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Abstract. This paper presents a computational method for converting a non-conformal hex-
dominant mesh to a conformal hex-dominant mesh without help of pyramid elements.  During 
the conversion, the proposed method subdivides a non-conformal element by applying a subdi-
vision template and conformal elements by a conventional subdivision scheme. Although many 
finite element solvers accept mixed elements, some of them require a mesh to be conformal 
without a pyramid element.  None of the published automated methods could create a confor-
mal hex-dominant mesh without help of pyramid elements, and therefore the applicability of 
the hex-dominant mesh has been significantly limited. The proposed method takes a non-
conformal hex-dominant mesh as an input and converts it to a conformal hex-dominant mesh 
that consists only of hex, tet, and prism elements.  No pyramid element will be introduced.  The 
conversion thus considerably increases the applicability of the hex-dominant mesh in many  
finite element solvers. 

1   Introduction 

This paper presents a computational method for converting a non-conformal hex-
dominant mesh to a conformal hex-dominant mesh without introducing a pyramid 
element.  The input hex-dominant mesh can include hex, tet, and prism elements (also 
known as wedge elements), and some quadrilateral faces of the input mesh can be 
non-conformal; i.e., a triangular face can directly be connected to a quadrilateral face.  
The proposed method subdivides non-conformal hex-elements by conformal conver-
sion templates and other elements by a conventional subdivision scheme.  The con-
version makes the hex-dominant mesh fully conformal without introducing a pyramid 
element, which is often rejected by a finite element solver. The output mesh thus can 
be used in a finite element solver even when it accepts neither a non-conformal face 
nor a pyramid element. 

The accuracy of the finite element simulation depends on three factors: (1) mesh 
resolution, (2) mesh element quality, and (3) type of the mesh.  A high-resolution 
mesh with good-quality elements yields an accurate solution.  In addition, the mesh 
type also has a considerable impact on the accuracy of the finite element simulation.  
The type of a mesh depends on the type of elements included in the mesh.  A volume 
mesh typically consists of four types of elements, tet, hex, prism, and/or pyramid ele-
ments as shown in Figure 1.  Each type of element performs differently in the finite 
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element simulation due to the difference of the shape functions, which interpolate 
physical quantity within the element. 

A physical quantity within an element is interpolated as a linear combination of the 
shape functions, and higher-order shape functions can approximate a complex finite 
element solution better than lower-order shape functions. A shape function of an  
8-node hexahedral element includes tri-linear, bi-linear, and linear terms, whereas  
6-node prism and 5-node pyramid elements consist of bi-linear and linear terms, and a 
4-node tetrahedral element consists only of linear terms. Therefore, a hexahedral ele-
ment yields the most accurate solution, and an all-hexahedral mesh is preferred for a 
finite element analysis when available.  Although a tetrahedral mesh can be created 
easily by an automatic mesh generation scheme [1-3], it requires more elements than 
an all-hexahedral mesh to obtain an equally accurate finite-element solution. 

An all-hexahedral mesh, however, turned out to be difficult to create automatically for 
a complicated shape.  Despite numerous attempts, none of the known methods can create 
an all-hexahedral mesh of adequate quality for an arbitrary geometric domain [4-18]. 

A hybrid mesh is an alternative to an all-hexahedral mesh and consists of hexahedral, 
tetrahedral, prism, and pyramid elements.  The most common form of a hybrid mesh is a 
hex-dominant mesh [19-22], in which most of the volume is filled with hexahedral ele-
ments, and the rest with prism and tetrahedral elements, and pyramid elements are in-
serted between a quadrilateral face of a hexahedral or prism element and triangular faces 
of tetrahedral or prism elements as shown in Figure 2. However, some finite-element 
solvers do not accept a pyramid element.  During the finite element calculation, an ele-
ment is transformed into a master element, in which partial differential equations are 
numerically integrated [23]. Such a transformation utilizes Jacobian determinant, which 
is defined at every corner of an element where three edges converge. However, four 
edges converge at one of the nodes of the pyramid, where Jacobian determinant be-
comes ambiguous.  Due to this ambiguity, some finite element solvers do not accept a 
pyramid element, and it becomes necessary to connect two triangular faces to a quadri-
lateral face. Such a connection is called a non-conformal connection. Some solvers  
accept neither pyramid element nor non-conformal transition, and applicability of a hex-
dominant mesh is significantly limited. 

