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Abstract. This paper addresses classical issues that arise when applying aniso-
tropic mesh adaptation to real-life 3D problems as the loss of anisotropy or the
necessity to truncate the minimal size when discontinuities are present in the so-
lution. These problematics are due to the complex interaction between the compo-
nents involved in the adaptive loop: the flow solver, the error estimate and the mesh
generator. A solution based on a new continuous mesh framework is proposed to
overcome these issues. We show that using this strategy allows an optimal level of
anisotropy to be reached and thus enjoy the full benefit of unstructured anisotropic
mesh adaptation: optimal distribution of the degrees of freedom, improvement of
the ratio accuracy with respect to cpu time, . . .
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Introduction

Nowadays, there is no more need to recall the benefits of metric-based mesh
adaptation when dealing with anisotropic physical phenomena. A lot of 3D
successful examples on real-life problems have already proved its efficiency
[3, 6, 11, 18, 19]. However, one question remains: are the adaptive computa-
tions really anisotropic or optimal? Apart from its simplicity, this question
raises, as we will see, many other capital issues: assessment of the numerical
solution, convergence of the computation at the theoretical order, automatic
detection and capturing of all the scales of the solution, . . . Consequently,
answering positively to these questions is not straightforward as we face both
theoretical and practical difficulties. Indeed, claiming that a mesh is optimal
requires at least the definition of a proper cost function along with the possi-
bility of differentiating it. A classical cost function is the interpolation error.
However, problems occur when attempting to differentiate it with respect to
a discrete mesh in order to derive the optimal one. Indeed, the differentiation
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is not defined on the space of discrete meshes. Despite this weakness, if we
now assume that a specification of the optimal can be exhibited, it is of main
importance to derive a numerical algorithm to generate it practically. Being
able to guarantee the convergence of the algorithm to the optimal continuous
solution is a supplementary difficulty.

We first recall the formulation of the mesh adaptation problem for mini-
mizing the interpolation error. The problematics arising when the function
becomes a numerical solution are then illustrated on a simple example.

An initial ill-posed problem. In its more general form, the problem of mesh
adaptation consists in finding the mesh H of Ω that minimizes a given error
for a given function u. For the sake of simplicity, we consider here the linear
interpolation error u − Πhu controlled in Lp norm. Note that considering
other norms works as well [13]. The problem is thus stated in an a priori
way:

Find Hopt having N nodes such that E(Hopt) = min
H
‖u−Πhu‖Lp(Ω) . (1)

As it, Problem (1) is a global combinatorial problem which turns out to be
intractable practically. Indeed, both topology and vertices location need to
be optimized. Consequently, simpler problems are considered to approximate
the solution. A common simplification is to perform a local analysis of the
error instead of considering the global problem. A first set of methods consists
in deriving the optimal element shape [2]. A second set consists in deriving a
local bound of the interpolation error. This bound is then transformed into
a metric-based estimate [8, 9, 13]. Direct minimization of the error can be
also considered by using the interpolation error as a cost function directly in
the mesh generator [14]. All these strategies have in common the resolution
of a local problem as they act in the vicinity of an element. Consequently,
such error minimizations are equivalent to a steepest descent algorithm that
converges only to a local minimum with poor convergence properties. This
drawback arises because of considering directly the minimization on a
discrete mesh.

Loss of anisotropy when turning to numerical solutions. When the solution u
becomes a numerical solution uh provided by a solver, additional problematics
arise in the resolution of Problem (1). The choice of the error estimate used
to derive the metric becomes of main importance. To illustrate this point,
we consider a standard metric-based error estimate as in [4], i.e., the control
of the interpolation error in L∞ norm, for the accurate capturing of shock-
waves inside a scramjet. This is done by considering a recovered Hessian
of one variable of the flow field (mach, pressure, . . . ). The final result is
shown in Figure 1. If the final adapted mesh seems perfectly anisotropic
(left), a closer view around a shock reveals a complete loss of the anisotropy
(right). A second problem is that such a strategy does not capture the small-
scale features of the flow. Several modifications of this Hessian-based estimate
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Fig. 1. Scramjet adaptive computation based on a control of the interpolation
error in L∞ norm

have been considered to overcome this issue. For instance, the following local
normalizations:

|H |
|u| ,

|H |
|u|+ h ‖∇u‖2 ,

|H |
γ|u|+ (1− γ)h‖∇u‖2 , (2)

were introduced in [4, 15, 9], respectively, as an attempt to capture all the
scales of the solution. However, the control of the interpolation error re-
mains in L∞ norm. If more scales of the solution are captured, the loss of
anisotropy remains and the request for a minimal size prescription is still
necessary.

