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Abstract. Mesh generation is a critical component for many (bio-)engineering ap-
plications. However, parallel mesh generation codes, which are essential for these
applications to take the fullest advantage of the high-end computing platforms, be-
long to the broader class of adaptive and irregular problems, and are among the
most complex, challenging, and labor intensive to develop and maintain. As a result,
parallel mesh generation is one of the last applications to be installed on new parallel
architectures. In this paper we present a way to remedy this problem for new highly-
scalable architectures. We present a multi-layered tetrahedral/triangular mesh gen-
eration approach capable of delivering and sustaining close to 1018 of concurrent
work units. We achieve this by leveraging concurrency at different granularity levels
using a hybrid algorithm, and by carefully matching these levels to the hierarchy
of the hardware architecture. This paper makes two contributions: (1) a new evolu-
tionary path for developing multi-layered parallel mesh generation codes capable of
increasing the concurrency of the state-of-the-art parallel mesh generation methods
by at least 10 orders of magnitude and (2) a new abstraction for multi-layered run-
time systems that target parallel mesh generation codes, to efficiently orchestrate
intra- and inter-layer data movement and load balancing for current and emerging
multi-layered architectures with deep memory and network hierarchies.

1 Introduction

The complexity of programming adaptive and irregular applications on archi-
tectures with hierarchical communication networks of processors is an order
of magnitude higher than on sequential machines, even for parallel mesh gen-
eration algorithms/codes which can be mapped directly on multi-layered ar-
chitectures. Automatically exploiting concurrency for irregular and adaptive
computation like Delaunay mesh generation is more complex than exploit-
ing concurrency for regular (or array-based) and non-adaptive computations.

� This material is based upon work supported by the National Science Foundation
under Grants No. CCF-0833081, CSR-0719929, and CCS-0750901 and by the
John Simon Guggenheim Foundation.
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Static analysis can not be used for adaptive and irregular applications like
parallel mesh generation [27]. In [1, 33] we introduced a speculative (or op-
timistic) method for parallel Delaunay mesh generation which was recently
adopted by the parallel compilers community [28, 35] to study abstractions
for parallelization of adaptive and irregular applications. This technique has
two major problems for high-end computing: (1) although it works reason-
ably well for the shared memory model, it is communication intensive for
distributed memory machines; and (2) its concurrency can be limited by the
problem size at the faster (and thus smaller) shared memory layer of the
hierarchy.

In this paper we address both problems using a hybrid multi-layer approach
which is based on a decoupled approach [29] at the larger (and slower) layers,
an extension of an out-of-core weakly coupled method [25, 26] at the interme-
diate layers, and a speculative or optimistic but tightly-coupled method [1]
at the faster (shared memory) layers (i.e., multi-core). The out-of-core layer
utilizes additional disk storage and makes it possible to free the main memory
for the storage of data used only in the current computation. In addition, we
extend our runtime system [3] to efficiently manage both intra- and inter-
layer communication in the context of data migration due to load balancing
and migration of data/tasks between layers and between nodes across the
same layer.

We expect that this paper can have an impact in two different areas: (1)
Mesh Generation: we present the first highly scalable parallel mesh generation
method capable to provide and sustain concurrency on the order of 1018. (2)
Engineering Applications: for the first time we provide unprecedented scal-
ability for large-scale field solvers for applications like the direct numerical
simulations of turbulence in cylinder flows with very large Reynolds num-
bers [18] and coastal ocean modeling for predicting storm surge and beach
erosion in real-time [43]. In these applications three-dimensional simulations
are conducted using two-dimensional meshes in the xy-plane which are repli-
cated in the z-direction in the case of cylinder flows or using bathe-metric
contours in the case of coastal ocean modeling. In addition, this method can
be extended for Advancing Front Techniques. The approach we develop is
independent of the geometric dimension (2D or 3D) of the mesh. Although
the mesh-generation-specific domain decomposition has been developed only
for 2D, a similar argument applies to 3D with the use of alternative decom-
positions, e.g., graph partitioning implemented in the Zoltan package [16].

This paper is organized as follows. In Section 2 we review the related
prior work. In Section 3 we describe the organization of our Multi-Layered
Runtime System. In Section 4 we present the proposed Multi-Layered Parallel
Mesh Generation algorithm. In Section 5 we put the runtime system and
the parallel mesh generation algorithm together. Section 5.1 contains our
preliminary performance data, and Section 6 concludes the paper.
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2 Background

In this section we present an overview of parallel mesh generation approaches
related to the method we present in this paper. In addition we review parallel
runtime systems related to our runtime system PREMA (Parallel Runtime
Environment for Multicomputer Applications) which we extend to handle
multi-layered applications.