This paper proposes a set of mesh conversion templates that are applied to hex 
elements with non-conformal faces. The templates are based on HEXHOOP templates 
[13] and subdivide a non-conformal face into eight triangles (triangular pattern) and a 
conformal face into four quadrilaterals (rectangular pattern) as shown in Figure 3. 
Other elements are subdivided by a conventional subdivision scheme so that the  
elements become conformal after the subdivision. The conversion templates are con-
structed by a family of modular sub-templates that can be assembled to form confor-
mal conversion templates for hex elements. The template design uses two types of 
modular sub-templates, called a core and a cap. A core module defines the subdivi-
sion patterns of two opposite faces of a hex element.  Four caps define the subdivision 
patterns of the rest of the faces.  The advantage of this method is that two subdivision 
patterns, rectangular and triangular patterns, can be mixed and matched freely on the 
exterior surfaces of a hex element. 

The conversion makes a fully-conformal hex-dominant mesh that consists of tet, 
hex, and prism elements, and does not include pyramid elements.  The mesh can be  
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used by a finite element solver that rejects both non-conformal faces and pyramid 
elements. Hence, the conversion significantly increases the applicability of the hex-
dominant mesh. 

In the rest of the paper, Section 2 explains the construction of the subdivision tem-
plates, and Section 3 explains the non-template subdivision.  Section 4 discusses the 
requirement of the input non-conformal hex-dominant mesh.  Section 5 describes a 
post-process called cap-suppression.  Section 6 shows some conversion examples, and 
Section 7 demonstrates the performance of the conformal hex-dominant mesh in finite 
element simulation.  Section 8 discusses potential improvements, and Section 9 con-
cludes the paper. 

2   Construction of the Conversion Templates 

The goal of the proposed method is to develop a system of conformal conversion 
templates for hex elements.  The difficulty is that two face subdivision patterns, rec-
tangular pattern and triangular pattern, need to be freely mixed on the exterior faces.  
Since a hex element consists of six faces, there are 6426 =  of the combinations of the 
subdivision patterns per element.  Due to symmetry, the total number of combinations 
is reduced to ten as shown in Figure 4.  Among the ten cases, there are three cases for 
which a known simple solution exists.  H0 template can be achieved by a basic mid-
point subdivision. H3 template can be constructed by sweeping a triangular pattern  
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Fig. 4. Ten required conversion tem-
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for two layers.  H9 template can be constructed by adding a node in the middle of the 
template and making tet elements by connecting the mid node and exterior triangles.  
All other seven cases are non-trivial. 

To construct all non-trivial conversion templates, the proposed method constructs a 
conversion template by assembling sub-templates, each of which has either rectangu-
lar or triangular pattern on its external faces.  The new template design uses two types 
of modular sub-templates, called core, and cap.  A core module defines subdivision 
patterns of two opposite faces, and four caps define subdivision patterns of the other 
four faces as shown in Figure 5.  Two subdivision patterns can be freely mixed and 
combined on the exterior faces of a hex element. 

2.1   Construction of a Cap Module 

Exterior faces of a cap module are grouped into four groups: T-face, which is exposed 
to the exterior after assembled together with other modules, B-face, which is con-
nected to a slot of a core module, and F-face, which is connected to an adjacent cap 
module as shown in Figure 6. 
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Fig. 6. Faces of a Cap Fig. 7. Construction of a triangular cap 
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Fig. 8. Construction of a rectangular cap Fig. 9. Two wing faces and four slots of a core  
module 

A cap that exposes a triangular pattern on the T-face can be constructed as follows.  
First, sixteen prism elements are created by sweeping four triangles as shown in  
Figure 7 (a). Next, the two corners of the two ends are joined together as shown in 
Figure 7 (b). Joining two corners yields a volumetric region surrounded by inside 
faces of the mesh as shown in Figure 7 (c).  The region is called a pipe and is filled by 
two hex elements.  The mesh is then deformed so that neither gaps nor overlaps re-
main when the cap is assembled with a core and other caps as shown in Figure 7 (d).  
This particular cap module consists of 16 prism elements and 2 hex elements. It is  
 