Continuous mesh framework and multi-scale mesh adaptation. To overcome
the previous issues, a complete duality between discrete entities and con-
tinuous ones is introduced using classical concepts of Differential Geometry
as Riemannian metric space. In the proposed continuous framework, notions
of continuous mesh, continuous element and continuous interpolation opera-
tor naturally appear. This discrete-continuous duality is demonstrated from
equivalence formula. In this framework, Problem (1) can be recast as a con-
tinuous optimization problem. Contrary to discrete-based study, the continu-
ous formulation succeeds in solving globally the optimal interpolation error
problem by using powerful mathematical tools as the calculus of variations.
When dealing with numerical simulations, the use of Lp norm interpolation
error control enables us to capture all the scales of the numerical solu-
tion. Numerical experiments show that solution scales that have an amplitude
1 000 times lower than the largest one are still captured and refined. From a
practical point of view, prescribing a minimal size is no more required.
This results in the generation of highly anisotropic meshes. Moreover, the
analysis for regular functions predicts a second order convergence for the
mesh adaptation algorithm. We show that this order is preserved on numeri-
cal solutions even when they are issued from flows with shocks with a modern
high-order shock capturing solver. Verifying numerically this second order of
convergence is a first assessment of computations.

Outline. The main results associated with the continuous mesh framework
are reviewed in Section 1. Section 2 deals with the discrete and continuous
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equivalence for the local interpolation error. Then, the optimal continuous
mesh minimizing the global interpolation error in Lp norm is derived in Sec-
tion 3. Practical implementation of the continuous mesh framework and the-
ory assessment on complex numerical simulations are done in Section 4.

1 Continuous Mesh Framework

All the notions are introduced in 3D even if all the concepts extend to nD
as well. Most of the time the complete proofs are skipped for conciseness
purposes. However, they are all available in [16, 17]. In the following, a metric
tensorM is a 3× 3 positive symmetric matrix. When the metric field varies
over the domain Ω ⊂ R

3, a Riemannian metric space M = (M(x))x∈Ω of
Ω is defined. Rewriting locally metric tensor M gives a new insight of the
possibility of metric-based mesh adaptation. In particular, a duality between
discrete and continuous views appear clearly. We exemplify in this section
the set of meshes that are represented by Riemannian metric space M. The
study is first done locally for an element and then generalized to the whole
computational domain Ω. These considerations are based on the concept of
unit mesh [10], recalled hereafter.
Local duality. An element K (a tetrahedron in 3D) is unit with respect to a
constant metric tensor M if the length of all its edges is unit in metric M.
If K is given by its list of edges (ei)i=1..6, then :

∀i = 1, ..., 6, �M(ei) = 1 with �M(ei) =
√

teiM ei.

If K is composed only of unit length edges then its volume |K|M in M is
constant equal to:

|K|M =
√

2
12

and |K| =
√

2
12

(det(M))−
1
2 ,

where |K| is its Euclidean volume. The function unit with respect to defines
classes of equivalences of discrete elements.

Proposition 1 (Equivalence classes). LetM be a constant metric tensor,
there exists a non-empty infinite set of unit elements with respect to M.
Conversely, given an element K = (ei)i=1..6 such that |K| �= 0, then there is
a unique metric tensor M for which element K is unit with respect to M.

The previous proposition induces deeper relationships betweenM and the set
of unit discrete elements. These relations write as geometric invariants [16].

Proposition 2 (Geometric invariant). LetM be a constant metric tensor
and K be a unit element with respect toM. We denote by (ei)i its edges list.
Then, the following invariant holds for all symmetric matrix H:

6∑

i=1

teiHei = 2 trace(M− 1
2HM− 1

2 ) . (3)
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Global duality. When dealing with a Riemannian metric space M =
(M(x))x∈Ω , the main complexity is to take into account the variations of
the function x �→ M(x). To simplify the analysis, M is first rewritten in
order to distinguish local properties from global ones.

Proposition 3. A Riemannian metric space M = (M(x))x∈Ω locally writes:

∀x ∈ Ω, M(x) = d
2
3 (x)R(x)

⎛

⎜
⎝

r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)

⎞

⎟
⎠

tR(x),

where

• the density d is equal to: d = (h1h2h3)
−1 = (λ1λ2λ3)

1
2 , with λi the eigen-

values of M and hi = λ
− 1

2
i

• the anisotropic quotients ri are equal to: ri = h3
i (h1h2h3)

−1

• R is the eigenvectors matrix of M.

The anisotropy is given by the anisotropic quotients, the level of accuracy
is given by the density and the orientation by the orthonormal matrix R.
Global properties of M can be deduced by integrating these local quantities
on Ω. When integrating d over Ω, the complexity of M is defined:

C(M) =
∫

Ω

d(x) dx =
∫

Ω

√
det(M(x)) dx.

