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Abstract. Mappings from a master element to the physical mesh element, in con-
junction with local metrics such as those appearing in the Target-matrix paradigm,
are used to measure quality at points within an element. The approach is applied
to both linear and quadratic triangular elements; this enables, for example, one
to measure quality within a quadratic finite element. Quality within an element
may also be measured on a set of symmetry points, leading to so-called symmetry
metrics. An important issue having to do with the labeling of the element vertices
is relevant to mesh quality tools such as Verdict and Mesquite. Certain quality
measures like area, volume, and shape should be label-invariant, while others such
as aspect ratio and orientation should not. It is shown that local metrics whose
Jacobian matrix is non-constant are label-invariant only at the center of the ele-
ment, while symmetry metrics can be label-invariant anywhere within the element,
provided the reference element is properly restricted.

1 Measuring Quality Within Mesh Elements

Mesh quality is important for maintaining accuracy and efficiency of numer-
ical simulations based on the solution of partial differential equations [6].
Mesh quality metrics are used to measure mesh quality and there is an ex-
tensive literature on the subject, particularly for finite element meshes [g],
[14), [16], [17], [T9]. For simplicial elements, ‘shape’ is an important measure
[B], [15]. A shape measure based on condition number was proposed in [4],
[B]. In [2] and [7] the notion of shape for simplicial elements was formalized.
Few works discuss quality measures for quadratic elements [I], [18]; the latter
reference being the only example that goes beyond detecting singular points.
Significantly, the latter is limited to triangle elements.

Engineers usually measure mesh quality by one of two basic approaches, de-
pending on whether they are working with unstructured or structured meshes.
The quality of an unstructured mesh is most often studied in terms of the
individual elements within the mesh. Elements are most often polygons or poly-
hedra, with triangles, tetrahedra, quadrilaterals, hexahedra, prisms, and pyra-
mids being the most commonly used types. A mesh element contains vertices
and/or nodes, usually given in some canonical ordering. The vertices/nodes
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have coordinates z,,, € R¢, withd = 2,3 and m = 0,1,2,..., M, with M de-
pending on the element type and order. The quality g. of an element is most
often defined as some continuous function of the element coordinates.

Triangular element aspect ratio, given by the formula ¢. = ;%2 is an
example of the first approach to measuring quality. Because the lengths in
the formula depend on the coordinates of the vertices in the triangle, the
element metric is a function of the vertex coordinates. The formula only
applies to straight-sided (low-order) triangles.

The second approach to measuring mesh quality arises in the structured
meshing community. A global mapping from a logical block U to a physical
block 2 ¢ R? is found and serves to define a discrete grid. When d = 3,
the map takes the form z = x(5), with & = (£,£,&) € U and =z =
(x1,22,23) € §2. The tangents to the map, dz;/d¢;, 4,5 = 1,2,3, are used
to define local mesh quality at a point within the domain. For example, for
d = 2, one measures orthogonality at a point in U via the local metric x¢, - ¢, .

Over the past decade, the author has used a third approach to measuring
quality that is a hybrid of the two basic approaches [8], [9]. For each element
of a mesh, let there be a map from a logical (or master) element to the
physical element. Then one can measure local quality within the element
using formulas based on the local tangents of the map, just as is done in
the structured meshing community. Because the element map depends on
the coordinates of the vertices/nodes within the element, the local quality
at a point within the element also depends on these coordinates. Although
the third approach uses the master element concept from the finite element
method, it can be used to measure quality whether or not the mesh is intended
to be used in a finite element simulation. That is, measuring quality by the
third approach applies equally well to finite element, finite volume, finite
difference, or even spectral element simulations, as is the case with the first
approaChE

The third approach does not preclude the measurement of element quality,
if desired. Let p be a local quality metric and p(=,), n = 1,..., N, be the
local qualities measured at N points =,, within the master element. Then
element quality may be defined to be, for example, g. = max, {u(=,)}, ¢ =
min, {u(Z,)}, or the p** power-mean, p # 0, of the local qualities:

1 N 1/p
0 = (N Z[u@n)}p) 1)

with p > 0. The power-mean, minimum, and maximum are attractive as a
means to combine the local metrics because the range of the resulting element
metric is the same as the range of the local metric.