 Subdivision Templates for Converting a Non-conformal Hex-Dominant Mesh 501 

called a triangular cap and subdivides a corresponding quadrilateral face into eight 
triangles.  Similarly, a rectangular cap, which exposes the rectangular pattern to the 
corresponding quadrilateral face, is constructed by applying a rectangular pattern to 
the T-face as shown in Figure 8. 

2.2   Construction of a Standard Core 

A core module has two wing faces and four slots as shown in Figure 9. Two wing 
faces are exposed to the exterior of the conversion template, and define subdivision 
patterns of the two opposite faces of the template.  A slot is connected to a B-face of a 
cap module. 

There are two types of standard cores, in which the subdivision patterns of the two 
wing faces are identical, called triangular core and rectangular core as shown in  
Figure 10. A standard core is created by sweeping a wing-face subdivision pattern 
four times and then deforming the middle section so that a cap module fits in a slot.  
A rectangular core shown in Figure 10 (a) consists of 16 hex elements, and a triangu-
lar core shown in Figure 10 (b) consists of 32 prism elements. 

(a) 2x2 rectangular core (b) 2x2 triangular core  

Fig. 10. Rectangular and Triangular cores 

2.3   Assembling a Conversion Template 

A core module and four cap modules can be assembled to form a conversion template 
for a hex element as shown in Figure 5.  A B-face of a cap module is connected to a 
slot of a core module, and an F-face of a cap module is connected to an F-face of a 
neighboring cap module.  After assembling, only T-faces of the four cap modules and 
wing faces of the core module are exposed to the exterior.  This assembly is possible 
because the subdivision pattern of the B-face of a cap module matches the subdivision 
pattern of a slot of a core module, and the subdivision pattern of an F-face of a cap 
module always matches the F-face of the neighboring cap module regardless of the 
combination of four cap modules. 

By combining appropriate core and caps, all templates except H5 shown in Figure 
4 can be assembled.  In H5 template, however, none of the opposite faces has an iden-
tical subdivision pattern, and it cannot be assembled with a standard core.  H5 tem-
plate requires a special type of core called a double-hoop core as explained in the next 
section. 

2.4   Constructing a Double-Hoop Core 

A standard core constrains at least one pair of opposite faces to have identical subdi-
vision pattern.  Since none of the opposite faces in H5 template shown in Figure 4 has 
identical subdivision pattern, standard core cannot be used for assembling H5  
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template. H5 template requires a core that has a triangular pattern on one of the wing 
faces and a rectangular pattern on the other. 

A double-hoop core is created as follows.  First, a H1 template is assembled from a 
rectangular core, a triangular cap, and three rectangular caps.  The H1 template is ori-
ented so that a triangular pattern is on the top face.  The H1 template can be split into 
top and bottom halves as shown in Figure 11 (a).  The cross-section between the top 
and bottom halves lies on a plane and exposes interior faces of cap and core modules 
as shown in Figure 11 (b).  Two layers of hex elements are then created by sweeping 
the cross-sectional pattern and inserted between top and bottom halves as shown in 
Figure 11 (c).  The result is a conformal mesh consisting of hex and prism elements.  
The top face of the mesh has a triangular pattern, and the bottom face a rectangular 
pattern.  Four side faces are also rectangular pattern, however, each face has four rec-
tangles vertically and two horizontally as shown in Figure 11 (d).  The mesh is then 
re-oriented so that the triangular pattern face to the left, and then the middle section of 
the mesh is shrunk so that four caps fit to the mesh as shown in Figure 11 (e).  Interior 
nodes should be re-located by an appropriate mesh-smoothing scheme. 

Since this double-hoop core exposes a triangular pattern on one of the two wing 
faces, and a rectangular pattern on the other, the H5 template can be assembled by a 
double-hoop core, two rectangular caps, and two triangular caps.  This core is called a 
double-hoop core because two ‘hoops’ of pipe volumes exist in the H5 template as 
shown in Figure 12. 

