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Abstract. This work deals with the problem of practical mesh generation for sur-
face normal approximation. Part of its contribution is in presenting previous work
in a unified framework. A new algorithm for surface normal approximation is then
introduced which improves upon existing ones in a number of aspects. In particular,
it produces better approximations of surfaces both in practice and in the theoretical
limit regime. Additionally, it resolves in a simple way some of the problems that
previous methods for surface approximation suffered from.

1 Introduction

Computing high-quality approximating meshes from surfaces is an impor-
tant problem in computational geometry, with many practical implications.
Although the approximation criteria can vary greatly, often, approximating
either surface position, or a surface’s normal field can be a good criteria in
practice. As has been argued elsewhere [7, 14], approximating a surface while
minimizing normal approximation error can be useful in many applications.

There is a considerable body of previous work that deals with the surface
approximation problem. Some notable examples include ε-nets [6], for surface
and normal approximation, the Quadric Error Metric algorithm (QEM) [9]
for surface approximation, and Variational Shape Approximation (VSA) [14],
for surface and normal approximation.

In this paper, it is first discussed how the above three methods can be
interpreted from within a unified framework. In this interpretation, they are
essentially all minimizing a k-means like energy, where only the distance
metrics are different. Interestingly enough, in the limit, for smooth surfaces,
these distance measures converge to each other. The other key difference that
is explored is how these means are used by the different algorithms to produce
the output triangulation.

Next, a novel distance measure is proposed (Shape Operator Metric, or
SOM), with a corresponding algorithm, that fills a natural gap in this frame-
work. In particular, like VSA, it is designed for normal approximation. But,
like QEM, it does not require a region-triangulation step. Such a step can
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complicate the implementation and, as it is discussed, it introduces a constant
factor of inefficiency close to 2, in the limit of approximation.

2 Framework

Considered here are meshing algorithms for surface approximation that try
to either meet a uniform error bound, or minimize the average approximation
error over a surface M (minimizing error in the L∞ or L2 sense respectively).
These kinds of algorithms can be naturally described as an optimization
problem:

argmin
{pj},Vj

E∞
X

= argmin
{pj},Vj

max
j

max
p∈Vj

DX(pj , p) (1)

argmin
{pj},Vj

E2
X

= argmin
{pj},Vj

∑

j

∫

Vj

DX(pj , p)dp (2)

over both a set of means {pj} (points on the surface), and a corresponding
partition {Vj} of M composed of the Voronoi cells of {pj} with respect to a
chosen distance function D

X
.

Optimal Voronoi partitions have in all (except perhaps the rarest) cases
neither the shape nor the topology of a triangle mesh. Some further step is
generally necessary before producing a triangle mesh as output. In the sequel,
a meshing algorithm is referred to as a primal algorithm if it discretizes the
boundaries of Voronoi cells, triangulates their interior, and outputs this set
of triangles, as in [14]; while an algorithm in which the means are instead
directly connected using the dual topology of the partition {Vj} to produce
a triangle mesh, as in [6], will be denoted as a dual algorithm.

Apart from the added algorithmic complexity, primal algorithms have an
inherent approximation inefficiency in the limit. Roughly speaking, in smooth
surface regions, in the limit, the relative sizes and aspect ratios of the Voronoi
regions are optimized by minimizing the above energies. These relative sizing
and aspect ratios will be maintained under mesh duality. But these sizes and
aspect ratios are altered (within a constant factor) when the Voronoi regions
are triangulated. The limit regime is explored in more detail in Appendix B,
while the non-limit case is discussed experimentally in Section 5.

The algorithms of [6, 9, 14], as well as the one introduced in Sec. 3, all
fit into this framework. In particular, the method in [14] introduced the idea
of directly optimizing energies with the above form using a k-means/Lloyd-
Max type algorithm. It then applies a primal meshing step to the resulting
partition.

In the work of [6] one finds a set of means {pj} with bounds on the energy
of Eq. 1. The means are then connected in a dual triangulation.