L For the sake of clarity, we propose to call the first approach to measuring qual-
ity the ‘element’ quality method, the second approach the ‘pointwise’ quality
method, and the third approach the ‘hybrid’ quality method.
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Three examples are given to show why this third approach may be attrac-
tive. First, consider a planar quadrilateral element, with area as the quantity
of interest. Let the four vertices be labeled z,,, m = 0,1,2,3, in counter-
clockwise order. The linear map is z(&1, &2) and the Jacobian matrix A(&, &2)

A=[(z1—x0) + (xo — z1 + 22 — 23) &2, (3 — 20) + (X0 — 21 + 22 — 3) &1 ]

The signed area at any given point within the element is o = det(A)E In the
‘element’ quality method, a standard quadrilateral area measure is

1 1
Ay = 92 det([z1 — 0,3 — T0]) + 2 det([z3 — w2, 11 — x2]) (2)

In the ‘pointwise’ quality method, an area measure based directly on the local
metric a(&1,&2) is

As = min{ «(0,0), «(1,0),(1,1),«(0,1) } (3)

To compare these two area measures, consider the quadrilateral with vertex
coordinates zo = (0,0), z1 = (1,0), 2 = (1, %), and 23 = (0, 18 Then
formula (@) yields A; = §, while formula (@) gives Ay = —3. Therefore, the
latter formula detects the negative Jacobian, while the former does notE

In the second example, consider the quality of a high-order finite element
such as a quadratic triangle having three mid-side nodes. With the exception
of [I8], there are no examples in the literature that measure the quality of a
quadratic finite element by the ‘element’ quality method and this reference
is limited to triangular elements. The quality of high-order finite elements
such as tetrahedra and hexahedra can be assessed using the ‘hybrid’ quality
method. In fact, the method is exactly the same as it is for linear elements:
evaluate the local quality metric at a point by computing the Jacobian of
the relevant map from the master to the physical element and combine the
local qualities via the formulas for maximum or minimum quality or the
power-mean ([Il). Although this method often does not bound the worst quality
within the element, a judicious choice of sample points within the element can
provide a lot of useful information. For a quadratic triangle, for example, it
is reasonable to measure the local quality at the three corner vertices and
at the three mid-side nodes. In this manner one can measure local shape,
size, and orientation within an element using, for example, metrics from the
Target-matrix paradigm [10], [11], [12].

In the third example, suppose one wanted to optimize the quality of a
locally-refined mesh containing, as a submesh, the two linear quadrilaterals

2 The notation A = [x¢, , T¢,] signifies that the first column of A is the 1 x d vector
x¢, and that the second column of A is the 1 x d vector w¢,. Similar notation is
used throughout. Also, det(A) signifies the determinant of A.

3 This poor quality quadrilateral is called an arrow due to the re-entrant corner.

4 Formula @) can also be written in terms of local metrics. In this example, the
ability to detect negative Jacobians is a matter of choosing the minimum instead
of the linear average.
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on the right in Figure [[] and one quadratic quadrilateral on the left. An
objective function could be based on (), for example, in which u is any
desired local quality metric. The points =,, would include the logical corners
of the three quadrilaterals, along with the logical points corresponding to
the mid-edge nodes in the quadratic ‘quadrilateral’. If the mid-side node is
allowed to be ‘free’ in the optimization, then the quadratic map is required
for the left quadrilateral, while if the mid-side node is constrained to the mid-
point of the straight edge, then only a linear map is needed. Note that in the
hybrid quality method one can have more than one quality measurement per
vertex within the mesh.

Fig. 1. Three non-conformal quadrilateral elements

The hybrid method is clearly more flexible than the element quality
method. It becomes yet more powerful when combined with concepts from
the Target-matrix paradigm which provides numerous referenced local met-
rics. Figure2lshows the basic idea: let there be maps from the logical element
to the physical element, and from the logical element to a reference element
which gives the desired element configuration. Let the Jacobian matrix of
the first map be denoted by A(Z) and the Jacobian matrix of the second
map be W(Z). It is reasonable to assume that the reference element is non-
degenerate; in that case, W is non-singular. To compare the two matrices,
form T = AW~! so that when A = W, T = I. The quality at a point =
within the element is given by a quality metric 4(Z) = u[T(Z)]. A variety of
useful local quality metrics u(T) are studied in [T1]. Most of the quality met-
rics are combinations of the fundamental quantities 7 = det(T), |T|, |T*T)|,
tr(T), and |T~1|, so the analysis to follow is focused on these.