This quantity can be viewed as the continuous counterpart of the number of
vertices of a mesh. In the context of error estimation, this notion enables the
study of the order of convergence with respect to a sequence of Riemannian
metric spaces having an increasing complexity. Consequently, the complexity
C(M) is also the continuous counterpart of the classical parameter h used for
uniform meshes while studying convergence order.

The set of discrete meshes represented by M is more complex to describe
than the class of unit elements. The problem arises from the impossibility to
tessellate R

3 uniquely with the regular tetrahedron, see discussions in [17].
Consequently, the notion of unit element does not extend as well to a mesh.
In order to ensure existence, the notion of quasi-unit element is devised. This
definition takes into account the variations of the continuous mesh:

Definition 1 (Quasi-unit element). A tetrahedron K defined by its list of
edges (ei)i=1...6 is said quasi-unit for M if

∀i ∈ [1, 6], �M(ei) ∈
[

1√
2
,
√

2
]

and QM(K) ∈ [α, 1] with α > 0 , (4)
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where

QM(K) =
36
3

1
3

|K| 23M∑6
i=1 �

2
M(ei)

∈ [0, 1], with |K|M =
∫

K

√
det(M(x)) dx,

and �M(ei) =
∫ 1

0

√
tabM(a + t ab) ab dt, with ei = ab.

(5)

The quality function QM ensures that the volume and the shape of the ele-
ments are controlled while generating elements with quasi-unit edges lengths.
The integral in the computation of �M given by (5) is necessary to take into
account the variations of M along each edge ei. A discrete mesh is unit with
respect to M when it is only composed of quasi-unit elements.

Propositions 1 and 3 highlights a duality between discrete entities and con-
tinuous ones. It results that, in the proposed continuous framework, a metric
tensorM is assimilated to a continuous element and a continuous mesh of a
domain Ω is defined by a collection of continuous elements M = (M(x))x∈Ω ,
i.e., a Riemannian metric space. In particular, for an element, this duality
is justified by strict analogy between discrete and continuous notions: orien-
tation vs. matrix R, stretching vs. ri and size vs. d. For a mesh, we point
out the duality between the number of vertices and C(M). Proposition 2 also
illustrates a duality between geometric quantities. This duality will be even
reinforced in the next section by studying the interpolation error.

In what follows, the continuous terminology is employed to emphasize the
exhibited duality.

2 Interpolation Error: Discrete-Continuous Duality

As our intent is to propose a fully discrete-continuous duality, it is not enough
to derive only the optimal mesh arising from an interpolation error bound
as in classical studies on interpolation error [4, 9, 13]. Instead, we want to
evaluate the interpolation error for any functions on any continuous meshes
without imposing some optimality conditions as alignment, equi-distribution,
. . . We show in this section that the interpolation error can be computed
analytically for a given function on a given continuous mesh. We start with
an estimate for quadratic functions. The general case is deduced from this
study.

An error estimate for quadratic functions. In this section, we consider a
quadratic function u defined on a domain Ω ⊂ R

3. The function is given
by its matrix representation:

∀x ∈ Ω, u(x) =
1
2

txH x,

where H is a symmetric matrix representing the Hessian of u. For every sym-
metric matrix H , |H | denotes the positive symmetric matrix deduced from



Optimal 3D Highly Anisotropic Mesh Adaptation 581

H by taking the absolute values of its eigenvalues. The function u is linearly
interpolated on a tetrahedron K. We denote by Πhu the linear interpolate of
u on K. We can now state the following result:

Proposition 4. For every quadratic function u, its linear interpolation error
in L1 norm on a tetrahedron K verifies:

‖u−Πhu‖L1(K) ≤ |K|40

6∑

i=1

tei|H |ei,

where (ei)i=1,6 is the set of edges of K.
The previous inequality becomes an equality when u is elliptic or parabolic.

If K is now assumed to be unit with respect to M, the following theorem
holds:

Theorem 1. For all unit elements K with respect to M, the interpolation
error of u in L1 norm does not depend on the element shape and is only a
function of the Hessian H of u and of M. In 3D, for all unit tetrahedra K
in M, the following equality holds:

‖u−Πhu‖L1(K) =
√

2
240

det(M− 1
2 ) trace(M− 1

2 HM− 1
2 ). (6)

It is important to note that Relation (6) links an infinite set of elements (on
the left-hand side) to a unique entity: M (on the right-hand side). More-
over, it shows that whatever the choice of unit-element made by the mesh
generator, the resulting interpolation error is always the same as it is only
function of metricM. Consequently, this theorem demonstrates the possibil-
ity to evaluate the interpolation error for continuous element M associated
with discrete element K. When u is no more quadratic and when the interpo-
lation error is computed on a continuous mesh M, the following continuous
discrete local equivalence is proved:

Theorem 2 (Discrete-continuous duality). Let u be a twice continuously
differentiable fonction of a domain Ω and (M(x))x∈Ω be a continuous mesh
of Ω. Then, there exists a unique function πM such that:

∀a ∈ Ω , |u− πMu|(a) = 2
‖uQ −ΠhuQ‖L1(K)

|K| ,

for every K unit element with respect toM(a) and where uQ is the quadratic
model of u at a.

