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Summary. Our final goal is to automatically generate a block decomposition of a
given domain without previously meshing its boundary. To this end, we propose to
obtain directly a valid dual arrangement that leads to a block mesh. In particular, we
introduce a tool based on the new concept of local dual contributions. That is, given a
domain we first generate a reference mesh composed by simplices, triangles in 2D and
tetrahedra in 3D. Then, we add local dual contributions in the elements of a reference
mesh to describe a valid dual arrangement. These local dual contributions are added
according to a set of hierarchical rules to ensure the correct matching of adjacent
contributions. The first implementation of the tool has been successfully applied to
the block decomposition of several geometries, ranging from convex and non-convex
domains to geometries with holes. Further research is under way in order to extend the
applicability of the presented tool to more complicated geometries.
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1 Introduction

The finite element method and finite volume method are widely used to solve
problems in applied sciences and engineering. Both techniques require a valid
discretization of the problem geometry. There exist several mature techniques [1,
2] to obtain these discretizations. However, meshes composed by block elements,
quadrilateral (2D) or hexahedra (3D), are preferred for specific problems [3, 4].
Therefore, the solution of these problems demands a tool that automatically
generates block elements, see references [5, 6] for a survey of available techniques.
On the one hand, several techniques attempt to generate this kind of mesh by
directly generating hexahedral elements. On the other hand, the nature of the
hexahedral meshes have induced to consider the dual problem [7, 8, 9, 10].

This work is devoted to obtaining a valid topological block decomposition of a
given domain without a previous discretization of the boundary. We propose an
algorithm that explicitly inserts descriptions of the dual curves (2D) or the dual
� This work was partially sponsored by the Spanish Ministerio de Educación y Ciencia
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surfaces (3D) and handles their intersections. Finally, the primal mesh is obtained
from this dual construction. Analogous algorithms have been previously sketched
in the literature. In particular, Murdoch et al. [11] briefly introduce theTwist Plane
Insertion algorithm, and Calvo [12] speculates about the free stroking1 method.
In both works such an algorithm is not detailed because there is not a procedure
that manages the insertion of dual curves (2D) or surfaces (3D), and that properly
describes the intersections. To fill this gap, we introduce here the new concept of
local dual contributions which allow to obtain a discrete representation of the dual
arrangement. In order to ensure the correct matching of adjacent contributions we
present a set of hierarchical rules. The concept of local dual contribution and this
set of hierarchical matching rules are the main contribution of our work.

2 Background

2.1 Block Meshes

A mesh in R
n, for our applications n is either 2 or 3, is composed by d-

dimensional entities where d = 0, . . . , n. An entity of maximum dimension, i.e.
a n-dimensional entity, is also referred as element. From 0-dimensional to 3-
dimensional entities we use the following notation: node, edge, face and cell.

A mesh entity that is topologically equivalent (homeomorph) to a d-dimensional
unit interval, i.e. [0, 1]d, is called a block. Therefore a mesh composed by blocks
is called a block mesh. This notation allows to denote to quadrilateral and hex-
ahedral entities with the same term. Hence, quadrilateral and hexahedral meshes
are examples of block meshes.

An (n− d)-dimensional entity, i.e. an entity of co-dimension d, is referred as
a d-co-entity, where d is an integer value such that 0 ≤ d ≤ n. For instance,
an element of a mesh is also a co-node, and a face in a 3-dimensional mesh is
also a co-edge. Table 1 shows the correspondences between entities and their
associated co-entities for the 2D and 3D cases.

Table 1. Correspondence between d-dimensional entities and their associated co-
entities for the 2D (left) and 3D (right) cases

d-entity d co-entity co-dimension

Node 0 co-face 2
Edge 1 co-edge 1
Face 2 co-node 0

– – –

d-entity d co-entity co-dimension

Node 0 co-cell 3
Edge 1 co-face 2
Face 2 co-edge 1
Cell 3 co-node 0

2.2 Dual of a Block Mesh

The concept of mesh dual has been widely used in theoretical [13, 14] and prac-
tical [7, 8, 9, 10] works on block mesh generation. Specifically, Murdoch et al.
1 Named ”libre trazado” in the original work in Spanish.
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Table 2. Primal entities for a block mesh and their associated dual entities for a
quadrilateral and a hexahedral mesh, respectively

Primal d Dual 2D dual 3D dual

Node 0 D-co-node D-face D-cell
Edge 1 D-co-edge D-edge D-face
Quadrilateral 2 D-co-face D-node D-edge
Hexahedron 3 D-co-cell – D-node

[11], Calvo [12], Thurston [13], and Mitchell [14] extend the concept of mesh dual
and present it as an arrangement of intersecting co-curves that bisect blocks in
each direction. In 2D, they consider the dual of a quadrilateral mesh defined by
a set of curves that bisect the edges of the elements and that intersect in the
center of the quadrilaterals. In 3D, the dual of a hexahedral mesh is presented
as an arrangement of surfaces that bisect the faces of the hexahedra and that
intersect in the center of each hexahedron. We denote this extended view of
the dual, referred as Spatial Twist Continuum (STC) in [11], as the D-space
and one of its composing entities as a D-co-curve. That is, in 2D the D-space
is an arrangement of D-curves, and in 3D is an arrangement of D-surfaces.
Notice that not all the dual arrangements lead to a valid block mesh. Specifi-
cally, Mitchell presents in [14] the conditions that have to be satisfied by a dual
arrangement in order to obtain a block mesh from it.