- :

Logical Element Reference Element Physical Element

Fig. 2. Relation between the Logical, Reference, and Physical Elements
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2 Label-Invariance of Quality Metrics

An important practical issue arises in the measurement of a priori unstruc-
tured mesh quality that has to do with the labeling of the vertices within an
element. Consider the logical (left) and physical (right) triangles in Figure[3
The vertices in the logical triangle are labeled 0,1,2 in counter-clockwise or-
der, while the vertices in the physical triangle are labeled m, m + 1, m + 2,
again in counter-clockwise order. If m = 0, then physical vertex m corre-
sponds to logical vertex 0, physical vertex m + 1 to logical vertex 1, and so
on. However, if m = 1, then physical vertex m corresponds to logical vertex
1, physical vertex m + 1 to logical vertex 2, and so on. In most unstructured
mesh generation software, the value of m is determined by the order of the
nodes in the list of nodes for the given element. As an example, in the Verdict
mesh quality assessment code [I9], one step in calculating the quality of an
element is to obtain the list of vertices that are contained by the element.
No sorting of this list is done and so the first vertex in the list automatically
becomes the image vertex 0, and the second vertex in the list becomes image
vertex 1, etc. The impact of this can be seen in the two examples to follow.

m+2
2
\ % "
0 1 m

Fig. 3. Vertex Labeling Choices

First, consider the metric A; in [@)). If the indices are cyclically permuted
by 1 the formula becomes

1 1
Al = 3 det(xe — w1, 20 — 1) + 3 det(xg — w3, T2 — x3) (4)

One can show that A} = A;, that is, the element area is independent of
the choice of labeling of the vertices. This is an example of what we will
call a label-invariant metric. Not all element metrics enjoy this property. For
example, let

Lp =3 {1 — xo| + |v2 — a3|}, Ly = § {|ws — 0| + |z2 — 21]}

and define the quadrilateral aspect ratio metric to be AR = L, /Ly. Then
the cyclically permuted formula is (AR)" = 1/(AR).

Definition 1. Label-invariance for Element Quality Metrics

An element quality metric is label-invariant if, for an arbitrary physical el-
ement, its value is the same no matter which corner vertex of the physical
element is labeled zero.
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The question arises as to whether or not quality metrics should be label-
invariant. In general, the answer is no because while metrics such as area,
volume, and shape should probably be label-invariant, metrics like aspect
ratio may be more informative if they are not label-invariant.

The labeling issue above was described within the context of the first
approach to the measurement of element quality. It also exists within the
context of the third approach, with a few additional twists, due to the fact
that the mapping from the logical to the physical element depends on the
choice of labeling and the Jacobian matrix thus depends on m. The first twist
in the third approach is that even the local metric at a point may or may
not, be label-invariant, so that one can speak of label-invariant local metrics
in addition to label-invariant element metrics. Second, the label-invariance
may depend on the choice of reference element. For example, if an isotropic
reference element is selected, it is more likely that the local metric is label-
invariant. Third, label-invariance of a local metric may depend on the point
within the element at which it is evaluated. This necessitates a modification
of the previous definition for the case of measuring quality within elements.

Definition 2. Label-invariance for Local Quality Metrics

Let um(Z) = p(Tm(Z)) be a local (target-matrix) quality metric. Let the
reference element be a particular type and have a particular configuration
within that type. Then the local quality metric is label-invariant at = (with
particular reference) if, for an arbitrary physical element (whose type is the
same as the reference element), p,, (=) is a constant for all m.