This theorem underlines another discrete-continuous duality by pointing out
a continuous counterpart of the interpolation error. For this reason, we pro-
pose the following formalism: πM is called continuous linear interpolate and
|u − πMu| represents the continuous dual of the interpolation error. The
continuous linear interpolate is defined by:
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πMu(a) = u(a) +∇u(a) +
1
cn

trace(M− 1
2 (a)H(a)M− 1

2 (a)),

where cn is 1/8 in 2D and 1/10 in 3D [17]. This result allows us to compute
interpolation errors analytically. The following examples give a comparison
between continuous and discrete interpolation errors evaluation.

Continuous examples. The set of 2D continuous meshes M(α) =
(Mα(x))x∈Ω is defined on the square domain Ω = [0, 1]× [0, 1] by:

Mα(x, y) = α

(
h−2

1 (x, y) 0
0 h−2

2 (x, y)

)

,

where h1(x, y) = 0.1(x+ 1) + 0.05(x− 1) and h2(x, y) = 0.2. The parameter
α is used to control the level of accuracy of the mesh. The continuous mesh
becomes coarser when α decreases but anisotropic quotients and orientations
remain constant. This trend is given by the computation of the complexity
C(M(α)):

C(M(α)) = N(α) =
∫∫

Ω

1
h1h2

(x, y) dxdy =
200
3

ln(2)α.

The continuous interpolation error on M(α) is computed for two analytical
functions: u1(x, y) = 6x2 + 2xy+ 4y2 and u2(x, y) = e(2x2+y). As regards the
function u1, the point-wise continuous interpolation error on M(α) is

(u1 − πMu1)(x, y) =
27 x2 + 18 x+ 35

800α
.

The previous expression is then integrated over Ω:
∫∫

Ω

|u1 − πMu1|(x, y) dxdy =
53

800α
=

53
21

ln(2)
N(α)

.

For the function u2, the point-wise continuous interpolation error on M(α)
is:

(u2 − πMu2)(x, y) =
e4x2+y

8α
(
(0.15x+ 0.05)2 (4 + 16x2) + 0.05

)
.

By a direct integration over Ω, it comes:
∫∫

Ω

|u2 − πMu2|(x, y) dxdy ≈ 0.2050950191
α

≈ 13.673 ln(2)
N(α)

.

These analytical evaluations of the continuous interpolation error are com-
pared to the evaluation of the discrete interpolation error on a set of a unit
meshes with respect to M(α) for several values of α. These evaluations are
plotted in Figure 2 where a perfect correlation is observed. The black-plain
lines represent the extremal bound of the interpolation error due to the re-
laxed notion of quasi-unit elements, cf. Definition 1, while considering uniform
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Fig. 2. Left, a unit mesh with respect to M(α) for α = 32. Comparison between
continuous interpolation error ‖u − πMu‖L1(Ω) and discrete interpolation error
‖u−Πhu‖L1(Ω) evaluations for the functions u1 (middle) and u2 (right) on M(α).

meshes in M(α) with edges length equal to
√

2/2 (lower line) and 2 (upper
line).

We now consider the set of 3D continuous meshes M(α) = (Mα(x))x∈Ω

defined on the domain Ω = [0, 1]× [0, 1]× [0, 1] which are given by:

Mα(x, y, z) = α

⎛

⎝
h−2

1 (x, y, z) 0 0
0 h−2

2 (x, y, z) 0
0 0 h−2

3 (x, y, z)

⎞

⎠ ,

where h1(x, y, z) = 0.1(x+ 1) + 0.05(x− 1),
h2(x, y, z) = 0.2 and h3(x, y, z) = 0.2(z + 2) .

We consider the interpolation error of the function u3(x, y, z) = e2x+y+z. The
continuous linear interpolation error is (see [17] for details):

∫∫∫

Ω

|u3 − πMu3|(x, y, z) dxdydz ≈ 0.73
α
≈ 126.215

N(α)
2
3
.

Comparisons between continuous and discrete interpolation errors evalua-
tions for the set of continuous meshes are depicted in Figure 3. As previously,
the matching between both evaluations is excellent.