2.1 Related Work in Parallel Mesh Generation

There are three conceptually different approaches to mesh generation. Delau-
nay meshing methods (see [19] and the references therein) use the Delaunay
criterion for point insertion during refinement. Advancing front meshing tech-
niques (see e.g. [38]) build the mesh in layers starting from the boundary of
the geometry. Some of the advancing front methods use the Delaunay prop-
erty for point placement, but no theoretical guarantees are usually available.
Adaptive space-tree meshing (see e.g. [32]) is based on adaptive space subdivi-
sion (e.g., adaptive octree, or body-centric cubic lattice), and can be flexible
in the definition of the meshed object geometry (e.g., implicit geometry repre-
sentation). Certain theoretical guarantees on the quality of the mesh created
in such a way are provided by some of the methods in this group.

A comprehensive review of parallel mesh generation methods can be found
in [14]. In this section we review only those methods related to parallel De-
launay mesh generation. The problem of parallel Delaunay triangulation of
a specified point set has been solved by Blelloch et al. [4]. A related problem
of streaming triangulation of a specified point set was solved by Isenburg et
al [20]. In contrast, Delaunay refinement algorithms work by inserting addi-
tional (so-called Steiner) points into an existing mesh to improve the quality
of the elements. In Delaunay mesh refinement, the computation depends on
the input geometry and changes as the algorithm progresses. The basic op-
eration is the insertion of a single point which leads to the removal of a poor
quality tetrahedron and of several adjacent tetrahedra from the mesh and to
the insertion of several new tetrahedra. The new tetrahedra may or may not
be of poor quality and, hence, may or may not require further point inser-
tions. We and others have shown that the algorithm eventually terminates
after having eliminated all poor quality tetrahedra, and in addition the termi-
nation does not depend on the order of processing of poor quality tetrahedra,
even though the structure of the final meshes may vary [11, 12, 29]. Therefore,
the algorithm guarantees the quality of the elements in the resulting meshes.

The parallelization of Delaunay mesh refinement codes can be achieved by
inserting multiple points simultaneously. If the points are far enough from
each other, as defined in [11], then the sets of tetrahedra influenced by their
insertion are sufficiently separated, and the points can be inserted indepen-
dently. However, if the points are close, then their insertion needs to be
serialized because of possible violations of the validity of the mesh or of the



322 N. Chrisochoides et al.

Delaunay property. One way to address this problem is to introduce runtime
checks [28, 33] which lead to the overheads due to locking [1] and to roll-
backs [33]. Another approach is to decompose the initial geometry [30] and
apply decoupled methods [19, 29]. The third approach presented in [8, 9, 11]
is to use a judicious way to choose the points for insertion, so that we can
guarantee their independence and thus avoid runtime data dependencies and
overheads. In [9] we presented a scalable parallel Delaunay refinement algo-
rithm which constructs uniform meshes, i.e., meshes with elements of ap-
proximately the same size and in [11] we developed an algorithm for the
construction of graded meshes. The work by Kadow and Walkington [22, 23]
extended [4, 5] for parallel mesh generation and further eliminated the se-
quential step for constructing an initial mesh, however, all potential conflicts
among concurrently inserted points are resolved sequentially by a dedicated
processor [22].

In summary, in parallel Delaunay mesh generation methods we can explore
concurrency at three levels of granularity: (i) coarse-grain at the subdomain
level, (ii) medium-grain at the cavity level (this is a common abstraction
for many different mesh generation methods), and (iii) fine-grain at the el-
ement level. The fine-grain can only increase the concurrency by a factor of
three or four in two or in three dimensions, respectively. However, a detailed
profiling of our codes revealed that up to 24.5% of the cycles is spent on
synchronization operations, for both the protection of work-queues and for
tagging each triangle upon checking it for inclusion in a cavity. Synchroniza-
tion is always limited among the two or three threads co-located on the same
core, and memory references due to synchronization operations always hit in
the cache. However, the massive number of processed triangles results in a
high percentage of cumulative synchronization overhead. We will revisit the
fine-grain level when there is better hardware support for synchronization.