In additional to the above definition, there is another concept of importance
that arises in the third approach to measuring quality. Let {=(® ... =W )}
be a collection of symmetry points within the master element ! The symmetry
points are each functions of =. Define a non-local symmetry metric o,,(=),
similar to (), based on an associated local metric u. For example, in terms
of the power-mean

1 N 1/P
om(Z) = (N Z[um(5<">)]P> (5)
n=0
and for the minimum and maximum

om(Z) = min{pn(50)) (6)
) = max{pn(™)) (7)

1

Um(

Definition 3. Label-invariance for Symmetry Quality Metrics
Let 0, be a symmetry metric derived from the metric pu,,. Let the reference
element be a particular type and have a particular configuration within that

5 It will become apparent later what is meant by a symmetry point.
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type. Then the symmetry metric is label-invariant at = (with particular ref-
erence) if, for any arbitrary physical element (whose type is the same as the
reference element), oy, is a constant for all m.

It is noted that the concept of label-invariance is not the same as the con-
cept of orientation-invariance. As a example, the aspect ratio metric AR is
orientation-invariant because, if the element is rigidly rotated, the value of
the metric does not change; in contrast, the metric is not label-invariant.

The comments and definitions presented in this section should become
clearer in the sections to follow, where the hybrid quality method is studied
on triangles with linear and quadratic maps.

3 Linear Planar Triangles

3.1 The Linear Map

Let & = (&n)and U ={Z]£>0,n>0,£+n <1} be a logical triangle.
Let xp, x1 and x5 be the three (ordered) vertices of a physical triangle in
R?. For linear triangles in the xy-plane, the mapping from U to the physical
triangle is

x(E) =x9+ (.’L’l — $0)§ + (:Cz — .’L’o)?’] (8)

Then, z¢ = 21 — ¢ and z, = x2 — o, so the Jacobian matrix is A = [x¢, ;).
For the linear triangle map, the Jacobian matrix and its determinant, det(A),
are independent of £ and n and are thus constant over the element (i.e., the
same at every point in U).

3.2 The Reference Element

Let a reference triangle with vertex coordinates wg, wy, and ws be given. The
Jacobian matrix W of the reference triangle is obtained from the previous
relations by replacing xg with wg, 1 with wy, and x2 with ws, yielding W =
[w1 — wo, wa — wg]. The reference element is assumed to be non-degenerate,
i.e., det(W) # 0; therefore W1 exists. Let T = AW ™! be the weighted
Jacobian matrix. Both W and T are constant over the linear triangle.

Let p > 0, R be any 2 x 2 rotation matrix, and

1 1/2
v=(0vi2) ®)
Then if the reference triangle is equilateral, the matrix W representing the
reference Jacobian belongs to the set of 2 x 2 matrices M of the form p RV

3.3 Label-Invariance

The map (8]) assigns the vertex (0,0) € U to the image vertex 0 in the physical
triangle. In general, the vertex (0,0) could have been assigned to any of the
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image vertices 0, 1, or 2 (see Figure[3)). To preserve orientation, it is assumed
that if reference vertex (0, 0) is assigned to image vertex m, with m = 0,1, 2,
then reference vertex (1,0) is automatically assigned to image vertex m + 1,
and (0, 1) to image vertex m + 2. There are thus three ways one can define a
properly oriented mapping for a linear triangle, depending on which physical
vertex, m is selected to be the image of = = 0. The previous map (&) is
modified to emphasize this dependence. Define the map

:C(E,m) =Tm + (xm+1 - Im)f + (Im+2 - xm) n (10)

where m = 0,1, or 2H Quantities derived from the map, such as the Jacobian
matrices and quality metrics, will also depend on m in general.

Let the Jacobian matrices of the map (I0) be A,,. From the map it is
clear that A, = [Tm+1 — Tm, Tm42 — Tm]. The three Jacobian matrices are,
in general, not equal to one another, and thus A,, is not a label-invariant
quantity. It is straightforward to show that the Jacobian matrices obey the
relation

A1 = Ay P (11)

where P is the constant matrix

ey 12

Accordingly, Ay = Ag P and Ay = A; P = Ay P2 Because det(P) = 1,
det(Ag) = det(A1) = det(Az). Thus det(A,,) is a label-invariant quantity.
For this map, there are three weighted Jacobian matrices T}, = A, W1,
for which det(Ty) = det(T1) = det(T). Thus the local metric 7, = det(T},)
for the linear planar triangle is label-invariant for any choice of = or W.