Fig. 3. 3D unit meshes with respect to M(α) for α = {16, 32} (left and middle).
Right, comparison between continuous interpolation error ‖u3 − πMu3‖L1(Ω) and
discrete interpolation error ‖u3 −Πhu3‖L1(Ω).
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These examples justifies the continuous terminology as the continuous in-
terpolation computation is equivalent to the discrete one. Then, we use this
equivalence to derive a global optimal minimizing the continuous interpola-
tion error.

3 Optimal Control of the Interpolation Error in Lp

Norm

Using the definition of the linear continuous interpolate πM of Section 2,
the following 3D point-wise interpolation error for u on M = (M(x))x∈Ω is
deduced:

eM(x) = (u− πMu)(x) =
1
10

3∑

i=1

h2
i (x)|tvi(x)H(x)vi(x)|,

where H is the Hessian of u, (vi)i=1,3 the local eigen-directions of M and
(hi)i=1,3 the local sizes of M along these directions. It is then possible to set
the well-posed global optimization problem of finding the optimal continuous
mesh minimizing the continuous interpolation error in Lp norm:

Find MLp = min
M

ELp(M) =
(∫

Ω

ep
M

) 1
p

=
(∫

Ω

(u− πMu)p

) 1
p

, (7)

under the constraint
C(M) =

∫

Ω

d = N.

The constraint on the complexity is added to avoid the trivial solution where
all hi are zero which provides a null error. Contrary to discrete analysis, this
problem can be solved globally by using the calculus of variations as it is well-
defined on the space of continuous meshes. In [16], it is proved that Problem (7)
admits a unique solution. In addition, the following properties hold:

Theorem 3. Let u be a twice continuously differentiable function defined on
Ω ⊂ R

3, the optimal continuous mesh MLp(u) minimizing Problem (7) reads
locally:

MLp = DLp det(|H |) −1
2p+3 |H |, with DLp = N

2
3

(∫

Ω

det(|H |) p
2p+3

)− 2
3

.

(8)
It verifies the following properties:

• MLp(u) is unique
• MLp(u) is locally aligned with the eigenvectors basis of H and has the

same anisotropic quotients as H
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• MLp(u) provides an optimal explicit bound of the interpolation error in
Lp norm:

‖u− πMLpu‖Lp(Ω) = 3N−
2
3

(∫

Ω

det (|H |) p
2p+3

) 2p+3
3p

. (9)

• For a sequence of continuous meshes having an increasing complexity
with the same orientation and anisotropic quotients (MN

Lp(u))N=1...∞,
the asymptotic order of convergence verifies:

‖u− πMN
Lp
u‖Lp(Ω) ≤ Cst

N2/3
. (10)

Relation (10) points out a global second order of mesh convergence.

Note that Bound (9) has been also derived in [5]. However, in our case, all the
constants of (9) are explicitly given. In addition, a second order of conver-
gence is predicted. Last but not least, the final difference is that we are able
practically to generate a discrete mesh approximating the continuous opti-
mal solution by using any metric-based adaptive mesh generators as soon as
the generated meshes verify (5). In addition, this approach is fully compati-
ble with steepest descent methods discussed in the introduction. Indeed, the
unit mesh with respect to the global optimal continuous mesh can be used
as an initialization, then a discrete steepest descent method can be used to
converge toward an optimal discrete mesh.

Examples. We first give an example that illustrates why the L∞ norm is
not well-suited for flow solutions involving different scales. The considered
function is:

∀(x, y) ∈ [0, 1]2, f(x, y) = 0.1 sin(50x) + atan
(

0.1
sin(5y)− 2x

)

.

It is composed of a main shock induced by the atan function with varia-
tions of small amplitudes given by the sine, see Figure 4 (left). Two optimal
adapted meshes have been generated: one controlling the L1 norm and the
other controlling the L∞ norm of the interpolation error. Both meshes are
composed of 100 000 vertices. All the scales are refined with the L1 norm ,
see Figure 4 (middle), whereas only the main shock is refined with the L∞

norm, see Figure 4 (right).
The second example illustrates the convergence of the adaptive scheme for a

1D discontinuous function, the step function fH , with and without the intro-
duction of an artificial dissipation. Indeed, modern shock capturing schemes
that are not compressive generally introduce such dissipation [1]. Figure 5 rep-
resents on a uniform mesh the diffused step function fh on two elements (left)
and its linear interpolationΠfH (middle), i.e., its discrete representation with-
out any dissipation. The right picture shows the evolution of the minimal size
prescription at each iteration of the mesh adaptation loop for two different er-
ror thresholds (ε = 0.1 and ε = 0.12) for both functions. We observed that the



586 A. Loseille and F. Alauzet

Fig. 4. From left to right, iso-values of function f , optimal meshes controlling the
interpolation error in L1 norm and in L∞ norm

Fig. 5. Linear interpolateΠfH of discontinuous function fH and numerical diffused
shock fh. Whatever the level of error Err desired, the minimal size converges when
adapting to fh and diverges when adapting to fH .

minimal size converge progressively towards zero for the step function without
any dissipation fH whereas it converges towards a fixed value for the diffused
one fh. Consequently, one may expect that the size in the normal direction to
a numerical shock will not tend to zero during the refinement process if a dis-
sipation is introduced. This feature of multi-scale mesh adaptation is verified
in Section 4 for a modern shock-capturing scheme.