(a) Splitting a H1 template into 
top and bottom halves 

Slot 
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(c) Inserting two layers of hex ele-
ments between top and bottom halves
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Fig. 11. Inserting two layers of hex elements in the middle of the H1 template 

3   Subdividing Other Elements 

3.1   Subdividing Prism Elements 

A prism element is subdivided into six hex elements as shown in Figure 13 (c), or 
eight prism elements as shown in Figure 13 (b) or Figure 13 (c).  The subdivision pat-
tern is chosen based on the constraint on the triangular faces.  A triangular face of a 
prism element is constrained if it is connected to a non-conformal face of the 
neighboring hex element or a triangular face of the neighboring tet element.  Since the 
subdivision patterns on both triangular faces of a prism element needs to be identical, 
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when one triangular face of a prism element is constrained, the opposite triangular 
face is also constrained.  If multiple prism elements are chained by triangular faces, 
the constraint on one end of the chain propagate through the chain of the prism ele-
ment to the other end, and all triangular faces of the prism chain are constrained. 

If the two ends of a prism chain are exposed to the exterior of the mesh, each of the 
prism elements in the chain is subdivided into six hex elements as shown in Figure 13 (a). 
If one of the ends of a prism chain is connected to a tet element, and the other end is also 
connected to a tet element or exposed to exterior of the mesh, each of the prism elements 
in the chain is subdivided into eight prism elements as shown in Figure 13 (b). 

If one of the ends of a prism chain is connected to a non-conformal face of a hex 
element, each of the prism elements in the chain is subdivided into eight prism ele-
ments as shown in Figure 13 (c).  In this case, the subdivision pattern of the triangle 
connected to the non-conformal face must match half of the subdivision pattern of the 
non-conformal face as shown in Figure 14.  However, due to the asymmetry of the 
triangle subdivision pattern, if both ends of a prism chain are connected to non-
conformal faces, constraints from the two ends may conflict to each other as shown in 
Figure 15.  Such a conflict can be resolved by subdividing one of the prism elements 
in the chain into two tet elements and three prism elements by adding two nodes in-
side the original prism element.  However, this resolution often yields a low-quality 
element.  The hex-dominant mesh generator thus needs to avoid such conflict when it 
creates an input hex-dominant mesh.  Discussion on the requirement of the input hex-
dominant mesh is also found in Section 4. 

3.2   Subdividing Tet Elements 

A tet element is subdivided by (1) adding a node at the center of the element, (2) sub-
dividing triangular faces so that it satisfies the constraints imposed by the neighboring 
prism element or a non-conformal face, and then (3) connecting each triangle to the 
node created at the center of the original tet element. 

A triangular face of a tet element can be constrained by the neighboring prism ele-
ment, or a non-conformal face connected to the triangular face.  All non-constrained 
faces of tet elements are subdivided into the pattern shown in Figure 16 (a), and con-
strained faces into the pattern shown in Figure 16 (b) so that the faces conform to the 
neighboring elements after the subdivision. 

The nodes added at the center of the original tet element will be deleted by mesh 
smoothing [24-27], local transformation [28, 29], and edge collapse [30] as many as 
possible after the conversion. 
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Fig. 12. Double hoop 
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Fig. 13. Three possible subdivi-
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(a) (b)  

Fig. 15. Conflict of triangle subdivision pat-
terns from the two ends of a prism chain 

Fig. 16. Two subdivision patterns of a face 
of a tetrahedral element 
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Fig. 17. Permissible non-conformal connections 

4   Requirement of the Input Hex-Dominant Mesh 

The input to the proposed method is a non-conformal hex-dominant mesh, which can 
include a triangular face directly connected to a quadrilateral face of a hex element.  
The conversion templates are flexible and can convert even more complex connection 
such as a partially-shared quadrilateral and half-exposed quadrilateral to a conformal 
connection as shown in Figure 17.  Such flexibility helps a hex-dominant mesh gen-
erator to create more hex elements in the input mesh. 