Proposition 1. The local quantities |T},| and | (T}, )*(T},)| are label-invariant
for arbitrary = if and only if W € M. The quantity tr(7},) is not label-
invariant for any choice of W.

Proof. Suppose that W € M. Then let W = p RV. One can show by direct
calculation that the matrix V P™ V! is a rotation. Therefore, W P™ W1 =
R(VP™V~-YR!is also a rotation. Let Q,, = W P™W~!. Then, T,, =
AWt = Ag PP W1 = Ag W1 Q,,. Because the Frobenius norm is in-
variant to orthogonal matrices,

Tyl = [AW ' Q| = AW ™| = [Ty

The steps in this proof are reversible, so if |T;,| is label-invariant, then
W € M. The proof for |(T,,)!(T,,)| is similar. Since the trace is not in-
variant to a rotation, it is not label-invariant. §

6 All vertex subscripts in this section are modulo 3 so, for example, 4 = z1.
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Corollary. Any local metric p,,, = p(T},), which is a function of the quantity
Tm only (e.g. u(T) = 7%), is label-invariant for any = and W. Any local
metric which is a combination of only 7y, |T)n|, and/or | (T}, )t (T,,)| is label-
invariant provided W € M. For example, the local inverse mean ratio metric

w(T) = % (which when d = 2 is the same as the condition number metric) is
label-invariant when W € M . Invariance is desirable in this case since mean
ratio is intended to measure the local shape within a triangle relative to the
reference shape[l Any local metric containing tr(T,,) is not label-invariant.
For example, the metric u(T') = |T—I|?, which is the same as |T'|?—2 tr(T)+2,
is not label-invariant. Lack of invariance is acceptable for this metric since it
is intended to control the orientation within mesh elements [I1]. §

These results, of course, apply to the linear map (I0) and must be re-examined
when the map is different.

4 Quadratic Planar Triangles

4.1 The Quadratic Map

There are three ways one can define the mapping for a quadratic planar
triangle, depending on which vertex, m (m = 0,1,2) is selected to be the
image of = = 0. Write the quadratic map on U as

:E(':wm) = Co,m + Cl,m§ + Coa,m 1]
+ ¢3.m £+ ca,m &N+ csm 7’ (13)

The tangent vectors of the map ardd

[1]

ze(ZE,m) =cim +2c3mé+camn (14)
zp(E,m) =com+caméE+2¢5mn (15)

[1]

In contrast to the linear map, the tangent vectors for the quadratic map
depend on =, thus the Jacobian matrix A,, = A,,(Z) depends on Z. It is
easy to show that the Jacobian matrix A,, for the quadratic map is constant
(i.e., independent of =) if and only if the physical triangle has straight sides.

Recall the relations between the logical, reference, and physical elements
shown in Figure (). When the map from the logical to the physical element
is quadratic, there is no reason why the map from the logical to the reference
element cannot also be quadratic. In that case, W = W (Z), i.e, the reference
Jacobian matrix can vary from one position to another. The discussion that
follows does not assume W is constant so that reference elements having

" Because the Jacobian of the linear triangle map is constant, mean ratio also
measures the shape of the triangle itself.

8 To save space, the formulas for the coefficients in terms of the element nodes is
not given since they are well-known.
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curved sides are allowed[] Define 77, (2) = A, () [W(E)] ! and 7, =
det(T).

4.2 Symmetry Points for Maps to Triangular Elements

Recall that for both the linear and quadratic triangular elements there is a
map z of the form z(=, m), where m = 0,1, 2 denotes the vertex of the trian-
gle that serves as the base in the construction the map. Let X (9) be an arbi-
trary point in the physical triangular element. Setting X (©) = CE(E(O), m) for
some fixed choice of m, we have Z(©) as the pre-image of X (). For each such
point X(® in the triangle, there are two additional points X () = (=) m)
and X = z(5® m) with pre-images =) and Z(? which we define by the
relationdd

(2 m) = 2(2Q, m+1) (16)
(2@ m) = 2(2 m+2) (17)

The points X*) and their pre-images =*) (k = 0,1,2) are points of sym-
metry because point X *t1) can be obtained either from the map based at
vertex m evaluated at Z(*+1) or from the map based at vertex m + 1 eval-
uated at =), The symmetry points are defined by the relations above and
hold on any triangle of any shape and includes both linear and quadratic
maps

The relations above can be used to find the pre-image points Z*) in terms
of 2, Solving for 1) = (¢M) (M) and 5@ = (£3) 1)) one obtains

50 = 1,00+ P50 (18)
=@ =(0,1)+ Pz (19)
where P is the matrix given in (IZ)). Explicitly, Z©) = (¢©) 5 =1 =
(1 — €0 — 5O €0 and =@ = (»© 1 - &0 — ) Notably, the logical

symmetry points do not depend on the vertices ,,, 41, and T,,42 of the
triangle.