2.2 Related Work in Parallel Runtime Systems

Because of the irregular and adaptive nature of parallel mesh generation we
wish to optimize, we restrict our discussion in this section to software systems
which dynamically balance application workload and we use the following
six important criteria: (1) Support for data migration. Migrating processes
or threads adds to the complexity of the runtime system, and is often not
portable. Migrating data, and thereby implicitly migrating computation is
a more portable and simple solution. (2) Support for explicit message pass-
ing. Message passing is a programming paradigm that developers are familiar
with, and the Active Messages [42] communication paradigm we use is a log-
ical extension to that. Explicit message passing is also attractive because it
does not hide parallelism from the developer. (3) Support for a global name-
space. A global name-space is a prerequisite for automatic data migration;
applications need the ability to reference data regardless of where it is in the
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parallel system. (4) Single-threaded application model for inter-layer interac-
tions. Presenting the developer with a single-threaded communication model
between layers greatly reduces application code complexity and development
effort. (5) Automatic load balancing. The runtime system should migrate data
or computation transparently and without intervention from the application.
(6) Customizable data/load movement/balancing. It cannot be said that there
is a “one size fits all” load balancing algorithm; different algorithms perform
well in different circumstances. Therefore, developers need the ability to eas-
ily develop and experiment with different application- and machine-specific
strategies without the need to modify their application code.

Systems such as the C Region Library (CRL) [21] implement a shared
memory model of parallel computing. Parallelism is achieved through accesses
to shared regions of virtual memory. The message passing paradigm we em-
ploy explicitly presents parallelism to the application. In addition, PREMA
does not make use of copies of data objects, removing much of the complexity
involved with data consistency and read/write locks. In [17, 41] the authors
propose the development of component-based software strategies and data
structure neutral interfaces for large-scale scientific applications that involve
mesh manipulation tools.

Zoltan [15] and CHARM++ [24] are two systems with similar charac-
teristics to PREMA. Zoltan provides graph-based partitioning algorithms
and several geometric load balancing algorithms. Because of the synchro-
nization required during load balancing, Zoltan behaves in much the same
way as other stop-and-repartition libraries, whose results are presented in [2].
CHARM++ is built on an underlying language which is a dialect of C++,
and provides extensive dynamic load balancing strategies. However, the pick-
and-process message loop guarantees that entry-point methods execute “se-
quentially and without interruption” [24]. This may lead to a situation in
which coarse-grained work units may delay the reception of load balancing
messages, negating their usefulness, as was seen with the single-threaded
PREMA results presented in [2]. The Adaptive Large-scale Parallel Simu-
lations (ALPS) library [7] is based on a parallel octree mesh redistribution
and targets hexahedral finite elements, while we focus on tetrahedral and
triangular elements.

3 Multi-layered Runtime System

The application we target (parallel mesh generation) naturally lends itself to
a hierarchical partitioning of work (specifically: domain, subdomain, indepen-
dent subdomain region, and cavity). At the first two levels of this hierarchy,
we use the concept of mobile object , or Mobile Work Unit (MWU), as an ab-
straction for work partitioning. MWU is a container, which is not attached to
a specific processing element, but, as its name suggests, can migrate between
address spaces of different nodes. Work processing is facilitated by means
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Fig. 1. Left: an abstraction for the hierarchical design of one runtime system layer.
The layers are arranged vertically, such that the arrows represent the transfer of
data between the adjacent layers. Right: a 2-layer instantiation of the proposed
design which we tested using traditional out-of-core parallel mesh generation meth-
ods [25, 26].

of sending mobile messages , which are directed to MWUs. As we showed
in [3], this abstraction is extremely convenient for the development of mesh
generation codes, and is indispensable for one of the most challenging prob-
lems in parallel mesh generation: dynamic data/load movement/balancing.

Deep memory and network architecture hierarchies are intrinsic to the
state-of-the-art High Performance Computing (HPC) systems. Based on our
experience, MWU abstraction is effective in handling data movement, work
distribution and load-balancing across a single layer of the HPC architec-
ture hierarchy (among the nodes and disk storage units), while large-to-small
work subdivision vertically aligns with the hierarchy of the architecture: mesh
subdomains, for meshes with over 1018 elements, can be too large to fit in
memory, while cavities can be processed concurrently at the level of a CPU
core at a lower communication/synchronization cost. The objective of the
multi-layered runtime system design is to provide communication and flow
control support to leverage the hierarchical structure of both the application
work partitioning and HPC architecture.

