. A
typical configuration is depicted in Figure 2 (right).

A simple way to overcome this major drawback is to use the quality func-
tion (3) together with the unit-length check. This supplementary check can



On 3D Anisotropic Local Remeshing 623

A
B

A

B

Fig. 2. Left and middle, volume and surface collapse of edge AB leading to the
creation of an element that already exists . Right, Example where an edge is recur-
sively refined to get a unit-length without checking the length requirement in the
edge’s orthogonal direction; the configuration may lead to edges acting as a barrier
for future refinement.

be done at no cost since a lot of information can be re-used: the volume is
already computed, as well as the length of the edges. By simply computing
the quality function, we give to these operators the missing information on
the orthogonal directions of the current scanned edge. For an optimal per-
formance, two parameters are added in the rejection cases: a relative quality
tolerance qr ≥ 1 and a global quality tolerance qa. Indeed, it seems particu-
larly interesting not to try to implement a full descent direction by imposing
the quality to increase on each operation. We prefer to allow the quality to
decrease in order to get out of possible local minima. Consequently, a new
configuration of elements is accepted if:

qr Q
ini
M ≤ Qnew

M and Qnew
M < qa,

where Qini
M is the worse element quality of the initial configuration and Qnew

M
is the worse quality of the new configuration. This approach is similar to the
simulated annealing global optimization technique [21]. Note that the current
version does not fully implement the classical metropolis algorithm where the
rejection is based on a random probability. To ensure the convergence of the
algorithm, the relative tolerance qr is decreased down to 1 after each pass of
insertions and collapses. At the end of the process, the absolute tolerance qa
is set up to the current worse quality among all elements. We now give some
illustrative examples using the quality-driven insertion and collapse.

Figures 3, 4, 5 and 6 give anisotropic meshes obtained by applying only
these two operators during the refinement process. The first example is a
supersonic flow inside an inlet. It only involves the control of the interpola-
tion error (6) on the Mach variable. The surface adapted mesh and the Mach
number iso-values are depicted in Figure 3. The final mesh is composed of
70 000 tetrahedra. 5 iterations were performed to reach this accuracy. De-
spite the small number of elements, most of the features of the flow are well
captured: strong amplitudes shocks are refined so as contact discontinuities
emitted from the inlet spike. The second example is a supersonic flow inside



624 A. Loseille and R. Löhner

Fig. 3. Supersonic flow inside a scramjet. Only quality-driven insertion and collapse
were used. Top, surface anisotropic mesh and bottom, mach iso-values. Both strong
amplitude shocks and small amplitude shear layers are captured.

Fig. 4. Supersonic flow simulation inside a curved wedge. Only quality-driven
insertion and collapse were used. From left to right, adapted surface mesh, density
solution field and closer view of the surface mesh around the shock.

a curved wedge geometry. It involves the surface metric-based estimate (10)
along with the control of the interpolation error (6) of the density variable.
The results are depicted in Figure 4. The final mesh is composed of 8 000
tetrahedra with a resolution in the shock of 0.001m, see Figure 4 (right).
This example illustrates how metric-based mesh adaptation gives an optimal
distribution of the degree of freedom even though a very small number of
elements is used.



On 3D Anisotropic Local Remeshing 625

Fig. 5. Supersonic flow around a model missile. Only quality-driven insertion and
collapse with anisotropic mesh gradation were used. Top, from left to right, CAD of
the missile composed of 8 winglets having a quasi-null thicknes and adapted surface
mesh. Bottom, cut in the volume mesh behind the missile (left) and cut along the
symmetry plane in the volume mesh (right).