4.3 Symmetry Relation for Jacobian of the Quadratic Map

Proposition 2. Let the Jacobian of the quadratic map ([I3]) at the point =
be given by A,,(Z) = [z¢(Z,m), x, (=, m)], with the latter given in (I4)-(I3]).
Then, for k,m = 0,1, 2, the following relations hold

A (ER)) = Ag(5k+m)) pm (20)
with P defined as in (I2).

% Note, however, that W does not depend on m since there is no labeling issue
with the reference element.

10 More generally, one can write (5", m) = (Z(s),m + r) with s = 0, 1,2,
which leads to the same symmetry points.

1 The indices k are cyclic with period 3.
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Proof. The logical symmetry points derived in the previous section can be re-
garded as functions of £(©) and (). Differentiation of the pre-image formulas
with respect to these variables, one finds

6£(k) 6£(k)

9£00)  9n(0) _ pk

( 65,(’6) 6:7](k) ) =P (21)
9E©) 90

From the relations ([I6)-(I7) that define the symmetry points of the map, one
can deduce the general statement

(2 m) =2(Z2F D m+1) =2(2% 2 m+2)

for k,m = 0,1, 2. Differentiation of these relationships with respect to &(©
and n(©) and applying () yields

Am (E(k)) Pk — Am+'r (E(ka)) Pk*’r‘
Simplifying,
Ap(E®) = A, (EF) por (22)

Now let » = —m to obtain the result. g

4.4 Label-Invariance

Let v, = det(A,,). From Proposition 2, it is immediate that

am (EM) = ag (5™ (23)
T (EOYW (E2M) = T (E+™)) W (5r+m)y pm (24)
Tm (EM)w (EM) = 1 (2™ (5(r+m™) (25)

for any W. The relation A,,11 (Z) = Ay, (5) P that held for the linear map
does not hold for the quadratic map at arbitrary =. As a consequence, the
local metrics of interest are not label-invariant for arbitrary = as they were
in the linear case.

Proposition 3. Let ¢ = (3, 1). Then the metrics (T) = 7 and u(T) =
|T'| are label-invariant at =€, the first for arbitrary reference element and the

second for an equilateral element.

Proof. When = = Z¢/ the three symmetry points are all equal to =¢. Then
@3) becomes

Tm (E(C)) =19 (E(C)) (26)
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Therefore, the metric u(T") = 7 is label-invariant. Similarly, (24]) becomes
T (EYW (2@ = Ty (@)W (2(€)) pm (27)
Therefore,
| T () [ = To (5 W () P [W(59)] ] (28)

But one can show that when the reference element is equilateral, W (=€) €
M, so, as was shown in Proposition 1, W P™ W~! is a rotation. Using the
Frobenius invariance property, we have

| T (59) | = |To (5| (29)

and thus the local metric |T'| is label-invariant. §

A similar proof can be constructed to show that u(T) = |T*T| is also label-
invariant at =, provided the reference element is equilateral.

Corollary. Metrics (T that involve combinations of 7, |T|, and/or T*T are
label-invariant at = = Z¢, provided W(Z¢) € M. For example, the Mean
Ratio metric.

For the linear triangle map, the local metrics 7, |T|, and |T*T| were label-
invariant for any = because the Jacobian matrices were constant. Therefore,
there was no need to consider symmetry metrics. Since the Jacobians vary
with = in the quadratic case, it is necessary to investigate symmetry metrics.