In our previous work on runtime systems we explored various possibilities
for the design and the implementation of load-balancing on a Cluster of Work-
stations (CoW) [3]. In this paper, our design approach is based upon three
levels of abstraction, as shown in Fig. 1(left). At the lowest level, there is na-
tive communication infrastructure, which is the foundation for implementing
the concept and basic MWU handling routines (migration and MWU-directed
communication). Given the ability to create and migrate MWUs, the schedul-
ing framework implements high-level logic by monitoring the status of the
system and the available objects, and rearranges them accordingly across the
processing elements horizontally, or moving them up and down the vertical
hierarchy. An important feature of the design is the MWU-directed commu-
nication. The life cycle of an MWU is determined by the messages (mostly,
work requests) it receives from other MWUs and processing elements, and
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the status of the system. Depending on its status, availability of work, as well
as the degree and nature of concurrency which can be achieved, an MWU
can be “retired” to a lower level (characterized by lower degree of concur-
rency, when no work is pending for MWU, or when there are no resources to
keep it at the current layer), or “promoted” to an upper layer (e.g., due to
availability of resources or request for fast synchronization due to unresolved
dependencies).

As a specific example of how multi-layered design can be realized, we im-
plemented a two-layered framework based on the abstract design presented
above (see Fig. 1, right). The top layer is an expanded version of the PREMA
system [3]. The native communication can be either one among ARMCI [34],
MPI or TCP sockets. The abstraction of mobile work units is realized by
MOL [13], and high-level MWU scheduling is determined by the dynamic
load-balancing policies implemented within the Implicit Load-balancing Li-
brary [3]. Overall, this layer is responsible for the maintenance of a balanced
work distribution across a single layer of nodes.

4 Multi-layered Parallel Mesh Generation

Figure 2 presents the pseudo-code for the multi-layered (hybrid) parallel
mesh generation algorithm. It starts with the initial Planar Straight Line
Graph (PSLG) X which defines the domain Ω and the user-defined bounds
on circumradius-to-shortest edge length ratio and on the size of the elements.
First, we apply a Domain Decomposition procedure [30] to decompose Ω into
N non-overlapping subdomains: Ω =

⋃N
i=1Ωi with the corresponding PSLGs

Xi, where N is the number of computational clusters. Then the boundary of
each Ωi is discretized using the Parallel Domain Delaunay Decoupling (PD3)
procedure [29] such that subsequent refinement is guaranteed not to intro-
duce any additional points on subdomain boundaries. Next each subdomain
represented by Xi is loaded onto a selected node from cluster i. Then {Xi}
are further decomposed using the same method [30] into even smaller subdo-
mains. However, in this case the boundaries of the subdomains are not dis-
cretized since PD3 uses the worst case theoretical bound on the smallest edge
length, which generally leads to over-refined meshes in practice. Instead, we
use Parallel Constrained Delaunay Meshing (PCDM) algorithm/software [10]
which at the cost of some communication introduces points on the boundaries
as needed. Specifically, we use its out-of-core implementation (OPCDM) [26].
In addition we take advantage of the shared memory offered by multi-core
systems and use the multi-threaded algorithm/implementation we presented
in [1]. The meshes produced by the Multithreaded PCDM (MPCDM) algo-
rithm are not constrained by the artificial subdomain boundaries and there-
fore generally have an even smaller number of elements than the meshes
produced by the PD3 algorithm.
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ScalableParallelDelaunayMeshGeneration(X , ρ̄, Ā)
Input: X is the PSLG which defines the domain Ω

ρ̄ is the upper bound on circumradius-to-shortest edge length ratio
Ā is the upper bound on element size

Output: A distributed Delaunay meshM which respects the bounds ρ̄ and Ā
1 Use MADD(X , N) to decompose the domain into subdomains

represented by {Xi}, i = 1, . . . , N , where N is the number of clusters
2 Use PD

3({Xi}, ρ̄, Ā), to refine the boundaries of Xi

3 Load each of the Xi, i = 1, . . . , N , to a node ni in cluster i
4 do on every node ni simultaneously
5 Use MADD(Xi, Mi) to decompose each subdomain

into even smaller subdomains Xij, j = 1, . . . , Mi

6 Distribute the subdomains Xij , j = 1, . . . , Mi, among Pi nodes in cluster i
7 do on every node in cluster i simultaneously
8 Use OPCDM({Xij}, ρ̄, Ā) to refine the subdomains
9 enddo