In the following examples, an anisotropic volume gradation (4)(a) is per-
formed on the volume metric field prior to the refinement. We now consider
the accurate prediction of the flow field around the supersonic missile model
where the CAD is depicted in Figure 5 (top left). The surface and the vol-
ume mesh are adapted to the Mach number in L2 norm. The deviation to the
surface is controlled by using surface metric (10) with ε = 0.001. A specific
anisotropic re-meshing of the leading edges is also added. The cruise speed
of the missile is Mach 2. The final mesh is composed of almost 600 000 tetra-
hedra. Surface mesh adaptation and volume mesh adaptation are perfectly
combined. In particular, the complexity of the flow on the missile geometry
appears clearly in Figure 5 (top right and bottom). Similarly, the complexity
of the flow field in the volume is also well captured, see Figure 5 (bottom).
Note that the supersonic missile model offers a large panel of challenges both
for mesh adaptation and flow computation. Indeed, the very small thickness
of the wings is one of the typical difficulties when attempting to mesh it in an
anisotropic way using global methods. The last example is a transsonic flow
around Onera M6 wing. The CAD is depicted in Figure 6 (left). The wing



626 A. Loseille and R. Löhner

Fig. 6. Transsonic flow around Onera M6 wing. Only quality-driven insertion and
collapse with anisotropic metric gradation were used. From left to right, CAD of the
geometry, adapted surface mesh with a cut along the symmetry plane, and volume
adapted mesh in the wake of the wing.

is flying at Mach 0.8 with an angle of attack of 1.5 degrees. At this speed
regime, a strong shock appears on the wing profile as depicted in Figure 6
(middle). Despite the strong amplitude of the shock, the wake is also well
captured when using multi-scale metric (6), see Figure 6 (right). The final
adapted mesh is composed of 170 000 vertices and 950 000 tetrahedra.

4.2 Using the Boundary Layers Metric

We illustrate in this section the practical use of the boundary layers metric
derived in Section 3.4.

Using (11) directly to generate a unit mesh is usually intractable due to
the small required sizes (around 10−6m). As pointed out by the previous
examples, a classical iterative mesh adaptation procedure can reach quite
easily a precision of 10−3m near a shock after several adaptation steps. An
example of a unit-mesh with respect to (11) for a minimal size of 0.005m is
depicted in Figure 7 (left). In comparison with structured boundary layers
grids, this result does not seem optimal in term of number of nodes and
edges alignment. A first improvement to this direct approach is to build the
boundary layers mesh layer by layer. The gradient of the distance map to the
body is used as a relevant information for points location and edges alignment.
In this respect, instead of generating a unit mesh in (11) directly, the quality
computed in (11) is used to recover locally quasi-structured elements using
swaps of edge and point smoothing, see Figure 11 (middle). More precisely,
the algorithm for the current layer starts from the upper surface mesh of the
previous layer and is composed of the following steps:

• Insert point at the current layer size along the closest edge to the gradient
of the distance map Φ using the insertion of Section 4;



On 3D Anisotropic Local Remeshing 627

Fig. 7. From left to right, boundary layers mesh generation with a unit mesh ap-
proach using (11), structured layer generated and recovered using quality computed
in (11), and structured layer with the uniform mesh from which it was generated.

• Align edges selected for refinement with the gradient of the distance map.
This step is equivalent to the classical point smoothing [17];

• Optimize the mesh by swapping edges while controlling the quality com-
puted using (11) in order to recover a structured layer.

A first layer created from a uniform mesh is depicted in Figure 7 (mid-
dle). The regular structure of the layer is fully recovered. The interaction
between the structured layer and the uniform mesh is depicted in Figure 7
(right). This algorithm allows the creation of a boundary layers mesh from
an adapted mesh while preserving the anisotropy. An example is depicted
in Figure 8 where 10 boundary layers are added to an initial anisotropic
mesh. The minimal size is 10−5m. Almost 25 000 tetrahedra are added to the

Fig. 8. Anisotropic mesh where 10 boundary layers were generated with a minimal
size of 10−5m (left), footprint of the boundary layers mesh near the shock (right).



628 A. Loseille and R. Löhner

initial mesh composed of 55 000 tetrahedra and 10 800 vertices. Moreover, this
recovery process is faster than the traditional unit-mesh generation process.