Proposition 4. If the local metric satisfies fi,, 1 () = i, (E0+9)) for a
particular reference element, then o, in (7)) with N = 3 is label-invariant.
Proof
Omtr = max{ ,Um+r(5(0))» ,uerT(E(l))v Nm+r(5(2))} (30)
= max{ i (5T)), i (ECY), i (EC) ) (31)

For any choice of r, we have 0,4, = 0., and thus this symmetry metric is
label-invariant. g

Corollary. When the local metric is u(T) = 7 then oy, is label-invariant,
provided the reference triangle has straight sides.

Proof. When k — r = s, the relation (22]) becomes

A(S)

m-—+r

_ A pr
from which one obtains

T, W) = T+ wir+s) pr
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and so

75 W = ) r+9)

When the reference element has straight sides, det(W) is constant, the previ-

ous becomes T,(,f_)H = 70" and therefore ugi)_w = u(mHS). Thus the assump-
tion of Proposition 4 is satisfied. g

Corollary. When the local metric is u(T') = |T'| then o, is label-invariant,
provided the reference triangle is equilateral (with straight sides).

Proof. From the previous corollary
Tongr (39)) = Ty (SO W) pr [y ()] -1 (32)

When the reference element is equilateral, it has straight sides, and then W
is independent of =. Moreover, W P" W ! is a rotation. Taking the norm of
both sides of the above relation and using the rotation-invariance property of
the Frobenius norm shows that the assumption of Proposition 4 is satisfied. §

One can similarly show that the symmetry metric o,, based on the local
metric u(T) = |T*T| is label-invariant provided the reference element is equi-
lateral.

Corollary. When the local metric is u(7) = |T|?/27 then o, is label-
invariant, provided the reference triangle is equilateral.

Proof. The previous corollaries showed Tfns)ﬂ = 7 and |Tsr ()| =
T, (2("+5))|. From this, one can readily see that the assumption of Proposi-

tion 4 is satisfied. g

More generally, any local metric that is a combination of 7 and |T'| can be used
to form a label-invariant symmetry metric provided the reference triangle is
equilateral.

The local metric u(T) = tr(T) is never label-invariant, nor is its associated
symmetry metric label-invariant.

The results of Proposition 4 and its corollaries apply equally well to sym-
metry metrics based on the minimum (@) or the power mean (&) instead of
the maximum (7).

If firmgr (EG)) = piy, (27+9)) for a particular choice of reference element,
then for s = 0 we have fiymi, (@) = 1, (£(). Then one can show that,
for example, () becomes

om = max{ po (E(O)), 1 (5(0))» H2 (E(O))} (33)

This directly shows that the maximum-symmetry metric is label-invariant for
a particular choice of reference element, and that one can evaluate it either by
fixing the map and evaluating the local metrics at the three symmetry points,
or, by varying the map and evaluating the local metric at the first symmetry
point. The same is true for the minimum-symmetry and power-symmetry
metrics.
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4.5 The Shape Quality of Quadratic Triangles

As noted previously, [18] is the only reference which proposes quality metrics
for quadratic elements. In theory one might also create an element metric
based on some local metric p as in the following example:

qs:glgg{u(E)}

Unfortunately, the definition is impractical to compute efficiently due to the
infinite number of points at which p must be evaluated. As a practical al-
ternative, consider using one or more sets of symmetry metrics. For exam-
ple, in the quadratic triangle case let S, consist of the symmetry points
{20, =20 2@} when 5 = (0,0), ie., S, = {(0,0), (1,0), (0,1) }. Like-
wise, let S,, = {(%,%), (0,%) (%,O) }, obtained when = = (%,%) Now
define three symmetry metrics

n

)} (34)

oy = max { u(
=€

= v

on = max { (%) } (35)
Tvin = _ hax Sn){u(f )} (36)

In words, the first symmetry metric evaluates the local metric at only the
three corner vertices of the element, the second at only the three mid-side
nodes, and the third on both sets.

To illustrate, the three metrics oy, o, and 0,4, were computed for ten
thousand randomly generated quadratic triangles. The local metric p was
chosen to be the inverse mean ratio (shape) metric with an equilateral refer-
ence element. Each of these values was compared to the value g., which was
approximated by evaluating p on 1250 points uniformly distributed over the
logical triangle. Figure [l compares the pairs (o4, ¢:), (0n,¢:), and (oy4n, Ge)
in three scatter plots whose range on both the x- and y-axes is -1 to 1 (1
being the best quality). Since for any triangle, o, < ¢. (and likewise for the
other cases), the upper left side of each plot is empty. Sampling at only the
mid-side nodes is the least effective of the three cases. As one can see, for
some triangles even 0,4, can be a poor approximation to ¢..