Nonetheless, the input hex-dominant mesh needs to satisfy certain conditions dis-
cussed in this section.  A hex-dominant mesh that satisfies those conditions can easily 
be created by a conventional algorithm [19, 21, 31] with a slight modification. 

4.1   Hex Element 

A quadrilateral face of a hex element can be connected to a quadrilateral face of a 
neighboring hex or prism element, or one or two triangular faces of neighboring tet 
and/or prism elements. 

 

Fig. 18. Impermissible connection: Two quadrilateral faces sharing three nodes are not sharing 
a diagonal 
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However, when a quadrilateral face is sharing three nodes with a quadrilateral face 
of a neighboring hex element, two quadrilateral faces must share the diagonal. The 
connection shown in Figure 18 is thus impermissible. 

4.2   Prism Element 

All quadrilateral faces of prism elements need to be conformal.  I.e., a quadrilateral 
face of a prism element needs to be completely shared by the neighboring prism or 
hex element, or completely exposed to the exterior.  No triangular face can be con-
nected to a quadrilateral face of a prism element. 

A HEXHOOP template for a prism element can also be assembled as described in 
the original HEXHOOP paper [32], and such a template can subdivide a non-
conformal prism element into conformal elements.  However, the experiments  
performed in this research showed that applying a prism template often yields very 
low-quality elements. The possible reason why a prism template yields a low-quality 
element is because prism element are created in the difficult region where hex ele-
ments cannot be placed and the quality of the original prism element is often not high 
enough.  The original element needs to be of reasonably high quality to have reasona-
bly good elements after the conversion.  Therefore, the current implementation does 
not utilize prism templates. 

As already discussed in Section 1, the subdivision pattern of one of the two trian-
gular faces of a prism element must match the pattern of the other triangular face.  
The hex-dominant mesh generator must avoid a prism element with two conflicting 
subdivision patterns on the two triangular faces. 

If the input non-conformal hex-dominant mesh satisfies the above-mentioned con-
ditions, the proposed conversion templates create a topologically-valid conformal 
hex-dominant mesh. 

5   Cap Suppression 

Some elements from cap modules may be deleted after the conversion. If two 
neighboring cap modules are sharing T-face as shown in Figure 19 (a), elements in-
cluded in both cap modules can be eliminated by joining corresponding nodes as 
shown in Figure 19 (b). The subdivision pattern between the two conversion tem-
plates is shown in Figure 19 (c). Since the quality of the elements in cap modules 
tends to be relatively lower than for other elements, the overall mesh quality can be 
improved by eliminating cap modules. 

Cap Cap 

(a) Two cap modules fac-
ing each other 

(b) Joining corre-
sponding nodes 

(c) After suppressing caps 
 

Fig. 19. Suppressing two cap modules facing each other 
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6   Conversion Examples 

Figure 20 and Figure 21 show conformal hex-dominant meshes created by the pro-
posed method.  The input non-conformal hex-dominant meshes are created by first 
converting a tet mesh into a prism-tet hybrid mesh by the method described in [33], 
and then merging pairs of neighboring prism elements into hex elements.  Table 1 
shows the mesh statistics, including Scaled Jacobian, which is defined at each node as 
a triple scalar product of the edge vectors of three converging edges of an element di-
vided by the product of the lengths of the three vectors. 

Table 1. Statistics of the sample meshes 

# element Volume Ratio (%) Minimum Scaled 
Jacobian 

 # node

Hex Prism Tet Hex Prism Tet Hex Prism 

Max Tet 
Radius  
Ratio  

Max 
Quad  
Warpage 

Leg-bone 10,001 3,288 3,872 16,352 36 23 41 0.20 0.17 59.32 46 deg 
AAA 13,462 7,468 6,728 2,772 68 30 2 0.20 0.20 59.86 54 deg 

 

 

 
 

Fig. 20. Leg-bone model Fig. 21. Abdominal aortic aneurysm model 

7   Experimental Finite Element Analysis 

This section presents results from a series of structural analyses of a connecting rod of 
an automotive engine.   Four sets of analyses, each with (1) linear hex-dominant, (2) 
linear tet, (3) quadratic hex-dominant, and (4) quadratic tet meshes have been per-
formed with different node density to compare the characteristics of different types of 
meshes.  Statistics of the meshes used in the analyses are shown in Table 2. 

