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Abstract:
This paper presents a method for computing thin layers of high-quality, tri-
angular prisms that conform to surfaces that are specified as level sets of an
implicit function. Triangular prisms are important in circumstances where vol-
umetric meshes need to capture the geometries materials with thin layers–i.e.
that are smooth relative to their thickness–or where, as in fluid mechanics sim-
ulations, solutions perpendicular to boundaries exhibit boundary layer com-
plexities that exceed that of the bounding surfaces. “High-quality” triangular
prisms exhibit a roughly linear structure, with nearly regular triangles at the
ends and side faces that are nearly perpendicular to the triangular faces. The
proposed method relies on an iterative relaxation of point samples, which we
call dynamic particles, that simultaneously regularize inter-point distance on
the surfaces while shortening distances to corresponding points on a nearby
offset surface, which establishes the layer. This paper describes the method
and results on meshes of medical data sets that model human vasculature.

1 Introduction

This paper presents a method for computing thin layers of high-quality, tri-
angular prisms that conform to surfaces that are specified as level sets of
an implicit function. This problem statement is motivated by a number of
applications in medicine and biology where simulations are conducted on geo-
metric models derived from 3D images, such as CT, MRI, or various forms of
microscopy. These applications, in fields such as electrophysiology [4], ortho-
pedics, and cardiology [3], rely on a wide range of governing equations, such as
electrostatics, fluid dynamics, solid mechanics, and chemical dynamics. Here
we consider three particular driving problems: electrostatic simulations in the
head for EEG, in which thin layers around the skin and skull present thin, lay-
ered geometries; hyperelastic simulations of mouse bone loading where stress
boundary layers normal to the surface must be captured; and computational
fluid dynamics of human vasculature, where meshes of complex, branching
structures must be augmented with thin layers to capture the properties of
fluid flow near boundaries. In this paper we present meshing results for the
latter.

Figure 1(a)–(b) shows an example of a segmentation from head MRI that
demonstrates the thin layers of tissue which can have very different electri-
cal conductivity—an important consideration in the simulation of biolelectric
fields. Figure 1(c)–(d) shows a segmentation and an adaptive mesh of a rela-
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Fig. 1: (a)–(b) Segmentations of MRI head data show thin layers of skin, skull, fat and cerebral
spinal fluid. (c) Isosurfaces of CT angiography give boundaries of vascular lumen, where blood
flows. (d) Adaptive meshes using the method of dynamic particles [2] give good quality triangles
and watertight surfaces.

tively small section of a CT data set from a human head. Fluid simulations
rely on thin elements near the vessel boundaries to capture high gradients in
flow.

One typical strategy for constructing such prisms is to start with a good
quality triangle surface and simply offset the triangle vertices in the direc-
tion of the surface normals (established from the adjacent triangles, e.g. an
average), and build prisms from the set of resulting triangle pairs. The first
problem with this is that the prisms may not be valid. Here we define va-
lidity as nonself-intersecting prisms—that represent a single, connected solid.
For instance, in regions of high curvature, the offsets that form the uprights
of the prisms can cross the quadrilateral faces. The second problem is that
even if the prisms are valid, the quality of the prisms could be compromised
with this approach. This is because surface normals for each vertex are not
parallel and because the inner and out triangular faces are not parallel. This
can change the shape of the individual triangles and cause uprights that are
skewed relative to the faces.

Figure 2a shows quantitative results of this strategy. For triangle quality we
use the radius ratio: Q = 3r/R, where r and R are the radii of inscribing and
circumscribing circles, respectively. This figure shows the effect of the offset on
Q, as represented by histograms, which is quite good for the original triangle
mesh (Fig. 2a—blue), but degrades significantly in the offset (Fig. 2a—red).
The average radius ratio drops from 0.92 to 0.72. The angles between the
quadrilateral faces and the triangles is A = asin(u · n), where u is the unit
vector along the quadrilateral edge, and n is the unit surface normal. Ideally,
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this would be 90 degrees. The average angle is 74 degrees and the minimum
is 0.2 degrees—there are some very skewed prisms. Finally, the number of
incorrect prisms is significant—160 out of 11,854 prisms are of poor quality
(1.3%) and would need to be corrected either by direct user interaction or some
other mechanism. The purpose of this paper is to examine an alternative to
this simple approach.