The QEM method of [9] applies a sequence of edge collapses to the input
mesh, which can essentially be interpreted as an attempt to minimize 2. In
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particular, upon completion of the QEM algorithm, each vertex of the out-
put triangulation can be thought of as a mean with a region of the surface
associated to it: the portion of the surface that it uses to evaluate its associ-
ated (quadric) error (with adjacent regions slightly overlapping). In this sense
QEM can be considered a dual algorithm. Even though the connectivity of
the triangle mesh is not directly related to the Voronoi regions of Eq. 1, its
limit behavior is analogous.

2.1 Surface Approximation

The algorithms of [6, 9, 14] use the following distances when optimizing Eqs. 1
or 2:

DII(pj , p) = min
γ∈P (pj,p)

∫

γ

qc
II
(γ′(t); γ(t))

1
2 dt (3)

DQEM(pj , p) = < p− pj , n(p) >2 (4)

DsVSA(pj , p) = < p− pj , n(pj) >2 (5)

where qc
II
(γ′(t); γ(t)) is the “convexified” (using the absolute value of the

eigenvalues) second fundamental form at point γ(t) and applied in direction
γ′(t) ∈ Tγ(t)M , and P (pj , p) is the set of all paths that connect pj to p on
the surface.

As described in Appendix A, for smooth surfaces, it is possible to write:
for all λ > 0, for all non-parabolic pj ∈M there is an open neighborhood V
of pj such that ∀p ∈ V :

DQEM(pj , p) �λ DII(pj , p)4 �λ DsVSA(pj , p) (6)

where the notation �λ, borrowed from [6], implies tight approximation to any
desired degree of accuracy. Note that the exponent 4 above arises from the
fact that ε-nets minimize a form of Euclidean distance between the surface
and the approximation, while QEM and sV SA minimize squared Euclidean
distance. Equation 6 is valid only for elliptic points pj . For hyperbolic points,
DQEM and DsVSA still converge to the same value, but (DII)4 is only an upper
bound of DQEM and DsVSA , [Note that one could have defined DII using
|qII |1/2 in the integrand of 3, where qII is the second fundamental form. This
would make (DII)

4 be a tight approximation of DQEM and DsVSA everywhere
non-parabolic on M , but would no longer be a Riemannian metric.]

The distance DII , is too expensive to compute in practice (since each eval-
uation involves computing a shortest path under the qc

II
surface metric). In

contrast, both DQEM and DsVSA are efficiently computed using only local
information at the arguments pj and p.

2.2 Normal Approximation

The problem of computing a mesh that approximates the normal field of a
surface is considered next. It is noted that for this problem, the normals of
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the approximating mesh are piecewise constant. However, instead of being
inferred from the vertex positions, the normals of the output mesh are opti-
mally assigned to triangles. This distinction is necessary to avoid difficulties
like those described in [5, 7] that can occur when triangles have large internal
angles, even if they have the right limit shape and size.

A similar analysis to that of Sec. 2.1 can be made in this case. Here, the
two relevant algorithms that are considered are [6, 14]. They use the following
distances to optimize Eqs. 1 and 2 respectively:

DIII(pj , p) = min
γ∈P (pj ,p)

∫

γ

qIII(γ
′(t); γ(t))

1
2 dt (7)

DnVSA(pj , p) = ‖n(pj)− n(p)‖2 (8)

where qIII is the surface’s third fundamental form, and n : M → S
2 is the

Gauss map.
Analogously as proven in Appendix A, it is, for p in an appropriate, small

enough neighborhood of a non-parabolic pj :

DIII(pj , p)2 �λ DnVSA(pj , p) (9)

2.3 Behavior

To aid in our discussion, three different kinds of regions on a surface will be
considered, and the algorithms under consideration evaluated separately for
each. The following distinct types of regions on surfaces are considered:

In smooth and non-parabolic regions, it can be shown that, in the limit,
the regions of the partitions generated by optimizing DsVSA DnVSA and DQEM

have the proper aspect ratio [10, 14], which is a necessary condition for opti-
mality for their respective surface or normal approximation problem. It can
also be shown that, for everywhere-elliptical surfaces, and in the limit, the
method of ε-nets [6] using DII produces results that are within a constant
factor of the globally optimal L∞ minimizer for the surface surface approxi-
mation problem. As discussed in Appendix B, in the limit, primal algorithms
such as VSA will need roughly twice as many triangles as compared to dual
algorithms such as QEM and ε-nets.