The analyses are calculated by Abaqus/CAE Version 6.7 [34] on a PC with a Dual 
Core AMD Opteron Processor at 2.0GHz and with 3GB RAM.  A load of 18,000N is 
applied to the internal surface of the crankshaft bearing housing in form of uniform 
pressure, and one half of the surface of the wrist pin seat is constrained against  
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displacements in the XY-plane, and symmetry boundary conditions are also applied.  
Figure 22 shows a von Mises stress plot calculated with one of the hex-dominant 
meshes. 

Figure 23 and Figure 24 plot in-body maximum displacement and von Mises stress 
vs. the number of nodes calculated by using linear and quadratic elements, respec-
tively.  In both plots, the solutions from tet meshes show a smoother convergence, and 
the solutions from hex-dominant mesh show an oscillatory behavior.  Nonetheless, the 
solutions from tet meshes and hex-dominant meshes both converge to a similar values 
as the number of nodes increases, and virtually no difference was observed between 
tet mesh and hex-dominant meshes if the number of node reaches 25,000 (linear) and 
110,000 (quadratic). 

Figure 25 depicts von Mises stresses along a path starting in the middle of the rod 
and moving toward the surface at the fillet location, calculated from quadratic tet and 
hybrid meshes.  The path plot also indicates that the results from a tet mesh and a hy-
brid meshes converge to the same solution as the mesh resolution increases. 

The results imply that hybrid meshes exhibit unsmooth convergence pattern when 
the mesh resolution is relatively low.  However, the solution becomes as accurate as 
tet meshes when node density becomes high. 

When the number of nodes is equal, a hex-dominant mesh is expected to take 
shorter computational time to obtain a solution than a tet mesh.  The dominant com-
ponent of the finite element computation comes from the matrix solver.  If the number 
of nodes is equal, the size of the stiffness matrix is equal. However, as can be seen 
from Table 2, average number of elements per node is much smaller in a hybrid mesh 
than a tet mesh, and the bandwidth of the stiffness matrix from a hex-dominant mesh 
is thus smaller. Hence, the matrix solver should take shorter time to solve a stiffness 
matrix from a hex-dominant mesh. 

The expectation was confirmed for quadratic meshes.  As can be seen from Figure 26,  
a quadratic hex-dominant mesh required shorter CPU time than a quadratic tet mesh.  The 
difference becomes significant as the number of nodes increases.  Results from the linear 
 

Table 2. Statistics of the meshes used in the analyses 

Hex dominant mesh Tet mesh 

# node 
# elem. / 
# node 

# node quad. 
# elem. / 
# node 

lin. quad. 
# elem 

lin. quad. 

Hex vol.
ratio  
(%) lin. quad. 

# elem 
lin. quad. 

4,196 17,850 5,571 1.33 0.31 57 4,182 28,260 17,588 4.21 0.62 
5,208 22,151 6,894 1.32 0.31 57 5,522 37,785 23,844 4.32 0.63 
6,075 25,599 7,778 1.28 0.30 59 7,355 50,998 32,689 4.44 0.64 
8,692 37,909 12,517 1.44 0.33 51 10,156 71,456 46,556 4.58 0.65 
9,977 42,406 13,166 1.32 0.31 64 12,927 91,542 60,106 4.65 0.66 

12,849 54,304 16,591 1.29 0.31 67 14,616 104,280 69,014 4.72 0.66 
15,835 66,332 19,804 1.25 0.30 75 16,783 120,133 79,835 4.76 0.66 
16,173 69,292 21,900 1.35 0.32 62 19,371 139,655 93,528 4.83 0.67 
16,456 70,053 21,824 1.33 0.31 66 22,504 162,980 109,694 4.87 0.67 
23,751 101,915 32,367 1.36 0.32 68 24,075 174,708 117,851 4.90 0.67 
24,456 104,610 32,930 1.35 0.31 70 26,249 190,928 129,169 4.92 0.68 
29,991 125,860 37,610 1.25 0.30 75 28,979 211,373 143,414 4.95 0.68 
30,914 130,977 40,222 1.30 0.31 73 30,126 220,152 149,666 4.97 0.68 
31,952 135,154 41,306 1.29 0.31 75 31,171 227,889 155,031 4.97 0.68 
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Fig. 22. Connecting rod 
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Fig. 23. Results with linear elements 
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Fig. 24. Results with quadratic elements 