On the positive side, it appears from the oy, plot that the approximation
to g. improves as the quality of the triangle improves. For example, there are
relatively few points found below the o1, = ¢ line when the quality is better
than 0.0, whereas there are a lot of points below the line when the quality
is less than 0.0. That means for non-inverted elements, the approximation to
element shape quality is not too bad in most instances. Further investigation
is required in order to determine whether or this observation holds for other
metrics and/or element types, but it is encouraging, at least. In any case, this
third approach to measuring the quality of non-triangular quadratic elements
is the only known approach.
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Fig. 4. Quadratic Planar Tri: 0y, 0n, Ov+n Vs. ¢e. (Left) Three Corner Vertices,
(Middle) Three Mid-side Nodes, (Right) Six Vertices

Finally, we close this section with a proposition that applies to symmetry
metrics for any map and further, makes it clear that the symmetry metric
Oy+n discussed in this section is label-invariant.

Proposition 5. Let S(Z) = { £, 51 . 21 be a set of symmetry
points. Let &1 € U and =5 € U be two values of =, and further let S; = (=)
and So = S(Z2). Let 0,,(Z) be defined as one of [E)-(T). Suppose both
om(Z1) and 0,,(Z2) are label-invariant. Then o, evaluated on & U Sy is
label-invariant.

Proof. The proof is constructed for the case where the symmetry metric is
based on the maximum function. Similar proofs can be given for the other
cases. Then

Um(El) = E%aé)‘(sl {Mm(E(S)) } (37)
om(S2) = Jmax {am(E9)} (38)

are label-invariant. Also define

on(Z,5) = | max pm(E9)} (39)
Therefore

om(Z1, 52) = max{ om(E1), om(E2) } (40)
and

Om+r (517 52) = max{ Om4r (51), Om+r (52) }
), om(Z2) }

= O’m(El,EQ) (41)

= max{ 0,,(=1

5 Summary

Quality measurement within mesh elements can be achieved using local met-
rics such as those given in the Target-matrix paradigm, along with a map
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from the logical to the reference and physical elements. Local area, volume,
shape, and orientation can thus be measured with respect to the same local
quantities within the reference element. This provides a method for assessing
the quality of elements having curved sides, such as those associated with the
quadratic map. The minimum or maximum value of these quantities over all
points in the element can be approximated by taking local measurements on
a small, finite, set of points. For elements whose quality is not too bad (e.g.,
non-inverted), the approximations appear reasonably good, as seen in the
quadratic triangle example. In any case, this ‘hybrid’ quality method is the
only known approach to measuring the quality of non-triangular high-order
elements.

Label-invariance is a desirable property for some quality metrics. Local
metrics can be made label invariant by evaluating them at the center of
the element and using a particular reference element. For shape metrics, the
appropriate reference element for label-invariance was the regular shape cor-
responding to the given element type. For size metrics, the reference element
was arbitrary. Metrics that are sensitive to orientation, such as those involv-
ing the trace, are not label-invariant for any choice of reference element.

Another type of label-invariance can be obtained by defining a symmetry
metric, based on an associated local metric and a set of symmetry points
that differs from one element type to another. As in the local metric case,
the symmetry metrics can be made label invariant provided the reference
element is regular. An advantage of the symmetry metrics is that one does
not have to evaluate the local metric at the center of the element in order
to obtain label-invariance. This is important because, for example, quality at
the corners can often provide a more discerning criterion than quality at the
center.

Similar results for the linear and quadratic tetrahedron, and the linear
planar quadrilateral, are given in [13]. It is expected the similar results would
hold for the quadratic quadrilateral and for the linear and quadratic hexahe-
dral elements. Pyramid and prismatic elements are not naturally isotropic, so
probably local metrics on these cannot be made label-invariant. Non-planar
quadrilaterals and non-planar quadratic triangles have not been investigated
for label-invariance.
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