The remaining dual entities of a mesh are obtained by substituting each pri-
mal entity by its co-entity. That is, given a d-dimensional primal entity we
have an associated dual entity of dimension n − d. We assume that dual en-
tities are also in the D-space and we denote them by D-entities. Thus, a
primal node is substituted by a D-element, and a primal element by a D-
node. Table 2 presents the association between primal entities and their dual
co-entities and entities for 2-dimensional and 3-dimensional meshes. For instance,
the dual of an edge is always a D-co-edge that corresponds to a D-edge for
the dual of a quadrilateral mesh and to a D-face for the dual of a hexahedral
mesh.

The D-space is in fact a description of the inherent constraints of the block
meshing problem. Note that each co-edge of a block element has an opposed
co-edge, and both are connected by (n − 1) D-co-curves. In 2D, each edge has
an opposed edge and both are connected by a piece of a D-curve. Along one
of these D-curves we have an associated row of quadrilateral elements. In 3D,
each hexahedron face is bisected by two D-surfaces that connect the face with
an opposite face. The intersection of these D-surfaces define a D-curve associ-
ated to a stack of primal hexahedra. In addition, each D-surface determines a
layer of primal hexahedra. Note that each D-co-curve is composed by several
D-co-edges separated by D-co-faces. Therefore in 2D the D-curves are composed
by D-edges separated by D-nodes, and in 3D the D-surfaces are composed by
D-faces separated by D-edges.
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2.3 Local Dual Contributions

The basic idea of the proposed algorithm is to generate a valid topological block
decomposition of a given domain without a previous discretization of the bound-
ary. Our algorithm explicitly inserts descriptions of the D-co-curves in the D-
space. Finally, the primal mesh is obtained from this dual construction.

The crucial step is the development of an automatic tool that allows the con-
struction, manipulation and management of D-co-curves. Hence, we propose to
create a discrete representation of the D-space referred as D-space, see Figure 1.
To this end, we first create a simple discretization of the domain called refer-
ence mesh. The proposed algorithm adds discretized versions of theD-co-curves,
the D-co-curves, in the elements of the reference mesh. Each one of the D-co-
curves is composed by several discretizedD-co-edges,denoted byD-co-edges. We
impose that the intersections between different D-co-curves are captured by the
boundaries of the D-co-edges, the D-co-faces. That is, we consider that our dis-
cretized version of theD-co-curves, theD-co-curves,define a non-manifold (n−1)-
dimensionalmesh. The intersections betweenD-co-curves and the regions bounded
by this arrangement define the D-space.

-D curveD-edge

segment

-D curveD-edge

intersectionintersection

D– spaceD– space

Fig. 1. D-space for a 2D domain and its discretized version, the D-space

In our discrete approach the domain is substituted by a reference mesh of
simplices. We use the simplices of the reference mesh as containers of linear
entities of co-dimension one. We propose to describe the D-co-curves and their
intersections in the D-space as the composition of several co-edges, the local
dual contributions. Thus, for 2D applications we store in the triangles the
segments that define the D-curves. In Figure 1 we present the D-space for a 2D
domain. Note that a D-curve is composed by several D-edges (the piece-wise
curves between two white circles). Moreover, each D-edge is composed by one or
several segments (the straight lines between two black circles) that determine a
local contribution to the dual of a triangle of the reference mesh. Analogously,
for 3D problems we store in the tetrahedra the planar faces that compose the
D-surfaces. We remark that each reference element can store none, one or several
local dual contributions that can intersect or not between them.



Local Dual Contributions on Simplices: A Tool for Block Meshing 517

(a) (b) (c) (d)

Fig. 2. Vertex classification for 2D domains according to their ideal primal mesh close
to the boundary: (a) end , (b) side , (c) corner , and (d) reversal

2.4 Features

We consider that a domain is described by the following types of entities: vertex,
curve, surface andvolume. Some of the special characteristics of the boundary of
the domain, the features, have to be explicitly preservedby the final block mesh. To
this end, in this section we classify the features according to the ideal mesh around
each entity. Note that the name election is based on Paving [15] and Submapping
[16] notation. For a 2D mesh the vertices are classified as, see Figure 2: i) side ,
the ideal mesh is composed by two quadrilateral elements sharing the vertex. In
addition, these quadrilaterals have only one edge on the boundary; ii) end , the
ideal mesh is composed by one quadrilateral element touching the vertex and with
only two edges on the boundary; iii) corner , the ideal mesh has three quadrilateral
elements sharing thevertex.Two elements have only one edge on the boundary, and
the middle element has four inner edges; and iv) reversal , the ideal mesh has four
quadrilateral elements touching the vertex. Two elements have only one edge on
the boundary, and the two middle elements have four inner edges.