Near sharp features, these algorithms behave quite differently. In partic-
ular, one can see that DQEM measures error “from the viewpoint” of the
variable of integration p ∈M , while DsVSA does so from the viewpoint of the
mean pj . As a result, QEM places means at high-curvature points, and thus
is suited as a dual algorithm, while sVSA (the surface approximation version
of VSA [14]) places them at low -curvature points, making it better suited as
a primal algorithm. nVSA also tends to place means at low-curvature points.
It is less clear the authors how ε-nets behaves in this regard.

Parabolic/curved regions are places on a smooth surface near, or at
parabolic points where there is significant higher-than-second-order bend-
ing (i.e. the surface is not locally well approximated by a quadratic patch),
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such as near the parabolic line on a torus. Algorithms often need special
care in this case. Near parabolic/curved points, an optimization using DQEM

undersamples regions near curved parabolic lines. The original QEM algo-
rithm [9] deals with this case by introducing special rules to prevent flips be-
fore edge collapses (which strictly-speaking breaks the energy-minimization
formulation of Eq. 2). For ε-nets, an additional isotropic term is added to the
distance to cope with such regions. VSA deals with this case, in which the
Voronoi cell boundaries are highly curved, by discretizing these boundaries
and triangulating the cells finely enough as to avoid undersampling.

3 Shape Operator Metric for Normal Approximation

An obvious missing piece in this description is an algorithm that converges
to Eq. 9 in the limit, but places means at high curvature points away from
it, making it most suitable as a dual algorithm. In some sense this algorithm
would be to nVSA what QEM is to sVSA. Moreover it can be efficiently
computed an optimized (as in Eq. 1 or 2), has high approximation efficiency
in the sense of Appendix B, and it avoids heavy undersampling near curved
parabolic lines.

To begin, consider the definition DnVSA(pj , p) = ‖n(pj) − n(p)‖2, which
measures normal error from either pj or p, and, similarly as QEM, construct
an approximation that only depends on pj but not on any higher-order local
information at pj . To do this, a second-order Taylor expansion of DnVSA(pj , p)
around p is constructed (note that the zero-th and first order terms vanish):

DSOM(pj , p) ≡ (pj − p)T
∂D

nV SA
(p′j , p)

∂2p′j
(pj − p) (10)

= (pj − p)TS(p)2(pj − p) (11)

where S(p) is a R
3×3 shape operator matrix S(p) = k1(p)e1(p)e1(p)T +

k2(p)e2(p)e2(p)T , {k1, k2} are the principal curvatures, and {e1, e2} the prin-
cipal directions.

Note that DSOM , like DQEM and DVSA , can be efficiently computed only
from local information at the endpoints, and, as will be shown in Sec. 4, results
in an energy of the type of Eq. 1 or 2 that can be efficiently minimized using
standard algorithms [13, 12].

The SOM algorithm then simply outputs the dual trianglulation of this
computed surface partition.

It follows from the fact that this is a dual algorithm, whose distance con-
verges in the limit to that of DnVSA , and from the discussion of Appendix
B, that this algorithm has the desired favorable (limit) efficient approxima-
tion characteristics when compared to the primal algorithm of [14]. It is also
shown in Appendix C that this algorithm produces elements that conform to
the theoretically optimal limit shape and orientation.
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Unlike [6, 9, 14], curved parabolic regions are dealt with
in a natural way, without special consideration, which
adds to the simplicity of the algorithm. The side figure
illustrates this point, where a mean pj is placed at a
parabolic line (red). Because the parabolic line is curved,
pj does not lie along the flat direction when viewed from
the point of view of nearby points p. An SOM primal-
region centered around pj thus cannot grow too much

along the parabolic line if the parabolic line curves.
It is possible to see that minimizing Eq. 2 using Eq. 10 has the effect

of placing means at points of high-curvature. Consider the closely-related
problem of gradient approximation of a scalar function f defined on the plane,
and an analogous distance DfSOM = (pj − p)TH2

f (p)(pj − p) with pj , p ∈ R
2,

where Hf is the Hessian of f . In an everywhere-isotropic region, DfSOM =
k(p)‖pj − p‖2, which, used for L2 minimization in a form analogous to Eq. 2
over the plane, is an instance of the weighted k-means problem, which is well-
known to place means at points with high weight [1] (high-curvature in this
case). The case where H is not isotropic behaves similarly, but the weight
can be thought of as directionally-varying.