2 Methods

The meshing method uses a set of points, which we call particles [5, 1], whose
positions are updated along the gradient of an objective function that prefers
regular configurations. In previous work, we have shown that these objective
functions can be constructed to achieve adaptive, high-quality sampling of
implicit surfaces [2]. The objective function is a sum of local potential func-
tions of the form E(rij) ∼ cotan(rij/α), where rij is the distance between
points (particles) i and j, rij = |xi = xj |. The total energy, for N particles is
P =

∑N
i=1

∑
j 6=iE(rij). The derivative of this energy (Figure 2c) is compact,

and particles move with a gradient descent on this potential, constrained to
the isosurface V (x) = k.

For prisms, we establish a set of corresponding particles, with potential
P ′ =

∑N
i′=1

∑
j′ 6=i′ E(ri′j′). These particles are constrained to an alternative

isosurface V (x) = k′, and we obtain an ε offset if k′ = k+ ε and V (x) is a dis-
tance function to the original surface. Finally the two systems of particles are
coupled, in order to keep correspondences close, through a quadratic energy,
Si = |xi − x′i|2, and we have

R = P + P ′ + α

N∑
i=1

Si, (1)

as depicted in Figure 2b.
To initialize, we use the simple method described above, where we first

optimize on the original surface, place twin particles on the offset surface, and
then optimize the joint energy in Equation 1, which optimizes the particles on
the two surface while keeping corresponding particles close. For all the results
in this paper we use α = 10. As in previous work [2], we insert and remove
particles so that each particle (on the original surface) has a distance to its
neighbors that is to within a specified tolerance of the local feature size. The
local feature size is determined by measuring both the surface curvature and
the distance to the medial axis.

3 Results and Conclusions

We begin with a simple geometric structure, which is a metacarpal of a mouse
(finger/paw bone). Figure 3 shows a particle distribution from the proposed
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Fig. 2: (a) Histograms of radius ratios of the original surface and offset (blue and red respec-
tively), show a degradation of the triangle quality in the offset surface (Radius ratio of 1.0 is
ideal). (b) Particles on each surface, the original and the offset, repel each other to maintain
good configurations, but are attracted to the corresponding particle on the other surface. (c)
The potential energy and repulsive force between particles falls off as cotan, approximating an
electrostatic potential, but with compact support.

method and the resulting mesh. Table 3 summarizes the quantitative results.
The proposed mesh eliminates the five poor quality prisms, improves the av-
erage and minimum radius ratios, but introduces slightly more skew in the
prisms, as indicated by the average and maximum prism angles. Figure 3
shows the prism mesh of the vessel data. The quantitative results in Table 3
demonstrate an overall improvement but not the ideal results. The number of
poor quality elements drops by 75% (160 to 40), and the triangles improve,
but not entirely.

(a) (b) (c) (d)

Fig. 3: (a) Distribution of points/particles on a single surface—red and green are original and
offset surfaces, respectively. (b) Prisms from the proposed method. (c) Offset surface from the
simple method (normal offsets), show invalid (intersecting) elements. (d) Same view as (c) for
the proposed method—showing valid prisms.

The results, therefore, are promising but mixed. In the case of invalid
prisms, one can show that such prisms must always come in pairs, and that
the energy of the system must be improved by swapping vertices. This suggests
that the problem is the minimization, which is certainly getting trapped in
local minima. Also, the parameters themselves—the tradeoff between particle
repulsion and particle attraction—needs further attention. Another issue is
that we use a DT triangulation method on the initial surface, and let the offset
surface inherit this triangulation from the correspondences. We have noticed
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that the triangles are consistently better on the initial surface, suggesting the
need for a more holistic approach for the final meshing phase of the algorithm.
Also, the offsets in these results are large relative to the surface geometry,
which is intentional so that we could examine the behavior of the system as
it fails. For the future, the integration of this system with the construction
of multiple, thinner prismatic layers and tetrahedral volumes could help with
the overall quality and allow better testing of performance.

Method Rad Ratio Avg Rad Ratio Min Angle Avg Angle Min Invalid Elements

Mouse Bone

Simple 0.87 3.0× 10−2 79.8 2.1× 10−1 5

Particle 0.88 7.2× 10−2 67.5 7.2× 10−2 0

Vessels

Simple 0.82 4.9× 10−4 72.7 2.1× 10−2 160

Particle 0.83 4.0× 10−3 74.4 9.7× 10−2 40
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