A vertex is of type feature if it is not of type side . For 3D applications we
have to classify curves and vertices. First, a piece of a curve can be classified as: i)
side , the ideal mesh is composed by two hexahedral elements sharing the curve
and each one with one face on the boundary; ii) end , its ideal mesh consists
in one hexahedron touching the curve and with two faces on the boundary; iii)
corner , the ideal mesh has three hexahedral elements incident to the curve.
Two elements have only one face on the boundary, and the middle element has
six inner faces; and iv) reversal , the ideal mesh has four hexahedra touching

face

(a)

semi-edge

feature

(b)

feature

feature

edge

(c)

feature

feature

feature
vertex

(d)

Fig. 3. A sample for each vertex type: (a) face vertex; (b) semi-edge vertex; (c)
edge vertex; and (d) vertex type
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the curve. Two elements have only one face on the boundary, and the two middle
elements have six inner faces.

A curve is of type feature if it is not of type side . We determine the classifi-
cation of the vertices according to the classification of their adjacent curves, see
Figure 3: i) face , there is no adjacent curve of type feature ; ii) semi-edge ,
one adjacent curve is of type feature ; iii) edge , two adjacent curves are of type
feature ; and iv) vertex , more than two adjacent curves are of type feature .

3 Constructing the Dual

3.1 Requirements and Aim of the Algorithm

Any block mesh has to fullfill several topological, geometrical and qualitative
requirements in order to be used in a numerical simulation. A detailed exposition
of these conditions for block meshes can be found in [5, 6]. For the purposes of
this work we highlight two of them:

• Geometric matching. The block mesh has to reproduce the geometric
features of the domain. Moreover, the mesh has to be adapted to each kind
of feature. Hence, in Section 2.4 we have defined the vertices (2D) and curves
(3D) features according to the ideal mesh around them. For instance, Figure
2 and Figure 4 present the desired primal and dual configuration for each
kind of vertex.

• Boundary sensitivity. The mesh has to present layers of blocks that follow
the boundary of the domain. This condition can be expressed in the D-space,
where the layers of blocks are substituted by D-co-curves. Specifically, we
have to generate a series of D-co-curves by shrinking the boundary of the
domain inwards the domain.

The proposed algorithm is based on the following two paradigms:

• Blockdecompositionorientedmesher.One of the most reliable approaches
to block meshing is to decompose the domain in several coarse blocks. The final
mesh is obtained by meshing each block and verifying the mesh compatibilities
between blocks. Several software packages implement this paradigm [17, 18]
providing a set of tools in order to define, by hand, a block topology decompo-
sition of the domain. The user is responsible for determining the topological

(a) (b) (c) (d)

Fig. 4. Ideal mesh dual close to boundary features of a 2D domain: (a) end , (b) side ,
(c) corner , and (d) reversal
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(a) (b) (c) (d)

Fig. 5. Block meshing steps in 3D: (a) obtain the domain; (b) add D-surfaces; (c)
create D-cells; and (d) block mesh

relation of the blocks but is allowed to loosely dispose the vertices of the blocks.
Then the package is able to adapt the mesh to the domain and to untangle the
edges of the blocks by relaxing node location. Therefore, our goal is to obtain
a valid coarse block decomposition of the domain.

• Unconstrained boundary mesher. A previous discretization of the bound-
ary adds additional constraints that are difficult to fulfill, in particular for
hexahedral meshes. Several authors [11, 12] have suggested to develop algo-
rithms in order to mesh domains without a prescribed boundary mesh. In
particular, Staten et al. [19] fully develop this idea. In our work we also follow
this approach and we propose an algorithm that directly generates the dual
of a block mesh without a previous discretization of the boundary.

3.2 Algorithm Proposal

Taking into account the requirements of a valid dual [14] and the requirements
of the block mesh, Section 3.1, we propose an algorithm that explicitly inserts
descriptions of the D-co-curves in the D-space. Our algorithm is structured in
four steps, see Figure 5 for a 3D graphical description.

The main task of the proposed algorithm is to build up a representation of
the D-co-curves. To this end, as we mentioned in Section 2.3, we propose to
consider a discrete representation of the D-space, the D-space. In the following
we present an algorithm and we describe the second and the third step:

Algorithm 1. D-space block meshing algorithm
Reference mesh. We obtain a Constrained Delaunay Triangulation
(CDT) of the domain. In our implementation we have used TetGen [20].
Add D-co-curves. Create an arrangement of intersecting D-co-curves
composed by several D-co-edges.
Create D-co-nodes. Cap the D-co-edges with the boundary of the
reference mesh. Note that the boundary of the reference mesh is composed
by co-edges. We obtain a set of bounded regions, the D-co-nodes, sharing
at most a common D-co-edge.
Block mesh. Once we have the D-space, a discretized representation of
the D-space, we obtain the final block mesh as the dual of the dual.
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Add D-co-curves. Each D-co-curve is a mesh composed by co-edge elements.
We modify the reference mesh in order to make it compatible with the added
co-edges. Specifically, we split the elements of the reference mesh to match them
with the inserted co-edges. In 2D, the discretized versions of D-co-curves, the
D-curves, are composed by segments that intersect in a set of shared nodes, the
D-nodes. The D-edges are delimited by the intersections of the D-curves. We
split the reference mesh elements to match these new segments, see Figure 1. In
3D, the discretized versions of the D-co-curves, the D-surfaces, are represented
by triangular meshes that can intersect in two possible configurations: i) two
triangular meshes can intersect in a set of shared edges that compose the dis-
cretized versions of the D-edges and D-curves, denoted by D-edges and D-curves;
and ii) three triangular meshes can intersect in a shared node which corresponds
to a D-node. The intersections of the D-surfaces bound the discretized versions
of the D-faces, the D-faces. We split the tetrahedra of the reference mesh obtain-
ing new entities that match properly with the additional triangles that conform
D-surfaces.

Create D-co-nodes. Taking into account that we have split the reference mesh
to add theD-co-curves, we obtain a conformaln-dimensional mesh of theD-space,
the D-space. We obtain a set of regions, the D-co-nodes, bounded by the D-co-
edges and the boundary co-edges. In 2D, we obtain a set of areas, the D-faces,
composed by faces and delimited by the edges that compose the D-edges, and the
split boundary of the reference mesh. In 3D, we obtain several volumes, the D-
cells, composed by cells and delimited by the composing faces of the D-surfaces,
and the split surface mesh of the boundary of the reference mesh.

4 Adding Local Dual Contributions

4.1 Reference Element Contributions

We have outlined an algorithm to obtain a block mesh by means of first gener-
ating a discretized version of the dual, see Section 3.2. In the second step of the
algorithm, add D-co-edges, we need a tool for describing the D-co-edges and
their intersections. To this end, we have introduced the concept of local dual
contributions in Section 2.3. Recall that we use a reference mesh of simplices
as a discrete representation of the geometry and that local dual contributions
are added in the elements of the reference mesh. In this section we detail the
geometrical definition for each type of local dual contribution.

In 2D, given a triangle of nodes {n1, n2, n3} in a reference mesh, we consider
two types of local dual contributions, see Figure 6:

• edge . Given an edge ei, we consider the opposite node ni. Thus, ei is deter-
mined by the nodes ni1 and ni2 , where i1 = i+1(mod 3) and i2 = i+2 (mod 3).
This type of contribution is determined by the segment ri1ri2 , where ri1 :=
1
4ni + 3

4ni1 and ri2 := 1
4ni + 3

4ni2 .
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e1

(a)

n1

(b)

Fig. 6. Local dual contributions on a reference mesh triangle. (a) edge contribution;
and (b) node contribution.

• node . Given the node ni it is the contribution defined by the segment qi1qi2 ,
where i1 = i + 1(mod 3) and i2 = i + 2 (mod 3), qi1 := 3

4ni + 1
4ni1 and

qi2 := 3
4ni + 1

4ni2 .

Note that the local dual contributions intersect with the edges of the reference
mesh at distances 1

4 and 3
4 of the edge length. On the one hand, this selection

ensures that the local dual contributions are compatible between adjacent el-
ements. On the other hand, the intersections between local dual contributions
have the proper multiplicity inside the reference elements.

In 3D, given a tetrahedron of nodes {n1, n2, n3, n4} in a reference mesh, we
consider three types of local dual contributions, see Figure 7:

• face . For a reference tetrahedron we consider a face f of nodes {ni1 , ni2 , ni3}
and opposite node ni. The contribution of this face is defined by the triangle
{qi1 , qi2 , qi3} where qij := 1

5ni + 4
5nij for j = 1, . . . , 3.

• edge . Consider an edge e delimited by the nodes ni1 and ni2 , and being ni3

and ni4 its opposite nodes. The contribution of e in the tetrahedron is defined
by the quadrilateral {r1, r2, r3, r4} with r1 := 4

5ni1 + 1
5ni4 , r2 := 4

5ni1 + 1
5ni3 ,

r3 := 4
5ni2 + 1

5ni3 and r4 := 4
5ni2 + 1

5ni4 .
• node . The contribution of a node ni with opposite nodes {ni1 , ni2 , ni3} is

defined by the triangle {si1 , si2 , si3}, where sij := 4
5ni + 1

5nij for j = 1, . . . , 3.

For 3D problems, the local dual contributions intersect with the edges of the
reference mesh at distances 1

5 and 4
5 of the edge length. As in the 2D case, this

selection ensures compatibility between neighboring elements and the correct
multiplicity of the intersections inside the reference elements.