4 Implementation of SOM

The energy of Eq. 10 is minimized in a way very similar to the algorithm
of [12], which uses a probabilistic seeding of means, followed by a Lloyd
relaxation [13] and has theoretical guarantees of closeness to the global opti-
mum. In this work, the probabilistic seeding is simply replaced by iteratively
placing means at the surface point with maximum minimum-distance to the
current set of means, similarly as the greedy algorithm for computing ε-nets
of [11]. This is also similar to the optimization method of [6], except that
the seeding is followed by a Lloyd relaxation, and is also similar to [14]. The
shape operator matrix S of Eq. 10 is estimated using the algorithm of [3].

Once the seed means have been placed, the Lloyd relaxation has two stages.
The first creates a distance-dependent Voronoi partition of the surface, and
the second computes the new means’ locations from the current partition.

To compute a Voronoi partition, all vertices (as opposed to input triangles)
are tagged as belonging to some primal Voronoi region, and Voronoi region
boundaries are computed by splitting input triangles that have vertices in
different regions, as in the side figure below. A Voronoi region is thus not
constrained to be a collection of faces, but can have a boundary that cuts
across triangles, which may slightly improve accuracy in practice. Also, in
this way, Voronoi regions can meet at most at 3-way junctions. These 3-
way junctions naturally dualize into triangles. Note that this generalizes to
higher-dimensions, so that, by construction, it will only output simplicies.
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Given a Voronoi partition of the surface, the new means’ locations are
computed. First, note that the energy of Eq. 2 for the distance DSOM can be
written as

E2
SOM

=
∑

j

pT
j (
∫

Vj

S(p)2dp)pj − (12)

− 2pT
j (
∫

Vj

S(p)2 · pdp) + (
∫

Vj

pT · S(p)2 · pdp) (13)

and so it is quadratic in pj .
It is possible to compute the minimizer pj of

Eq. 12 by solving a small linear system, but this
would return a mean pj which is not constrained
to be on the surface. Instead, the constants in
equation 12 are computed in a first pass: Aj =∫
Vj
S(p)2dp and bj =

∫
Vj
S(p)2·pdp, for each Voronoi

region Vj . Then, for each input triangle (or split tri-
angle) inside region Vj the barycentric coordinates

(u, v) of the minimizer pj of Eq. 12 can be found by solving RTAjR

(
u
v

)

=

RT bj where R ∈ R
3×2 is some basis of the supporting plane of the triangle.

The minimizer may fall outside the triangle, so it is necessary to look for it
along triangle edges and vertices as well. The final mean is the minimum over
all the minimizers on each triangle, guaranteeing that pj is a point on the
surface. Finally, instead of outputting pj directly as a (dual) vertex, a quadric
error metric [9] for its associated Voronoi region Vj is first computed, and
its minimizer along the line passing through pj in direction n(pj) is output.
This small perturbation slightly improves the approximation.

5 Results

Some surfaces processed by the SOM algorithm are shown in figures 1 through
3. These meshes are compared with those produced by VSA, which are com-
puted by exactly following [14]. Note that, unlike SOM, VSA has a free pa-
rameter (the precision used to discretize the partition regions’s boundaries),
which has been tuned to improve VSA’s output. These results are also com-
pared with the output of QEM [9]. Note that QEM optimizes (RMS) distance
from the surface to the approximation, instead of normal error, and therefore
the comparison is not strictly relevant; but it is included it as reference. Run-
times for SOM range from 5 sec. (bunny, input: 70k tris.) to 40 sec. (statue,
input: 512k tris.), on a single core 2.0GHz CPU.

Even though it is not necessarily what is being optimized for in this work,
it is possible to consider (L∞) Hausdorff, and RMS error in the sense of sur-
face approximation. Note that, in most cases, QEM produces slightly better
approximation of the surface than SOM, and significantly better than VSA.
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(a) SOM dual (b) VSA (c) QEM

(d) SOM primal (e) VSA partition

Fig. 1. SOM: 500 vert., 996 tris. (Hausdorff error = 1.79e-2, RMS error = 2.24e-3).
VSA: 528 verts., 1076 tris. (Hausdorff error = 2.31e-2, RMS error = 5.06e-3). —
QEM: 502 verts., 1000 tris. (Hausdorff error = 1.93e-2, RMS error = 1.93e-3).