4 3D Numerical Validations

We first review the main modifications that arises when using the previous
concept with numerical solutions. This concerns the recovery of derivatives of
piecewise linear by element solutions, the adaptive loop and the computation
of anisotropic ratios and quotients. Then, several 3D flow simulations involv-
ing highly anisotropic meshes are presented. For all the examples, a control
of the interpolation error in L2 norm of the local Mach number is used and
no minimal size is prescribed.

High-order approximation and hessian recovery. In our case, the flow solver
provides a continuous piecewise linear by element representation of the solu-
tion uh. Consequently, our analysis cannot be applied directly to the numeri-
cal solution. The idea is to build a higher order solution approximation u∗ of
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the exact solution u from uh which is twice continuously differentiable and to
consider u∗ in the optimal metric expression (8). Practically, only the Hessian
of u∗ is recovered [1]. We also mention that the Hessian recovery procedure
from discrete data may results in a noisy recovered Hessian. Consequently,
using a proper anisotropic mesh gradation is strongly advised to smooth the
field of metric tensors.

A non linear loop. Anisotropic mesh adaptation is a non-linear problem,
therefore, an iterative procedure is required to solve this problem. For sta-
tionary simulations, an adaptive computation is carried out via a mesh adap-
tation loop inside which an algorithmic convergence of the mesh-solution cou-
ple is sought. At each stage, a numerical solution is computed on the current
mesh with the flow solver and is analyzed with a metric-based error estimate
providing the optimal metric using (8). Next, an adapted mesh, i.e., a unit
mesh, is generated with respect to this metric. The mesh generator used is
described in [7]. Finally, the solution is linearly interpolated on the new mesh.
This procedure is repeated until convergence of the couple mesh-solution.

Measuring the anisotropy. We define some anisotropic measures computa-
tion. Anisotropic quotients have been introduced in Section 1 for a continuous
element. Deriving this quantity for an element is straightforward. It relies on
the fact that there always exists a unique metric tensor for which this element
is unit, see Proposition 1. If MK denotes the metric tensor associated with
element K, solving the following linear system providesMK :

(S)

⎧
⎪⎨

⎪⎩

�2MK
(e1) = 1

...
�2MK

(e6) = 1 ,

where (ei)i=1,6 is the edges list of K and �2MK
(ei) = teiMK ei. Note that (S)

admits a unique solution as soon as the volume of K is not null. Once MK

is computed, the anisotropic ratio and the anisotropic quotient are simply
given by