We propose to use local dual contributions to describe arrangements and inter-
sections ofD-co-curves. According to Section 3.2, local dual contributions have to
define a non-manifold (n−1)-dimensional mesh with conformal elements. To cap-
ture all the possible intersections with other local dual contributions and obtain
the conformal mesh, we decompose each type of local dual contribution in several
simplices of co-dimension one. For instance, given a 3D reference mesh we consider
the following decompositions for each local dual contribution type, see Figure 8:

• face . Given a face contribution defined by the nodes {q1, q2, q3}, we consider
the points q121 := 3

4q1 + 1
4q2, q122 := 1

4q1 + 3
4q2, q231 := 3

4q2 + 1
4q3, q232 :=

1
4q2 + 3

4q3, q311 := 3
4q3 + 1

4q1, q312 := 1
4q3 + 3

4q1, p1 := 2
4q1 + 1

4 (q2 + q3),
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q1

q2
q3

(a)

r2

r3

r1

r4

(b)

s1

s2s3

(c)

Fig. 7. A sample for each type of local dual contribution: (a) contribution of the base
face; (b) contribution of the frontal edge; and (c) contribution of the top node

q1 q2

q3

q121 q122

q231

q232q311

q312 p1 p2

p3

(a)

r231

r232r411

r412

r12

r34

r2

r3

r1

r4

(b)

s1 s2

s3

(c)

Fig. 8. Associated triangulation for each type of local contribution: (a) face contri-
bution; (b) edge contribution; and (c) node contribution

p2 := 2
4q2 + 1

4 (q1 + q3), p3 := 2
4q3 + 1

4 (q1 + q2) and the decomposition of the
contribution in the triangles {q1, q121, q312}, {q2, q231, q122}, {q3, q311, q232},
{q121, p1, q312}, {q231, p2, q122}, {q311, p3, q232}, {q121, q122, p2}, {p1, q121, p2},
{q231, q232, p3}, {p2, q231, p3}, {q311, q312, p1}, {p3, q311, p1} and {p1, p2, p3}.

• edge . Given an edge contribution defined by the nodes {r1, r2, r3, r4}, we con-
sider the points r231 := 3

4r2 + 1
4r3, r232 := 1

4r2 + 3
4r3, r411 := 3

4r4 + 1
4r1, r412 :=

1
4r4 + 3

4r1, r12 := 1
4 (r1 + r2 + r231 + r412), r34 := 1

4 (r3 + r4 + r411 + r232) and the
decomposition of the contribution in the triangles {r1, r2, r12}, {r2, r231, r12},
{r231, r412, r12},{r412, r1, r12},{r411, r231, r232},{r412, r232, r411},{r3, r4, r34},
{r4, r411, r34}, {r411, r232, r34}, and {r232, r3, r34}.

• node . A node contribution defined by the nodes {s1, s2, s3} is not decom-
posed because it does not have inner intersections with other contributions.

4.2 Hard and Soft Contributions

In order to improve the robustness of the proposed algorithm we require that
given two different reference meshes of a single domain the algorithm generates
the same dual. For instance, given the reference meshes of the rectangular domain
presented in Figures 9(a) and 9(b) we require that the algorithm generates the
same dual, Figure 9(c), and the same primal, Figure 9(d).
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(a) (b) (c) (d)

Fig. 9. Decomposition of a rectangular domain. (a) First reference mesh; (b) second
reference mesh; (c) ideal mesh dual of the rectangular domain; and (d) ideal primal
mesh.

(a) (b) (c) (d)

Fig. 10. Local dual contributions for several triangulations around an end node: (a)
one adjacent triangle; (b) two adjacent triangles; (c) three adjacent triangles; and (d)
four adjacent triangles. Solid black lines denote the boundary; slashed lines denote the
edges of the triangular reference mesh; local dual contributions are denoted by red lines;
and the red stroked circles represent the intersection of two local dual contributions.

To this end, consider an end vertex of a 2D domain. Depending on the ref-
erence mesh this end node may belong to different number of elements of the
reference mesh, see Figure 10. If the end node belongs to one or two elements,
see Figure 10(a) and Figure 10(b) respectively, we can add local dual contribu-
tions to obtain the ideal D-space curves around the end node. In the first case
two edge local dual contributions are needed. In the second case one edge and
one node local dual contributions are needed in each reference triangle adjacent
to the vertex.

If the node belongs to more than two triangles, see Figures 10(c) and 10(d),
the local dual contribution types presented in Section 4.1 are not sufficient to
obtain a valid arrangement of the D-curves. The proposed solution for analogous
configurations is to virtually collapse the two intersection points into a single
virtual point. Then, we obtain the desired two D-curves that intersect in the
virtual point. To generalize this behavior we classify the local dual contributions
in two classes:

• hard . The contribution is respected during the construction of the primal
mesh. That is, if at least one of the contributions that separate two D-co-
nodes is hard we generate a primal edge connecting their associated primal
nodes.
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(a) (b)

Fig. 11. Local dual contributions for several possible triangulations around an end
node: (a) three adjacent triangles; and (b) four adjacent triangles. Red segments rep-
resent hard contributions and blue segments represent soft contributions.