This is expected, as QEM optimizes surface approximation error (RMS er-
ror in the figures), while VSA and SOM both optimize normal error instead.
Notice that, for smooth surfaces, and using (almost) the same number of
triangles, SOM’s approximation is appreciably finer than VSA’s. On smooth
surfaces, the approximation is significantly better for SOM at a given sam-
pling rate. As can be seen in the primal partitions in figures 1 and 2, with
an equal triangle budget, SOM is able to partition the surface into smaller
regions that capture detail better. Note that the bunny is particularly trou-
blesome for VSA, when compared with SOM, because its bumpy surface
produces very curved regions that can output many triangles when their
boundaries are discretized by the VSA algorithm. In general, in the above
figures, triangles are elongated along the directions of minimum curvature,
and tend to show very high anisotropy in places where this is possible: like
the ears of the bunny or the statue’s arms. Note that our algorithm offers no
guarantees in terms of normal flips in the triangulation, which could show
up occasionally in sparsely sampled regions. This behavior is similar to VSA
and ε-nets, which also cannot guarantee to be free of flips.

Figure 3(d-f) shows a surface composed of roughly flat parts separated by
sharp features. On these kinds of surfaces VSA does particularly well, since
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(a) SOM dual (b) VSA (c) QEM

(d) SOM primal (e) VSA partition

Fig. 2. SOM: 200 verts., 396 tris. (Hausdorff error = 3.32e-1, RMS = 5.02e-2).
VSA: 199 verts., 409 tris. (Hausdorff error = 7.03e-1, RMS error = 9.93e-2). —
QEM: 202 verts., 400 tris. (Hausdorff error = 2.50e-1, RMS error = 4.31e-2).

it operates by locating roughly-flat patches and triangulating them. In par-
ticular, the region-triangulation phase of VSA is well-tuned to this problem,
since the desired behavior in this case is to triangulate the flat polygons.
SOM in this case naturally places means at sharp corners. But its connectiv-
ity is guided by the shape operator, which is almost everywhere degenerate
here. This case is dealt with by computing the final mesh connectivity using
a modified shape operator, which is set to a very high (isotropic) value in
flat regions, effectively simulating a flat-polygon triangulation step (similar
to the constrained Delaunay triangulation used in [14]).

5.1 Numerical Validation

Unlike for surface approximation, there is, as far as the authors are aware, no
standard way of measuring the surface normal approximation on a surface. If
there was, away from the limit regime, a well-defined one-to-one correspon-
dence between points on the surface and points on the approximation, then
it would be possible to compute the (L2) approximation error by integrating
the distance between corresponding normals over the surface. However, this
correspondence is not available. To analyze approximation error, the very
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(a) SOM dual (b) VSA (c) QEM

(d) SOM dual (e) VSA (f) QEM

Fig. 3. Lucy SOM: 1500 verts., 2988 tris. (Hausdorff = 14.598, RMS = 1.866).
Lucy VSA: 1456 verts., 2990 tris. (Hausdorff error = 44.688, RMS error = 5.911).
Lucy QEM: 1496 verts., 2988 tris. (Hausdorff error = 11.834, RMS error = 1.472).
Fandisk SOM: 80 verts., 156 tris. (Hausdorff error = 0.118, RMS error = 0.0157).
Fandisk VSA: 80 verts., 156 tris. (Hausdorff error = 0.0596, RMS error = 0.0131).
Fandisk QEM: 80 verts., 156 tris. (Hausdorff error = 0.264, RMS error = 0.0152).

closely-related problem of approximation of the gradient of a height field
over the plane is considered [it has optimal limit aspect ratio ξ1/ξ2, where ξi
are the eigenvalues of the heigh field Hessian [4, 5]]. Because both VSA and
SOM only look at normals and shape operators, it is possible to naturally
adapt both to the gradient approximation case by measuring distances be-
tween gradients, as opposed to normals, by computing a Hessian of the height
field at each point, instead of a shape operator. Both algorithms must also be
extended to force them to conform to the boundary of the domain. There is
however, to our knowledge, no equivalent natural generalization of QEM [9]
to the heigh field approximation case. Once again, the tunable parameter in
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(a) nVSA (b) SOM

Fig. 4. Gradient approximation using nVSA and our algorithm. Primal (top),
algorithm output (middle), height field approximation (bottom). Red marks in the
primal are locations of vertices in the dual. In both (a) and (b), the mask (left side)
is approximated with 356 triangles, and the bunny (right side) with 468 triangles.