ratio =
√

mini λi

maxi λi
=

maxi hi

mini hi
, and quo =

maxi h
3
i

h1h2h3
,

where (λi)i=1,3 are the eigenvalues ofMK and (hi)i=1,3 are the corresponding
sizes. The anisotropic ratio stands for the maximum elongation of a tetrahe-
dron by comparing two eigen-directions. The anisotropic quotient represents
the overall anisotropic ratio of a tetrahedron taking into account all the pos-
sible directions. It corresponds to the overall gain in three dimensions of an
anisotropic adapted mesh as compared to an isotropic adapted mesh.
The gain is of course even larger when compared to a uniform mesh. In the
sequel, these measures are used to quantify the obtained level of anisotropy.
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Fig. 6. Transonic flow around a Falcon. From top to bottom, from left to right,
Falcon geometry along with speed streamlines, difference of amplitudes between
the wings shocks and the tip vortices, Mach iso-values on the aircraft, cut in the
volume mesh that shows how the wings shocks are captured, Mach iso-values in
planes located at 100, 200, 300, 400 and 500 meters behind the Falcon and a cut in
the final volume mesh behind the Falcon showing how vortices are captured in the
mesh.
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Fig. 7. Supersonic flow around a lowboom jet. From top to bottom, from left to
right, aircraft geometry, Mach iso-values on the geometry, final anisotropic mesh in
the symmetry plane and below the aircraft, Mach iso-values in a plane 50m behind
the aircraft and order of convergence of the Mach number.
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Transonic flow around a Falcon. The Falcon jet geometry is depicted in Fig-
ure 6 (top left). The aircraft is flying at Mach number 0.8 with an angle of
attack of 3 degrees. The computational domain is a cylinder of radius 250m
and of length 700m. As the aircraft is flying at a transonic speed, the flow is
composed of both shocks and smooth vortices.These phenomena have different
magnitudes and mathematical properties. Across a shock, most variables be-
come discontinuous whereas a vortex corresponds to a smooth variation of the
variables while having a very small amplitude. These features are exemplified
in Figure 6 (top right). An extraction of the pressure across the wing extra-
dos where a shock occurs (green curve) is superposed to the pressure variation
in the wake across a vortex located 400m behind the aircraft (red curve). The
amplitude of the vortex is less than 2% of the amplitude of the shock. More-
over, the smoothness property of the vortex is a supplementary difficulty as its
derivatives involved in our estimate are also smooth. Consequently, vortices are
difficult to detect and it is hard not to diffuse them. Detecting and preserving
these vortices is still a challenge in the field of CFD. We show that the multi-
scale approach detects these two phenomena, i.e., the shocks on the wing, Fig-
ure 6 (middle) along with the vortices behind the aircraft, Figures 6 (bottom).
The final anisotropic mesh depicted in Figure 6 is composed of 2 025 231 ver-
tices and 11 860 697 tetrahedra providing a mean anisotropic ratio of 177 and
a mean anisotropic quotient of 1 639. This example illustrates two main fea-
tures of multi-scale anisotropic mesh adaptation: the accurate capturing of the
shocks on the wings and the drastic reduction of the solver diffusion that allows
us to still capture vortices 500m behind the Falcon.

Supersonic flow around a lowboom jet. The aircraft geometry is depicted in
Figure 7 (top left). Its length is L = 42 meters and it has a wing span of
20 meters. The surface mesh accuracy varies between 0.2 millimeters and 12

Table 1. Supersonic flow around a lowboom jet: anisotropic ratios and quotients
histograms for the final adapted mesh. For each interval, the number of tetrahedra
is given with the corresponding percentage.

Anisotropic ratio

1 ≤ ratio ≤ 2 38 740 0.07 %
2 ≤ ratio ≤ 3 175 929 0.33 %
3 ≤ ratio ≤ 4 274 955 0.51 %
4 ≤ ratio ≤ 5 328 501 0.61 %
5 ≤ ratio ≤ 10 1 55 4625 2.89 %

10 ≤ ratio ≤ 50 6 620 533 12.29 %
50 ≤ ratio ≤ 102 5 983 308 11.10 %

102 ≤ ratio ≤ 103 34 830 344 64.64 %
103 ≤ ratio ≤ 104 4 077 796 7.57 %
104 ≤ ratio ≤ 105 131 0.00 %
105 ≤ ratio ≤ 1 0.00 %

Anisotropic quotient

1 ≤ quo ≤ 2 10 042 0.02 %
2 ≤ quo ≤ 3 50 171 0.09 %
3 ≤ quo ≤ 4 81 027 0.15 %
4 ≤ quo ≤ 5 100 385 0.19 %
5 ≤ quo ≤ 10 526 474 0.98 %

10 ≤ quo ≤ 50 1 989 374 3.69 %
50 ≤ quo ≤ 102 1 204 384 2.24 %

102 ≤ quo ≤ 103 7 408 172 13.75 %
103 ≤ quo ≤ 104 14 595 766 27.09 %
104 ≤ quo ≤ 105 20 999 034 38.97 %
105 ≤ quo ≤ 106 6 790 336 12.60 %
106 ≤ quo 129 698 0.24 %
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Fig. 8. F15 fighter equipped with the Quiet Spike. From top to bottom, from
left to right, F15 geometry and Mach iso-values, pressure distribution 2m below
the aircraft, Mach iso-values behind the aircraft, vortices details behind the F15,
Mach iso-values near the Spike, anisotropic mesh near the spike, Mach iso-values
in a 100m wide box and accuracy of the mesh 100m below the aircraft.
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centimeters. This already represents a size variation of five orders of magni-
tude with respect to the aircraft size, and this only for the surface mesh. The
computational domain is a cylinder of 2.25 kilometers length and 1.5 kilome-
ters diameter. This represents a scale factor of 107 if the size of the domain
is compared to the maximal accuracy of the low boom jet surface mesh. The
final anisotropic mesh is composed of 9 083 53 vertices and 53 884 863 tetrahe-
dra. This accuracy allows us to capture all the shocks emitted by the aircraft
up to a distance of 16 times the length of the aircraft (almost 750m), Fig-
ure 7 (middle). The level of anisotropy reached in this simulation is quite
impressive. Indeed, the mean anisotropic quotient is almost 50 000 which is
very high. Detailed histograms are given in Table 1. Besides this high level of
anisotropy, this simulation demonstrates the good correlation with the the-
ory (10) as a 1.7 order of convergence is numerically verified on the sequence
of adaptive meshes, see Figure 7 (bottom right). As in the previous examples,
the multi-scale strategy reduces the flow solver dissipation that allows us to
capture all solution scales while maintaining a high level of anisotropy.