(a) (b) (c) (d)

Fig. 12. Examples of local dual contributions in reference triangles. Two non-valid
duals: (a) three hard contributions intersecting at one point; and (b) a configuration
composed by three hard contributions and two soft contributions. Two configurations
defining a valid dual: (c) two hard contributions matching at one point; and (d) four
hard contributions and two soft node contributions in the middle.

• soft . The contribution is not respected during the construction of the primal
mesh.That is,whenall the contributions that separate twoD-co-nodes aresoft
we do not generate a primal edge connecting their associated primal nodes.

The solution to the problem presented in Figures 10(c) and 10(d) can be
interpreted in terms of hard and soft local dual contributions. On the one
hand, the proposed solution is composed by soft node contributions of the end
vertex in each inner triangle. On the other hand, it is composed by two hard
node contributions of the end vertex, and one edge hard contribution on each
triangle adjacent to the boundary of the reference mesh, see Figure 11. Then,
the soft contributions will be ignored during the construction of the primal
mesh, and this representation of the D-space is equivalent to virtually collapsing
the soft contributions into one virtual point. Note that this virtual point is
represented by blue segments in Figure 11.

4.3 Matching Rules

In order to obtain a valid dual we have to ensure that: i) local dual contributions
compose D-co-edges without gaps, and ii) the intersections of the D-co-edges
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have the proper multiplicity. For instance, in 2D the multiplicity at the matching
points of local dual contributions must be either two or four.

In this sense, the direct application of hard and soft local dual contributions
does not necessarily lead to a valid dual. To illustrate this shortcoming, we con-
sider two configurations that define a non-valid dual and that can be constructed
by using hard and soft local dual contributions. First, Figure 12(a) shows three
hard local dual contributions sharing an intersection point. Hence, we obtain
three D-edges and not the required four to obtain a valid dual. Second, Figure
12(b) presents a configuration with hard and soft local dual contributions.
Since soft local dual contributions are equivalent to virtually collapse the con-
tributions into one single virtual point, we obtain again three D-edges sharing a
point. These local dual contributions do not correspond to a valid dual.

To overcome these drawbacks we propose to match the number of contributions
from the left and right of a reference mesh co-edge. For instance, in Figure 12(c) the
hard edge and node contributions from the left match with the hard edge and
node contributions fromthe right, andwe obtain a correct piece ofD-co-edge. Like-
wise, in Figure 12(d), if we virtually collapse the middle soft node contributions
we have that hard contributions from the left match with the two hard contribu-
tions from the right. These contributions define the ending parts of four D-edges
separated by a D-node, generated by virtually collapsing the soft contributions.

Note that by construction the local dual contributions do not have gaps nor
intersections of wrong multiplicity inside the elements of the reference mesh.
Thus, after considering that middle soft contributions are virtually collapsed,
we have to ensure that the hard contributions match properly at the boundaries
of reference elements. To this end, we propose the following strategies to ensure
that the local dual contributions match properly.

• 2D. The boundaries of the reference triangles are edges. Each edge has two
possible intersection points of local dual contributions. We have to check local
dual contributions around each one of these points:
– Boundary edge. We allow either no contribution or one incident hard

contribution from inside the element.
– Inner edge. The number of hard contributions from the left have to

be equal to the number of hard contributions from the right. Thus, the
possibilities are: i) no incident contributions; ii) one from the left and one
from the right defining a piece of a D-curve; and iii) two from the left
and two from the right defining four D-edges ending at the intersection
node of two D-curves.

• 3D. The boundaries of a reference tetrahedron are determined by four trian-
gular faces. Each face has six possible segments where local dual contributions
can intersect. These segments are determined by all the possible face , edge ,
and node contributions inside the tetrahedron. Note that for each intersec-
tion segment there are only two possible contributions. Hence, we have to
check local dual contributions around each one of these segments:
– Boundary face. We allow either no contribution or one incident hard

contribution from inside the element.
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– Inner face. The number of hard contributions from the left has to be equal
to the number of hard contributions from the right. Thus, the possibilities
are: i) no incident contributions; ii) one from the left and one from the right
defining a piece of a D-surface; and iii) two from the left and two from the
right defining four D-faces ending at the intersection of two D-surfaces.

4.4 Implementation

We can add local dual contributions from the composing entities of the reference
mesh. In addition, we can use hard and soft contributions in order to capture
the desired dual. But we have to add these local dual contributions taking into
account the set of matching rules. To this end, in our implementation we add the
contributions using a hierarchical procedure: we start at the highest dimension
entities (co-edge contributions) and finish at lowest dimensional entities (node
contributions). In this scheme, highest dimensional contributions are responsible
of determining the main shape of the desired dual, and lower dimensional contri-
butions are responsible of filling the gaps and matching local dual contributions
properly. Algorithm 2, details a procedure for 3D applications.