5 Conclusions and Future Work

Local anisotropic remeshing has been introduced in this preliminary study
as a reliable, alternative solution to global remeshing. To this end, the adap-
tation of the surface and the volume are done simultaneously in order to
ensure that a valid mesh is available for computation after each remeshing
phase. All mesh modification operators are thought as being able to handle
a complete volume mesh as input. The technique used is based on edge in-
sertion and collapse. Apart from their inherent simple formulation, they turn
out to be efficient once they are monitored by a quality function. In terms of
complexity, this approach seems much more simple that the generalization of
the Delaunay kernel for anisotropy. It appears to provide a good compromise
between simplicity and efficiency. For generality, the mesh generator uses
the classical metric-based framework. It allows to take as an input various
metric fields issued from differents tasks. Several metric fields for controlling
the adaptation of the surface mesh or creating boundary layers have been
derived. Currently work is directed at:

• The full interaction between the boundary layers metric and the interpo-
lation error metric;

• Improving the robustness of surface remeshing for complex geometries,
• Improvements in boundary layers mesh generation, ie, taking into ac-

count the curvature of the distance map in order to simulate multi-normals
behavior;

• Better vector-based edge alignment in order to reduce the number of nodes
in the boundary layers, thereby tending to the number of nodes given by
a truly structured grid;

• The application of the boundary layers metric to the case of shocks or
any physical features of the flow.

More generally, this approach is currently tested on unsteady-problems and
on RANS simulations with embedded and immersed bodies.

References

1. Alauzet, F.: Size gradation control of anisotropic meshes. Finite Elements in
Analysis and Design (2009) (Published online)

2. Alauzet, F., Frey, P.J., George, P.-L., Mohammadi, B.: 3D transient fixed point
mesh adaptation for time-dependent problems: Application to CFD simula-
tions. J. Comp. Phys. 222, 592–623 (2007)

3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast
and simple calculus on diffusion tensors. Magnetic Resonance in Medicine 56(2),
411–421 (2006)



On 3D Anisotropic Local Remeshing 629

4. Baker, T.: Three-dimensional mesh generation by triangulation of arbitrary
point sets. AIAA Paper, 87-1124 (1987)

5. Baum, J.D., Löhner, R.: Numerical simulation of pilot/seat ejection from an
F-16. AIAA Paper, 93-0783 (1993)

6. Baum, J.D., Luo, H., Löhner, R.: Numerical simulation of blast in the world
trade center. AIAA Paper, 95-0085 (1995)

7. Berger, M.: A panoramic view of Riemannian geometry. Springer, Berlin (2003)
8. Borouchaki, H., Hecht, F., Frey, P.J.: Mesh gradation control. Int. J. Numer.

Meth. Engrg. 43(6), 1143–1165 (1998)
9. Bottasso, C.L.: Anisotropic mesh adaption by metric-driven optimization. Int.

J. Numer. Meth. Engng. 60, 597–639 (2004)
10. Castro-Dı́az, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic un-

structured mesh adaptation for flow simulations. Int. J. Numer. Meth. Flu-
ids 25, 475–491 (1997)

11. Chen, L., Sun, P., Xu, J.: Optimal anisotropic simplicial meshes for minimizing
interpolation errors in Lp-norm. Math. Comp. 76(257), 179–204 (2007)

12. do Carmo, M.: Differential geometry of curves and surfaces. Prentice-Hall, En-
glewood Cliffs (1976)

13. Dobrzynski, C., Frey, P.J.: Anisotropic delaunay mesh adaptation for unsteady
simulations. In: Proc. of 17th Int. Meshing Rountable, pp. 177–194. Springer,
Heidelberg (2008)

14. Dompierre, J., Vallet, M.G., Fortin, M., Bourgault, Y., Habashi, W.G.:
Anisotropic mesh adaptation: towards a solver and user independent cfd. AIAA
Paper, 97-0861 (1997)

15. Frey, P.J., Borouchaki, H.: Surface meshing using a geometric error estimate.
Int. J. Numer. Methods Engng. 58(2), 227–245 (2003)

16. Frey, P.J.: About surface remeshing. In: Proc. of 15th Meshing Rountable 15,
pp. 123–136. Springer, Heidelberg (2000)

17. Frey, P.J., George, P.-L.: Mesh generation. Application to finite elements, 2nd
edn. ISTE Ltd and John Wiley & Sons (2008)

18. George, P.L., Borouchaki, H.: Delaunay triangulation and meshing: application
to finite elements. Hermès Science, Paris (1998)

