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Summary. An anisotropic mesh adaptation strategy for finite element solution
of elliptic differential equations is considered. The adaptation method generates
anisotropic adaptive meshes as quasi-uniform ones in some metric space. The as-
sociated metric tensor is computed by means of a posteriori hierarchical error es-
timates. A global hierarchical error estimate is employed in this study to obtain
reliable directional information of the solution. Mesh examples are presented for the
mathematical model for heat conduction in a thermal battery with large orthotropic
jumps in the material coefficients4.
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1 Introduction

Anisotropic mesh adaptation has proved to be a useful tool in numerical so-
lution of partial differential equations. This is especially true when problems
arising from science and engineering have distinct anisotropic features. The
ability to adapt the size, shape, and orientation of mesh elements according
to certain quantities of interest can significantly improve the accuracy of the
solution and enhance the computational efficiency.

A common approach for generating an anisotropic mesh is based on gen-
eration of a quasi-uniform mesh in some metric space. Typically, the appro-
priate metric depends on the Hessian of the exact solution of the underlying
problem, which is often unavailable in practical computation. The common
approach to avoid this difficulty is to recover an approximate Hessian from the
computed solution. The purpose of this research is to consider an alternative
approach and to study the use of a posteriori error estimates in anisotropic
mesh adaptation.

4A Sandia National Laboratories benchmark problem.
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A key idea in the new approach is the use of the hierarchical error estima-
tor for reliable directional information of the solution. The solution error can
be bounded by the interpolation error of an appropriately defined reconstruc-
tion applied to the finite element approximation. One possibility to achieve
the desired property is to use the hierarchical decomposition of the finite ele-
ment space. The solution error is then bounded by the explicitly computable
interpolation error of the hierarchical basis error estimator. Anisotropic inter-
polation error estimates are developed in [2, 3] and [4]. We follow the theory in
[4] to define the optimal metric tensor for minimizing the interpolation error
of the hierarchical a posteriori error estimator.

It has been pointed out that error estimation based on solving local er-
ror problems can be inaccurate on anisotropic meshes [1]. We thus choose to
develop our approach based on error estimation by means of globally defined
error problem. To avoid the expensive exact solution of the global error prob-
lem, we employed only a few steps of the symmetric Gauß-Seidel iteration for
the efficient solution of the resulting linear system. Numerical results have
shown that this is sufficient for obtaining an approximation to the error good
enough for the purpose of mesh adaptation.

First numerical results have shown that the new method is fully compa-
rable in accuracy with commonly used Hessian-recovery-based methods and
can be more efficient for some examples by producing only necessary element
concentration.

2 Numerical Example: Heat Conduction in a Thermal

Battery

We consider heat conduction in a thermal battery with large orthotropic jumps
in the material coefficients. The mathematical model considered here is taken
from [5, 6] and described by

{

∇ · (Dk
∇u) = fk in Ω,

Dk
∇u · n = gi

− αiu on ∂Ω,
(1)

where Ω = (0, 8.4) × (0, 24) and

Dk =

[

Dk
x 0

0 Dk
y

]

.

The data for each material k and for each of the four sides i of the boundary
starting with the left hand side boundary and ordering them clockwise are
given in Table 1 .

The analytical solution for this problem is unavailable. The geometry and
the contour and surface plots of a finite element approximation are given in
Fig. 1. Typical adaptive meshes with predefined interface edges are shown in
Fig. 2.
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When the mesh contains all the information of the interface, common
recovery-based adaptation methods will produce a mesh with strong element
concentration near all internal interfaces (Fig. 2a, using quadratic least squares
Hessian recovery as proposed in [7]), whereas the error estimator leads to a
mesh that has higher element concentration in the corners of the regions
(Fig. 2b), has a proper element orientation near the interfaces between the
regions 2 and 3, and is almost uniform in regions where the solution is nearly
linear (cf. Fig. 1c for the surface plot of a computed solution).

Thus, the new method produces only necessary concentration and is able
to catch the directional information of the solution required for proper el-
ement alignment. This example demonstrates that the new method can be
successfully used for problems with strong anisotropic features and jumping
coefficients.
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Region k Dk
x Dk

y fk

1 25 25 0
2 7 0.8 1
3 5 0.0001 1
4 0.2 0.2 0
5 0.05 0.05 0

(a) Material coefficients.

Boundary i αi gi

1 0 0
2 1 3
3 2 2
4 3 0

(b) Boundary con-
ditions.

Table 1: Heat conduction in a thermal battery: material coefficients and boundary
conditions.
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Fig. 1: Heat conduction in a thermal battery: (a) device geometry, (b) contour plot,
and (c) surface plot of a linear finite element solution.
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(a) Quadratic least squares Hessian re-
covery: maximum aspect ratio 57.3.

(b) Error estimator: maximum aspect
ratio 60.8.

Fig. 2: Heat conduction in a thermal battery: adaptive meshes obtained by means of
(a) quadratic least squares Hessian recovery and (b) hierarchical basis a posteriori
error estimator.