Fig. 5. RMS (L2) gradient error plots for the mask and bunny height fields (top-
right corners.)

VSA has been adjusted to the best results obtained. The input is a surface
that is finely scan-converted on a squared piece of the plane (figure 5 top-
right corners.) Planar meshes obtained this way are shown in figure 4, while
figure 5 shows the corresponding error plots for these two inputs, at several
approximation levels. Notice how the mesh approximating the mask in 4.b
more closely matches the features of the input than 4.a, even though both
have the same number of triangles. The difference in RMS error is not always
large for a fixed number of triangles, though it is significant. If, alternatively,
an RMS error level is fixed, and the VSA and SOM approximations with that
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error are considered, it can be noted that the SOM mesh has significantly
fewer triangles.

6 Summary and Conclusion

This work begins by placing some established algorithms for surface approx-
imation into a common framework. From this analysis, it becomes apparent
that a dual variational algorithm for surface normal approximation was pre-
viously missing. Such algorithm is introduced next, and its limit behavior
shown to conform with the theoretical asymptotic aspect ratio (Appendix C).
It is further argued that this dual algorithm has several advantages over pri-
mal variational algorithms for surface normal approximation (such as VSA).
In particular, the limit approximation efficiency is discussed in Appendix B,
which is shown to be approximately 1.75 times higher for a dual algorithm
with the same (asymptotically optimal) limit aspect ratio. The approxima-
tion results of the proposed algorithm and established ones are also compared
on practical data sets. While the primal VSA is still preferable for piecewise
flat surfaces, where it successfully splits them into flat regions which are then
triangulated, for general curved surfaces, the algorithm introduced in this
paper is shown to perform better. This is further shown on quantitatively
experiments, which are carried out on the very closely related problem of
gradient approximation over the plane.
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Appendix

Appendix A: Distance Tightness Bounds

As in [6], it is said that a ≤λ b ⇔ a ≤ (1 + λ)b, and that a �λ b ⇔ a ≤λ

b∧b ≤λ a. qII(t, p) is the second fundamental form at point p in direction t, and
qc
II

is its “convexified” version (taking the absolute value of the eigenvalues).
The definitions of DII and DIII are in Eqs. 3 and 7.

Lemma 1. For all λ > 0, for all non-parabolic pj ∈ M , there’s an open
neighborhood V � pj of M such that ∀p ∈ V , D

QEM
(pj , p) ≤λ DII

(pj , p)4, and
DsVSA(pj , p) ≤λ DII(pj , p)4.

Proof. Lemma 4.1 of [6] shows that for all λ > 0, for all non-parabolic
pj ∈ M , there’s an open neighborhood V � pj of M such that ∀p ∈ V ,
DE(pj , TpM) ≤λ DII(pj , p)2, where DE(pj , TpM) is the Euclidean shortest
distance from pj to the plane tangent to the surface at p. Then, by the sym-
metry of DII :

DQEM(p, p′) = DE(pj , p)2 ≤λ DII(pj , p)4 =

= DII(p, pj)4 ≥λ DE(p, pj)2 = DsVSA(pj , p)

where V is chosen small enough such that the neighborhood V ′ � p of the
last approximate inequality above contains pj as well.

Note that the other direction of the inequality is not true in general in
neighborhoods that are not elliptic. If DII had been defined using |qII |1/2 in-
stead, then it would’ve been possible to write: DQEM(p, p′) �λ DII(pj , p)4 �λ

DsVSA(p, p′) at every non-parabolic point.