10 enddo

OPCDM({Xk}, ρ̄, Ā)
11 Let Q be the set of subdomains that require refinement
12 Q← {Xk}, Qo ← ∅
13 while Q ∪Qo �= ∅
14 X ← Schedule(Q, Qo)
15 MPCDM(X , ρ̄, Ā)
16 Update Q (the operation of finding any new subdomains that need

refinement, e.g., after receiving messages, and inserting them into Q)
17 endwhile

MPCDM(X , ρ̄, Ā)
18 ConstructM = (V, T ) an initial Delaunay triangulation of X
19 Let PoorTriangles be the set of poor quality triangles in T

with respect to ρ̄ and Ā
20 while PoorTriangles �= ∅
21 Pick {ti} ⊆ PoorTriangles
22 do using multiple threads simultaneously
23 Compute the set of Steiner points P = {pi} corresponding to {ti}
24 Compute the set of Steiner points P ′ ⊆ P which encroach upon constrained edges
25 P ← P \ P ′

26 Replace the points in P ′ with the corresponding segment midpoints
27 Compute the set of cavities C = {C (p) | p ∈ P ∪ P ′},

where C (p) is the set of triangles whose circumscribed circles include p
28 if C create conflicts
29 Discard a subset of C and the corresponding points from P ∪ P ′

such that there are no conflicts
30 endif
31 BowyerWatson(V , T , p), ∀p ∈ P ∪ P ′

32 RemoteSplitMessage(p), ∀p ∈ P ′

33 enddo
34 Update PoorTriangles
35 endwhile

Schedule(Q, Qo)
36 while Q �= ∅
37 X ← pop(Q)
38 if X is in-core return X else ScheduleToLoad(X ), push(Qo, X ) endif
39 endwhile
40 X ← pop(Qo)
41 if X is in lower-layer or out-of-core Load(X ) endif
42 return X

BowyerWatson(V , T , p)
43 V ← V ∪ {p}
44 T ← T \ C (p) ∪ {(pξ) | ξ ∈ ∂C (p)},

where (pξ) is the triangle obtained by connecting point p to edge ξ

Fig. 2. The multi-layered parallel mesh generation algorithm.
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Fig. 3. (Left) Thick lines show the decoupled decomposition of the geometry
into 8 high level subdomains which are assigned to different clusters. Medium lines
show the boundaries between the subdomains assigned to separate nodes within a
cluster. Thin lines show the boundaries between individual subdomains assigned
to the same node. (Right) Parallel expansion of multiple cavities within a single
subdomain using the MPCDM algorithm.

4.1 Domain Decomposition Step

We use the Medial Axis Domain Decomposition (MADD) algorithm/software
we presented in [30]. MADD can produce domain decompositions which sat-
isfy the following three basic criteria: (1) The boundary of the subdomains
create good angles, i.e., angles no smaller than a given tolerance Φo, where the
value of Φo is determined by the application which uses the domain decom-
position. (2) The size of the separator should be relatively small compared
to the area of the subdomains. (3) The subdomains should have approxi-
mately equal size, area-wise. This approach is well suited for both uniform
and graded domain decomposition. Before the subdomains become available
for further processing by the PCDM method they are discretized using the
pre-processing step from PD3 [29, 31] which guarantees that any Delaunay
algorithm can generate a mesh on each of the subdomains in a way that does
not introduce any new points on the boundary of the subdomains (i.e., the
algorithm terminates and can guarantee conformity and Delaunay properties
without the need to communicate with any of the neighbor subdomains).

4.2 Parallel Delaunay Mesh Generation Step

We use two different approaches, for different layers of the multi-layered ar-
chitecture: (1) combine a coarse- and medium-grain (speculative-based) ap-
proach which is designed to run on a multi-core processor and (2) combine
coarse- and coarser-grain which is designed after the traditional out-of-core
PCDM method, for a multi-processor node as well as a cluster of nodes. First
we describe the in-core PCDM method [10]. The PSLGs for all subdomains
are triangulated in parallel using well understood sequential algorithms, e.g.,
described in [36, 39]. Each triangulated subdomain contains the collections of
the constrained edges, the triangles, and the points. For the point insertion,
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we use the Bowyer-Watson (B-W) algorithm [6, 44]. The constrained (bound-
ary) segments are protected by diametral lenses [37], and each time a segment
is encroached, it is split in the middle; as a result, a split message is sent to
the neighboring subdomain [10]. PCDM is designed to run on multi-processor
nodes and clusters of nodes, i.e., it uses the message passing paradigm. Each
process lies in its own address space and uses its own copy of a custom mem-
ory allocator. Second, the time corresponding to low aggregation decreases
as we increase the number of processors; this can be explained by the growth
of the utilized network and, consequently, the aggregate bandwidth. Similar
studies for new HPC architectures need to be repeated and this parameter
will be adjusted accordingly i.e., this parameter is machine specific.