19. George, P.L., Hecht, F., Saltel, E.: Fully automatic mesh generator for 3d do-
mains of any shape. Impact of Comuting in Science and Engineering 2, 187–218
(1990)

20. Hecht, F., Mohammadi, B.: Mesh adaptation by metric control for multi-scale
phenomena and turbulence. AIAA Paper, 97-0859 (1997)

21. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983)

22. Li, X., Remacle, J.-F.: Anisotropic mesh gradation control. In: Proc. of 13th
Meshing Rountable, Williamsburg, VA, USA (2004)

23. Löhner, R.: Regridding surface triangulations. J. Comp. Phys. 126, 1–10 (1996)
24. Löhner, R.: Renumbering strategies for unstructured-grid solvers operating on

shared-memory, cache-based parallel machines. Comput. Meth. Appl. Mech.
Engrg. 163, 95–109 (1998)

25. Löhner, R.: Generation of unstructured grids suitable for RANS calculations.
AIAA Paper, 99-0662 (1999)

26. Löhner, R.: Applied CFD techniques. Wiley, New-York (2001)
27. Löhner, R.: Generation of viscous grids with ridges and corners. AIAA Paper,

07-3832 (2007)



630 A. Loseille and R. Löhner

28. Löhner, R., Parikh, P.: Three-dimensionnal grid generation by the advancing-
front method. Int. J. Numer. Meth. Fluids 8(8), 1135–1149 (1988)

29. Loseille, A.: Adaptation de maillage 3D anisotrope multi-échelles et ciblé à une
fonctionnelle. Application à la prédiction haute-fidélité du bang sonique. PhD
thesis, Université Pierre et Marie Curie, Paris VI, Paris, France (2008)

30. Loseille, A., Alauzet, F.: Continuous mesh model and well-posed continuous
interpolation error estimation. RR-6846, INRIA (2009)

31. Loseille, A., Alauzet, F., Dervieux, A., Frey, P.J.: Achievement of second or-
der mesh convergence for discontinuous flows with adapted unstructured mesh
adaptation. AIAA Paper, 07-4186 (2007)

32. Marcum, D.L.: Adaptive unstructured grid generation for viscous flow applica-
tions. AIAA Journal 34(8), 2440–2443 (1996)

33. Marcum, D.L.: Efficient generation of high-quality unstructured surface and
volume grids. Engrg. Comput. 17, 211–233 (2001)

34. Mavriplis, D.J.: An advancing front delaunay triangulation algorithm designed
for robustness. J. Comp. Phys. 117, 90–101 (1995)

35. Pain, C.C., Umpleby, A.P., de Oliveira, C.R.E., Goddard, A.J.H.: Tetrahedral
mesh optimisation and adaptivity for steady-state and transient finite element
calculations. Comput. Meth. Appl. Mech. Engrg. 190, 3771–3796 (2001)

36. Park, M.A.: Adjoint-based, three-dimensional error prediction and grid adap-
tation. AIAA Paper 42(9), 1854–1862 (2006)

37. Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.C.: Adaptive remeshing
for compressible flow computations. J. Comp. Phys. 72, 449–466 (1987)

38. Ramamurti, R., Löhner, R.: Simulation of flow past complex geometries using
a parallel implicit incompressible flow solver. AIAA Paper, CP-933 (1993)

39. Schall, E., Leservoisier, D., Dervieux, A., Koobus, B.: Mesh adaptation as a
tool for certified computational aerodynamics. Int. J. Numer. Meth. Fluids 45,
179–196 (2004)

40. Sethian, S.: Level-set methods and fast marching methods. Cambridge Univer-
sity Press, Cambridge (1999)

41. Tam, A., Ait-Ali-Yahia, D., Robichaud, M.P., Moore, M., Kozel, V., Habashi,
W.G.: Anisotropic mesh adaptation for 3D flows on structured and unstruc-
tured grids. Comput. Meth. Appl. Mech. Engrg. 189, 1205–1230 (2000)

42. Vallet, M.-G., Manole, C.-M., Dompierre, J., Dufour, S., Guibault, F.: Nu-
merical comparison of some hessian recovery techniques. Int. J. Numer. Meth.
Engrg. 72, 987–1007 (2007)