We use this procedure to implement our local dual contributions tool. The last
two steps are responsible of obtaining a valid dual once the face contributions
have been added. These steps are done automatically according to the matching
rules and the required ideal mesh around the features. The difficulties reside in
the first step where we have to decide which face contributions to add to finally
obtain the desire D-surfaces.

Algorithm 2. Add local dual contributions
Add face contributions. We add hard face contributions: i) to capture
one layer of hexahedra that follows the boundary (adding a face
contribution for each boundary face); ii) to split vertices with more than
three incident feature curves; and iii) to capture ideal mesh close to curve
and vertex features.
Add edge contributions. Taking into account previously added face
contributions, we automatically add edge contributions according to the
matching rules. Thus, we add edge contributions: i) to cover the gaps
between face contributions with soft contributions; ii) to ensure that
face contributions match with correct multiplicity using soft and hard
contributions; and iii) to capture the ideal mesh close to curve and vertex
features with hard contributions.
Add node contributions. Taking into account previously added face
and edge contributions we can still have a non-valid arrangement of
D-surfaces. To obtain the final set of intersecting D-surfaces we add node
contributions: i) to fill all the remaining gaps between face and edge
contributions with soft node contributions; ii) to match all the hard
face and edge contributions and to define valid D-surfaces intersections
using soft and hard contributions; and iii) to capture the ideal mesh at
the vertex features with hard contributions.
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5 Examples

The aim of the examples presented in this section is to show that the concept of
local dual contributions has enough expressivity to capture the dual of the de-
sired block mesh for a wide range of geometries: convex and non-convex domains,
with 3 or 4-valenced vertices, and domains with holes.

We use our implementation to decompose these geometries in coarse blocks. It
is important to point out that the proposed algorithm focuses on the generation
of valid topological block decomposition. Then, the final node location can be
improved using a relaxation procedure [17, 18]. In addition, a finer mesh can be
obtained by meshing each block separately while keeping the mesh compatibility
conditions between them.

For the three first examples, Figure 13 shows the five main steps involved in the
block meshing process: i) to obtain hte reference mesh, the CDT of tetrahedra; ii)
to add local dual contributions to define D-surfaces and their intersections, where
red faces represent the hard local dual contributions and blue faces represent
the soft local dual contributions; iii) to cap the D-surfaces and obtain a D-
space where cells are colored according to the containing D-cell; finally, iv) and
v) to obtain the primal nodes (colored as the associated D-cells), edges, faces
and hexahedra of the block mesh.

In the first example, we decompose in eight blocks a brick object that is
tapered in two orthogonal directions, see Figure 13(a). In this example all the
vertices are 3-valenced. Thus, it can be meshed with submapping or midpoint
subdivision. In fact, the obtained decomposition is equivalent to a coarse mesh
that can be obtained by these methods. In this example all the D-surfaces follow
the boundary of the domain and the possible gaps between contributions are
filled with soft contributions.

For the second example, see Figure 13(b), we consider an extruded pentagon.
The final block decomposition is equivalent to the mesh we would obtain using
midpoint subdivision. Notice that in this example the submapping method will
lead to a non-symmetrical block decomposition of lower quality. The D-surfaces
are discretized versions of D-surfaces that follow the boundaries of the domain.
Close to the top front vertex the D-surfaces have a soft local dual contribution.
When the algorithm caps the D-surfaces we obtain a region close to the top front
vertex colored with cyan. This dual region, D-cell, is associated to the top front
node of the primal, colored in cyan. Notice that since the local dual contribution
is soft , the primal mesh does not show an edge connecting the top front node
with the center node of the top of the volume. That is, during the generation of
the primal mesh we ignore the soft contribution.

The third example presents the decomposition of a double pyramid, see Figure
13(c). Note that we can use neither submapping nor midpoint subdivision because
all the vertices are 4-valenced. In this case our local dual contributions tool auto-
matically splits the double pyramid in 4 tetrahedra. Moreover, the final mesh is
composed by 16 hexahedra that correspond to the decomposition of each one of
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(a) (b) (c)

Fig. 13. Block meshing steps for three different domains: (a) a domain with 3-valenced
vertices; (b) an extruded pentagon; and (c) a domain with 4-valenced vertices. Rows
represent the algorithm steps: i) reference mesh; ii) D-surfaces composed by local dual
contributions; iii) D-space where D-cells are colored in base of the containing D-cell; iv)
primal nodes (colors associated to D-cells) and edges; and v) block mesh.
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(a) (b)

Fig. 14. The D-surfaces and the block meshes for (a) a domain with a hole defined by
four corner curves; and (b) a convex domain with a 3-valenced protrusion

the 4 tetrahedra in 4 hexahedra. In this case all the contributions are hard , and
all the inner parallel D-surfaces are associated with an inner quadrilateral primal
mesh that splits the domain in two parts.

The last two examples, two non-convex domains, are decomposed in a larger
number of hexahedra than the three first examples. Therefore, we only show the
local dual contributions and the obtained primal meshes, see Figure 14.