Next we describe the two variations of PCDM we use for the multi-layered
algorithm of Figure 2. First, we use the Out-of-Core (OPCDM) approach
(line 8 of the hybrid algorithm) [26] which utilizes the bottom layer of the
HPC architectures, i.e., the processing units with the large storage devices.
Before processing a subdomain (using MPCDM) in the main loop we check
whether the next subdomain in queue is in-core and mark it as sticky if it is
or post a non-blocking load request for that subdomain. Second, after all bad
triangles for a subdomain are processed we check whether the next subdomain
in queue is in-core. If it is not we push it back in queue and examine the
next. If we cannot find an in-core subdomain we load the next subdomain
in queue with a blocking call. It should be noted that the Run-Time System
(RTS) marks subdomains with multiple incoming messages as sticky and may
attempt to prefetch them. Additionally, when processing incoming messages
(when the application is polling), the RTS first executes messages addressed
to in-core subdomains regardless of the order in which messages were received
(the order of the messages sent to the same subdomain is preserved). The
execution order of the subdomains does not affect neither correctness/quality
nor termination for our algorithm.

Second, the Multithreaded (MPCDM) approach (line 15 of the multi-
layered algorithm) [1] which targets the top layer of the HPC architecture,
i.e., utilizes the fastest processing unit (hardware supported threads of cores).
The threads create and refine individual cavities concurrently, using the B-
W algorithm. MPCDM is synchronization-intensive mainly because threads
need to tag each triangle while working on a cavity, to detect conflicts during
concurrent cavity triangulation. Each subdomain is divided up into distinct
areas (in order to minimize conflicts and overheads due to rollbacks), and
the refinement of each area is assigned to a single thread. The decomposition
is performed by equipartitioning — using straight lines as separators (strip-
partitioning) that form a rectangular parallelogram enclosing the subdomain.
Despite being straightforward and computationally inexpensive, this type of
decomposition can introduce load imbalance between threads for irregular
subdomains. The load imbalance can be alleviated by dynamically adjusting
the position of the separators at runtime. The size of the queues (private
and shared — of triangles that intersect the thread-separator) of bad quality
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triangles is proportional to the work performed by each thread. Large differ-
ences in the populations of queues of different threads at any time during the
refinement of a single subdomain are a safe indication of load imbalance. Such
events are, thus, used to trigger the load balancing mechanism. Whenever the
population of the queues of a thread becomes larger than (100 / Number of
Threads)% compared with the population of the queues of a thread process-
ing a neighboring area, the separator between the areas is moved towards the
area of the heavily loaded thread.

5 Putting It All Together

In this Section we present the highlights of the implementation for the multi-
layered algorithm. The following implementation details are pertinent to the
description of the runtime system, which we discussed previously: (1) hier-
archical decomposition of work into MWUs, (2) interaction of the algorithm
implementation with those units (via run-time system API), and (3) the
management of MWUs by the run-time system.

The construction and the registration of the MWUs with the runtime sys-
tem take place immediately after the decomposition of the input domain in
line 5 of the algorithm, see Figure 2. A subdomain has dependencies on the
neighboring subdomains, which share a common boundary, and may require
coordination in order to process points inserted at that boundary. After the
subdomains are defined, their movement, work processing, and communica-
tion (i.e., delivery of the Split messages) are handled transparently by the
runtime system. The work processing is implemented in two mobile message
handlers: subdomain refinement and split point processing subroutines.

We approach the issue of load-balancing across the nodes by using the dy-
namic load-balancing framework of PREMA [3]. Intra-layer object migration
is triggered by the imbalance of work assigned to different subdomains due to
different levels of refinement, different domain geometry, and, consequently,
different rates of split messages arriving at each subdomain. Inter-layer mi-
gration of the MWUs is required for the efficient memory utilization, and
the ability of the given layer to handle larger problem sizes. Scheduling of
the MWUs between the PREMA and the OoCS follows the scheme described
in the previous Section. The complex issue we will have to resolve, for truly
(i.e., greater than two layers of processors) multi-layered architectures like
the HTMT Petaflops design [40], is how to handle guaranteed delivery of the
mobile messages in the causal order. With current two-layered architectures
this is not a problem.