F15 fighter equipped with the Quiet Spike. We consider in this example the
accurate prediction of the mid-field pressure signature of the F15 fighter
equipped with the Quiet Spike concept [12] during a supersonic flight. The
aircraft is flying at Mach 1.8 with an angle of attack of 0 degree. This com-
plex geometry is shown in Figure 8 (top left). This concept was devised to
soften the sonic boom by splitting the initial strong bow shock in several
shocks of smaller amplitudes. The different scales of the pressure distribution
are depicted in Figure 8 (top right). The Quiet Spike is composed of three
cones linked by cylinders of increasing radius. The smallest cylinder has a
radius of 5cm while the greatest one has a radius of 20cm. These sizes must
be compared to the aircraft length 19.3m and wing-span 13m. The scale vari-
ations of the geometry give a first idea of the complexity of this simulation.

Table 2. F15 fighter equipped with the Quiet Spike: anisotropic ratios and quo-
tients histograms for the final adapted mesh. For each interval, the number of
tetrahedra is given with the corresponding percentage.

Anisotropic ratio

1 ≤ ratio ≤ 2 515 23 0.09 %
2 ≤ ratio ≤ 3 245 783 0.41 %
3 ≤ ratio ≤ 4 373 769 0.62 %
4 ≤ ratio ≤ 5 429 601 0.71 %
5 ≤ ratio ≤ 10 2 365 083 3.92 %

10 ≤ ratio ≤ 50 17 823 972 29.57 %
50 ≤ ratio ≤ 102 15 172 581 25.17 %

102 ≤ ratio ≤ 103 23 780 955 39.45 %
103 ≤ ratio ≤ 37 332 0.06 %

Anisotropic quotient

1 ≤ quo ≤ 2 13 096 0.02 %
2 ≤ quo ≤ 3 645 48 0.11 %
3 ≤ quo ≤ 4 102 693 0.17 %
4 ≤ quo ≤ 5 118 128 0.20 %
5 ≤ quo ≤ 10 598 219 0.99 %

10 ≤ quo ≤ 50 3 176 207 5.27 %
50 ≤ quo ≤ 102 2 676 990 4.44 %

102 ≤ quo ≤ 103 17 153 343 28.46 %
103 ≤ quo ≤ 104 26 329 992 43.68 %
104 ≤ quo ≤ 105 9 808 547 16.27 %
106 ≤ quo 238 843 0.40 %



Optimal 3D Highly Anisotropic Mesh Adaptation 593

In the literature, this simulation is currently envisaged in a 2-stage process
by coupling a structured solver with an unstructured one [12] which provides
an accurate pressure field far below the aircraft with a limit at 70m. Here,
the final adapted meshes is composed of 10 050 445 vertices and 60 280 606
tetrahedra featuring a mean anisotropic ratio of 110 and a mean anisotropic
quotient of 6 400. This mesh comes up with an accurate signature 120m be-
low the aircraft while using only unstructured meshes. Detailed histograms
for anisotropic quotients and ratios are reported in Table 2.

Conclusion

A multi-scale mesh adaptation strategy has been introduced in this paper. It
involves theoretical developments demonstrating that a field of metric tensors
completely models discrete meshes and that the notion of interpolation error
is well-defined in this continuous framework. Contrary to discrete classical
approaches, the interpolation error can be computed analytically without
any a priori hypothesis on the mesh. The optimal mesh minimizing the Lp

norm of the interpolation error is then derived as a global optimum by a
calculus of variations. The algorithm to derive a discrete optimal mesh is
based on the definition of unit-mesh. Consequently, this method can be used
with any metric-based mesh generators.

From a practical point a view, this approach automatically obtains adapted
meshes with high level of anisotropy for realistic simulations. Optimal local
Hessian normalization is set automatically and depends only on the choice
of the norm. Prescribing a minimal size is no more necessary. In addition,
numerical results show that all the scales of the solution are captured and
refined when using an Lp norm error control: shocks, shear layers, . . . There
is no need to fix some parameters as in previous Hessian normalizations.
During a simulation, verifying that a second order of convergence is reached as
predicted by the theory gives a first assessment of the computations. Finally,
the convergence to the most accurate solution is done in a natural way by
increasing the complexity N which is, along with the Lp norm, the only
parameter to set prior to a simulation.
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