In the fourth example we discretize the extrusion of a square-shaped ring,
Figure 14(a). This test domain has four feature curves of type corner (non-
convex domain), a hole that cross the whole domain, and all the nodes are
3-valenced. Observe that we obtain ideal primal and dual configurations close to
the corner curves. In fact, these configurations are the 3D generalization of the
ideal configurations presented for corner vertices in Figure 4.

The last example is an extruded square with a protrusion on the top, Figure
14(b). All the nodes are 3-valenced and the curves that join the protrusion with
the base are of type corner . We obtain a coarse decomposition of the domain
that could also be obtained with a submapping algorithm. Since we consider the
unconstrained boundary mesh approach, we do not have to previously compute
a compatible interval assignment of the boundary. The four quadrilaterals that
separate the protrusion from the rest of the mesh are associated to two parallel
D-surfaces.
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6 Concluding Remarks and Future Work

In this paper we present a new algorithm to generate a block decomposition of
a given domain when there is not a prescribed boundary mesh. To this end, we
propose an approach to directly construct a valid dual of the block mesh. The
proposed algorithm is composed by two main steps. First, we create a reference
mesh from the data of the boundary domain by means of a CDT. Second, we
create the dual of the block mesh using the new concept of local dual contribu-
tions. These contributions are generated in the elements of the reference mesh.
Specifically, we have implemented a tool that automatically adds local dual con-
tributions following a set of hierarchical rules. The proposed implementation
ensures that adjacent local contributions match properly. That is, the local dual
contributions define a dual of the block mesh with intersections of the proper
multiplicity and without gaps.

The main goal of the first implementation of the method is to obtain block
meshes and their duals for some simple configurations: convex and non-convex
domains defined by planar surfaces. Our current implementation allows to auto-
matically mesh these simple domains. However, we can also mesh some domains
with several vertices having a valence greater than three. In all theses cases the
developed tool generates the expected mesh.

Practical results suggest that the proposed types of local dual contributions
and the set of matching rules incorporate enough expressivity to describe the
dual arrangement of a block mesh. However, it is expected that as the tool is
applied to more complicated geometries (non-blocky geometries, domains with
sharp angles, or assembly models) additional logic might be incorporated.

Note that the proposed tool is under continuous development. In this sense,
the current version of this tool has several limitations that should be investigated
and solved in the near future. First, we have to analyze the dependence of the
algorithm from the reference mesh. For instance, it is not clear how the resolution
of the reference mesh will affect the topology of the block decomposition. Second,
it has to be investigated how the small perturbations of the boundary will affect
the final primal mesh. Third, we have to apply the developed tool to domains
described by curved boundaries that include smooth details. Finally, we have to
check the robustness of the proposed tool in applications of practical interest.

References

1. Owen, S.J.: A survey fo unstructured mesh generation technology. In: 7th Interna-
tional Meshing Roundtable, pp. 239–267 (1998)

2. Baker, T.J.: Mesh generation: Art or science? Progress in Aerospace Sciences 41(1),
29–63 (2005)

3. Benzley, S., Perry, E., Merkley, K., Clark, B., Sjaardema, G.: A comparison of all-
hexahedral and all-tetrahedral finite element meshes for elastic and elasto-plastic
analysis. In: 4th International Meshing Roundtable, pp. 179–191 (1995)

4. Cifuentes, A.O., Kalbag, A.: A performance study of tetrahedral and hexahedral
elements in 3-d finite element structural analysis. Finite Elements in Analysis and
Design 12(3-4), 313–318 (1992)



Local Dual Contributions on Simplices: A Tool for Block Meshing 531

5. Blacker, T.: Automated conformal hexahedral meshing constraints, challenges and
opportunities. Engineering with Computers 17(3), 201–210 (2001)

6. Tautges, T.J.: The generation of hexahedral meshes for assembly geometry: survey
and progress. International Journal for Numerical Methods in Engineering 50(12),
2617–2642 (2001)

7. Tautges, T.J., Blacker, T., Mitchell, S.A.: The whisker weaving algorithm: A
connectivity-based method for constructing all-hexahedral finite element meshes.
International Journal for Numerical Methods in Engineering 39(19), 3327–3350
(1996)

8. Folwell, N.T., Mitchell, S.A.: Reliable whisker weaving via curve contraction. En-
gineering with Computers 15(3), 292–302 (1999)

9. Mueller-Hannemann, M.: Hexahedral mesh generation by successive dual cycle
elimination. Engineering with Computers 15(3), 269–279 (1999)

10. Calvo, N.A., Idelsohn, S.R.: All-hexahedral element meshing: Generation of the
dual mesh by recurrent subdivision. Computer Methods in Applied Mechanics and
Engineering 182(3-4), 371–378 (2000)

11. Murdoch, P., Benzley, S., Blacker, T., Mitchell, S.A.: The spatial twist continuum:
A connectivity based method for representing all-hexahedral finite element meshes.
Finite Elements in Analysis and Design 28(2), 137–149 (1997)

12. Calvo, N.A.: Generación de mallas tridimensionales por métodos duales. PhD the-
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