5.1 Preliminary Data

In this Section we report some of the preliminary results for the implementa-
tions of the three individual levels of the proposed hybrid algorithm: Domain
Decomposition, Coarse+medium granularity (PCDM) and Coarse+coarser
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granularity (OPCDM). We evaluated the performance of the Domain Decom-
position procedure on the fastest platform we had in our availability (dual
Intel Pentium 3.6GHz). For the evaluation of the performance of the upper
two levels of the algorithm (coarse+medium and coarse+coarser, i.e., tradi-
tional out-of-core) we used a cluster consisting of four IBM OpenPower 720
nodes. The nodes are interconnected via a Gigabit Ethernet network. Each
node consists of two 1.6 GHz Power5 processors, which share eight GB of
main memory. Each physical processor is a chip multiprocessor (CMP) inte-
grating two cores. Each core, in turn, supports simultaneous multithreading
(SMT) and offers two execution contexts. As a result, eight threads can be
executed concurrently on each node. The two threads inside each core share a
32 KB, four-way associative L1 data cache and a 64 KB, two-way associative
L1 instruction cache. All four threads on a chip share a 1.92 MB, 10-way
associative unified L2 cache and a 36 MB 12-way associative off-chip unified
L3 cache. The results for each of the three levels are as follows:

Domain Decomposition: Given the Chesapeake Bay model, we can se-
quentially decompose it using MADD into two subdomains in less than 0.5
seconds. This model is defined by 13,524 points and has 26 islands (i.e., quite
complex geometry and resolution), see Figure 4. These two subdomains can
be distributed to two cores and decomposed in parallel into four subdomains
in less than 0.5 seconds. If we continue this way by building a logical bi-
nary tree over 1012 cores, the model can be decomposed into 1012 (or ap-
proximately 240) coarse grain subdomains in less than 40 seconds, assuming
that half of this time is spent on communication. All subdomains satisfy
the properties required by the Parallel Constrained Delaunay Mesh (PCDM)
generation algorithm which we apply on each of these subdomains.

Coarse+medium granularity: On the medium grain level, the PCDM
method can expose up to 8× 105 potential concurrent cavity expansions per
subdomain [1]. This level of the algorithm was evaluated (see Table 1) on
the pipe model, see Figure 3. In each configuration we generate as many
triangles as possible, given the available physical memory and the number
of MPI processes and threads running on each node. The times reported
for parallel PCDM executions include pre-processing time, domain decom-
position, MPI bootstrap time, data loading and distribution, and the actual
computation (mesh generation) time. We compare the execution time of par-
allel PCDM with that of the sequential execution of PCDM and with the
execution time of Triangle [36], the best known sequential implementation
for Delaunay mesh generation which has been heavily optimized and man-
ually fine-tuned. For sequential executions of both PCDM and Triangle the
reported time includes data loading and mesh generation time. On a single
processor, we can significantly improve the performance attained by using a
single core, compared with the coarse-grain only implementation. In the fixed
problem size, it proves 29.4% faster than coarse-grain when one MPI process
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Fig. 4. (Top) The Chesapeake Bay model decomposed into 1024 subdomains that
are mapped onto eight clusters of a multi-layered architecture. The assignment of
subdomains to clusters is shown with different colors. The use of PD3 eliminates
communication between clusters, however, the use of the multi-layered PCDM in
each of the original subdomains requires inter-layer communication and some syn-
chronization at the top level. (Bottom) Part of the Chesapeake Bay model meshed
in a way that satisfies conformity and Delaunay properties; thus, correctness and
termination can be mathematically guaranteed.

is executed by a single core and 10.2% faster when two MPI processes cor-
respond to each core (one per SMT context). In the scaled problem size the
corresponding performance improvements are in the order of 31% and 12.7%
respectively. Moreover, coarse+medium grain PCDM outperforms on a single
core the optimized, sequential Triangle by 15.1% and 13.7% for the fixed and
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Table 1. Execution times (in sec.) of the coarse grain and the coarse+medium
grain PCDM in 2D on a cluster of four IBM OpenPower 720 nodes. As a sequential
reference we use either the single-thread execution time of PCDM or the execution
time of the best known sequential mesher (Triangle). Triangle quality in all tests
is fixed to 20◦ degrees minimum angle bound. We present coarse-grain PCDM
results using either one MPI process per core (Coarse) or one MPI process per
SMT execution context (Coarse (2/core)). 60M triangles are created in the fixed
problem size experiments. 15M triangles correspond to each processor core in the
scaled problem size experiments.