 

meshes, however, contradicted the expectation; a linear hex-dominant mesh took more 
CPU time than a linear tet mesh.  It could be due to the characteristic of the solver used 
in the experiment.  Further study is required to find the cause of the contradiction. 

 



 Subdivision Templates for Converting a Non-conformal Hex-Dominant Mesh 509 

300

350

400

450

500

550

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Location [mm] 

vo
n

 M
is

es
 s

tr
es

s 
[M

P
a]

 hex-dom mesh quadratic (high res.) 

tet mesh quadratic (high res.)

hex-dom mesh quadratic (low res.)

tet mesh quadratic (low res.)

 

Fig. 25. Path plot of the von Mises stress through the rod 
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Fig. 26. CPU time plot 

The experimental results imply that a quadratic hex-dominant mesh is advantageous 
especially when the mesh resolution is high compared to a tet mesh.  Since the differ-
ence between a linear element and a quadratic element becomes significant in a non-
linear analysis, a quadratic hex-dominant mesh should be particularly effective for a 
large-scale non-linear analysis.  Further research is needed to test this speculation. 

8   Potential Improvements 

The quality of the output conformal hex-dominant mesh can be further improved by 
taking as input a higher quality non-conformal hex-dominant mesh.  If a subdivision 
template is applied to a low-quality element, the output mesh will include an even 
lower-quality element.  Such a low-quality element should be avoided by eliminating 
low-quality elements included in the input non-conformal mesh. 

The quality of the output mesh can also be improved by avoiding certain configu-
ration of the input mesh can be avoided.  The quality of the elements included in non-
trivial templates (H1, H2, H5, H6, H7, and H8 templates) is relatively low due to the 
complex structure of the templates - the element quality of the non-trivial templates is 
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shown in Table 3.  Values in parentheses indicate the mesh quality after applying 
conventional smoothing schemes.  In particular, H5 template has the lowest quality 
element among the non-trivial templates.  The quality of the output mesh therefore 
can be improved by developing and applying a new non-conformal hex-dominant 
meshing scheme that reduces the usage of the H5 template. 

The quality of the output mesh can also be improved by applying mesh-smoothing 
schemes. Note, however, that not all conventional mesh-smoothing schemes perform 
well on a hybrid mesh. 

Table 3. The quality of the non-trivial templates 

 H1 H2 H5 H6 H7 H8 
Minimum 
Scaled Jacobian 

0.34 (0.28) 0.34 (0.30) 0.20 (0.20) 0.34 (0.21) 0.34 (0.20) 0.34 (0.20) 

Worst Aspect 
Ratio 

2.9 (3.0) 2.9 (3.1) 5.3 (4.6) 2.9 (3.0) 2.9 (3.1) 2.9 (3.2) 

Largest Quadri-
lateral Warpage 

28.2deg 
(1.1deg) 

28.2deg 
(1.9deg) 

62.3deg 
(18.1deg) 

28.2deg 
(1.4deg) 

28.2deg 
(1.3deg) 

28.2deg 
(0.8deg) 

9   Conclusions 

This paper has presented a method for converting a non-conformal hex-dominant 
mesh into a conformal hex-dominant mesh by applying a set of subdivision templates.  
The method always creates a conformal hex-dominant mesh if the input non-
conformal hex-dominant mesh satisfies a certain condition, where a non-conformal 
hex-dominant mesh can be easily created by an existing non-conformal hex-dominant 
meshing scheme. Experimental results indicate the method creates a good-quality 
conformal hex-dominant mesh.  A series of finite element simulations have been per-
formed and the results imply that a conformal hex-dominant mesh can be effective for 
a large-scale non-linear analysis. 
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