Lemma 2. For all λ > 0, for all non-parabolic pj ∈ M , there’s an open
neighborhood V � pj of M such that ∀p ∈ V , D

SOM
(pj , p) �λ DIII

(pj , p)2, and
D

nVSA
(pj , p) �λ DIII

(pj , p)2.
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Proof. From the fact thatDSOM(pj , p) is a second-order Taylor approximation
of DnVSA(pj , p) around p, and that pj is not parabolic, with V chosen small
enough not to contain parabolic points (which is possible since the set of non-
parabolic point is open) follows that ∀β > 0 there’s a neighborhood V � pj

such that ∀p ∈ V , DnVSA(pj , p) �β DSOM(pj , p)2 for 0 < β < λ, (1 + β)2 =
1+λ. It is also possible to choose a neighborhood V ′ � pj small enough such
that [2]:

DSOM(pj , p) = (pj − p)TS2(p)(pj − p) �β DIII(pj , p)2

In particular, because β < λ, then also DSOM(pj , p) �λ DIII(pj , p)2. Finally,
inside the intersection of the two neighborhoods from the two claims, the
transitivity property x ≤β y ≤β z ⇒ x ≤ (1 + β)2z yields DnVSA(pj , p) �λ

DIII(pj , p)2.

Appendix B: Limit Approximation Efficiency

As pointed out in [6], an optimal solution of Eq. 1 (or 2), in the limit regime,
for a small enough, regular (everywhere elliptical or hyperbolic) neighborhood
of a surface point, looks like a (stretched) regular hexagonal tiling. A dual
algorithm outputs the dual of this tiling (blue), which locally is a regular (va-
lence 6) triangulation. A primal algorithm instead triangulates the hexagons
directly (green). The limit efficiencies of these dual and primal triangulations
are compared next.

The uniform stretching is first undone to obtain an isotropic hexahedral
decomposition, which can be shown not to affect the analysis. Note that,
although there are multiple ways of triangulating a regular hexagon, all pro-
duce the same set of triangles if symmetry and rotation are discounted. In
the L∞, normal approximation case, the larger triangles of the primal (green)
have error equal to DIII(pj , vi), same as the error of the dual triangles (and
analogously for surface approximation by using DII instead). But there are
four primal triangles per hexagon, and only two dual triangles per hexagon,
resulting in a factor of two inefficiency of the primal.

The L2 case is more involved, and it is only an-
alyzed for the normal approximation case that con-
cerns us most here. Optimal normals are assigned to
each triangle in both triangulations, which can be
computed in closed-form. The L2 normal error over
the triangles is then numerically integrated. Start-
ing from the same regular hexagonal tiling, here the
error per unit area in the primal and the dual tri-
angulations is different. Using the fact that L2 error

grows as s4 where s is a uniform scale factor applied to the triangulation, it
is possible to scale the dual triangulation until its error per unit area matches
that of the primal. Now the average triangle areas can be compared, yielding
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the inefficiency factor between primal and dual. All computations (including
integration and scaling) use conservative bounds. The limit inefficiency factor
is γ ∈ (1.7635, 1.7642) (where lower and upper bounds are rounded down and
up, respectively). Hence a primal triangulation in the limit uses approx. 75%
more triangles to obtain the same L2 normal error as the dual.

Appendix C: Shape Operator Metric and Aspect Ratio

For a regular (non parabolic) point p on a smooth surfaceM , and for very fine
approximations, it is possible to consider the shape of a neighborhood Np of
fixed area that locally minimizes Eq. 2 using DSOM . Since the neighborhood
is very small and the surface is smooth, the shape operator is approximately
constant inside. Therefore, to any desired degree of accuracy, Np is the min-

imizer of
∫

Np

(p′ − p)T · S(p)2 · (p′ − p)dp′. If this expression is written in a

frame centered at p and oriented so that ẑ = n(p) and {x̂, ŷ} are the prin-

cipal directions of S(p), then this energy is
∫

Np

k2
1x

2 + k2
2y

2dxdy, where k1,

k2 are the principal curvatures at p. It is easy to show that a neighborhood
Np of fixed area minimizing this energy is an ellipse of aspect ratio (ratio of
major to minor axis) k1/k2, which matches the asymptotically optimal as-
pect ratio for normal approximation of [4]. Note that (around elliptic points)
this ratio would have been |k1/k2|1/2 for the surface approximation energy∫

Np

|k1|x2 + |k2|y2dxdy, in accordance with [8]. The dual triangulation inher-

its these properties: in the limit regime, dual triangles have circumscribing
ellipses with same orientation and aspect ratio as the primal regions.