Cores 1 2 4 6 8 10 12 14 16
Triangle Fixed 114.7
Coarse Fixed 124.1 63.8 32.5 23.3 18.0 14.6 12.8 10.8 10.7

Coarse Fixed (2/Core) 97.4 49.0 21.2 16.3 12.2 10.1 9.1 7.9 8.3
Coarse+Medium Fixed 87.5 44.7 22.8 16.7 12.9 10.6 9.4 9.1 8.0

Triangle Scaled 28.4
Coarse Scaled 31.0 32.2 32.5 35.6 37.1 36.6 38.3 37.6 41.8

Coarse Scaled (2/Core) 24.5 25.0 21.3 24.5 24.2 24.3 25.5 28.3 28.1
Coarse+Medium Scaled 21.4 22.5 22.8 25.5 26.7 27.1 27.8 29.9 30.4

Table 2. Normalized speed (on a cluster of 4 IBM OpenPower 720 nodes) of
the PCDM in 2D with virtual memory and the OPCDM for problems that have
memory footprint twice as large as the available physical memory. OPCDM(d) and
OPCDM(b) refer to the experiments performed with the disk object manager and
the database object manager respectively.

Mesh size, number Normalized speed,
×106 triangles of nodes ×103 triangles per second

PCDM OPCDM(d) OPCDM(b)
158.25 8(1) 242.45 156.22 160.11
316.50 16(2) 240.54 160.20 165.06
633.07 32(4) 239.82 157.67 161.08

scaled problem sizes respectively. On the fine grain level, the element-level
concurrency allows us to process three or four elements concurrently (in 2D
and 3D respectively), bringing the total potential concurrency to over 1018.

Coarse+coarser granularity: Our evaluation (see Table 2) demonstrated
that OPCDM is an effective solution for solving very large problems on com-
putational resources with limited physical memory. We are able to generate
meshes that otherwise would require 10 times the number of nodes using in-
core implementation. The performance of the implementation was evaluated
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in 2D in terms of mesh generation speed1. We define per-processor mesh gen-
eration (normalized) speed as the average number of elements generated by a
single processor over a unit time period, and it is given by V = N

T×P , N is the
number of elements generated, P is the number of processors in the configu-
ration and T is execution time. We observe that the overhead introduced by
the out-of-core functionality is not large: the per-processor mesh generation
speed is only 33% slower for the meshes that fit completely in-core. At the
same time, for the cases when we do use out-of-core functionality, up to 82%
of disk I/O is overlapped with the computation.

6 Conclusions

We presented a multi-layered mesh generation algorithm capable to quickly
generate and sustain in the order of 1018 of concurrent work units with
granularity large enough to amortize overhead for hardware threads on cur-
rent multi-threaded architectures. In addition we presented a multi-layered
communication abstraction and its implementation on current 2-layered
multi-core architectures. We used the resulting runtime system to imple-
ment a multi-layered parallel mesh generation code on IBM OpenPower
720 nodes (two-layered HPC architecture). The parallel mesh generation
method/software mathematically guarantees termination, correctness, and
quality of the elements. The mathematical guarantees are crucial for the size
of problems we target, because even a single failure to solve a small subprob-
lem my require the recomputation of the whole problem. Our implementation
indicates that: (1) we pay very small overhead to generate very large num-
ber of concurrent work units, (2) intra-layer communication overhead is very
small [10], (4) very large percentage (more than 80%) of inter-layer commu-
nication can be tolerated, (5) synchronization required only at the highest
level where there is very fast hardware support, (5) work load balancing can
be handled transparently with small overhead [3] at the coarse-grain layer
(6) load balancing at the medium-grain layer can be handled easily and with
low overhead within the application and (7) our out-of-core subsystem al-
lows us to significantly decrease the processing times due to the reduction of
wait-in-queue delays. However, the more complex multi-core and multi-CPU
multi-layered designs will demand new hierarchical location management di-
rectories and policies, which will be a major future research effort (out of the
scope of this paper) related to the system design.
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of-core parallel mesh generation codes. The existing metrics for in-core parallel
algorithms are not sufficient for this task.
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