
3D Delaunay Refinement of Sharp Domains

without a Local Feature Size Oracle

Alexander Rand and Noel Walkington

Carnegie Mellon University

Summary. A practical incremental refinement algorithm for computing a quality,
conforming Delaunay mesh of an arbitrary 3D piecewise linear complex is given. The
algorithm allows small input angles and does not require the local feature size of the in-
put to be computed before performing the refinement. Small input angles are protected
with a new type of collar which is simpler to implement and analyze than previous ap-
proaches. The algorithm has been implemented and several computational examples
are given.

1 Introduction

Ruppert’s algorithm [9] is an elegant method for computing a quality conforming
Delaunay mesh of a two-dimensional piecewise linear complex (PLC) which con-
tain no acute angles. Based on Ruppert’s original techniques of corner lopping
and concentric shell splitting, the algorithm has been rigorously extended to 2D
PLCs containing sharp input angles. Ruppert’s algorithm has also been extended
to handle three-dimensional PLCs without acute input angles [4]. Handling sharp
angles in 3D leads to a variety of issues not seen in 2D. Subsequent algorithms
have been complicated (in some cases to the point of prohibiting implementa-
tion) and lacked certain desirable properties seen in the original method.

Early algorithms for computing conforming Delaunay tetrahedralizations
(without considering radius-edge quality) in 3D [6, 3] involved computing lo-
cal feature size on all segments of the input through a brute force search before
inserting Steiner points. Several extensions of these methods to the problem of
quality mesh generation [2, 1] have also required the computation of local feature
size as a preprocess. An algorithm of Pav and Walkington [7] gives an alterna-
tive view: Delaunay refinement should be considered an algorithm for computing
local feature size and thus local feature size should not be a necessary input for
the algorithm. They gave a 3D Delaunay refinement algorithm for which all
steps require only “local” information about the mesh in the Delaunay tetrehe-
dralization. Still, this algorithm is not local in the same way as Ruppert’s algo-
rithm: steps in the algorithm require searching the Delaunay triangulation over
a prescribed distance rather than only querying the immediate Delaunay neigh-
bors. This issue of finding a local algorithm for computing constrained Delaunay

38 A. Rand and N. Walkington

tetrahedralizations has been resolved [12, 11], but has not been addressed in the
case of (usual) Delaunay tetrahedralization.

We present a Delaunay refinement algorithm for general PLCs which attempts
to preserve as many features of Ruppert’s algorithm as possible. The algorithm
does not require local feature size information to be precomputed. Each opera-
tion of the algorithm is local to the current Delaunay tetrahedralization in the
sense that encroachment can be determined considering only a point’s immedi-
ate Delaunay neighbors. The result of the algorithm is a conforming Delaunay
tetrahedralization consisting of tetrahedra with bounded radius-edge ratio away
from sharp input angles. The strategy for protecting sharp angles is designed
for simplicity both in implementation and analysis. The authors are unaware
of any algorithm for quality, conforming Delaunay refinement in 3D which has
been implemented. Existing software packages which handle small input angles
are based on constrained Delaunay tetrahedralization [12, 11] and weighted De-
launay tetrehedralization [1].

To highlight the differences between the algorithm and other extensions of
Ruppert’s algorithm to three dimensions, an analogous two dimensional version
is developed and analyzed. In both cases, a Delaunay refinement algorithm is
used to prove estimates on the local feature size of the mesh at input points (in
2D) or on input segments (in 3D). These are the reverse inequalities of those
usually seen in the analysis of Delaunay refinement algorithms; while typically
local feature size is shown to be a lower bound for the distance between points
in the mesh, we show that local feature size bounds this distance (in the form
of segment lengths in 3D) from above. With these estimates, a “collar” can be
inserted near these sharp angles which ensures that the resulting mesh conforms
to the input at termination. An example of the collar used to protect sharp input
features can be seen in Figure 6 in Section 4.

In Section 2, we define the problem and a number of feature size functions
used in the analysis. Sections 3 and 4 outline the algorithms in two and three di-
mensions, respectively, and justify termination and correctness. Several resulting
meshes from the 3D implementation are given in Section 5.

2 Problem Description and Notation

We describe algorithms for meshing a general PLC given by sets of input points
and input segments in 2D, C = (P ,S), or sets of input points, input segments
and input faces in 3D, C = (P ,S,F). In 2D, a PLC C′ = (P ′,S′) is a refinement
of the PLC (P ,S) if P ′ ⊂ P and each segment in S is the union of segments
in S′. In 3D, a PLC (P ′,S′,F ′) refining (P ,S,F) must satisfy the additional
condition that each face in F must be the union of faces in F ′.

An important parameter to the algorithm is a raduis-edge ratio threshold, κ,
which must be greater than 2. The algorithm eliminates all tetrahedra which
have radius-edge ratio greater than κ except for some which are near the sharp
angles in the input.

3D Delaunay Refinement of Sharp Domains 39

The algorithms described involve incrementally refining the input PLC until
the Delaunay triangulation/tetrahedralization of the point set P ′ conforms to
the input PLC and satisfies the radius-edge quality criteria. Throughout this
refinement, it is necessary to identify some important simplices based on their
relation to the input complex.

Definition 1. Consider a refinement (P ′,S′,F ′) of an input PLC (P ,S,F).

• An end segment is a segment in S′ for which at least one endpoint is an
input point in P.

• An end facet is a facet in F ′ for which at least one vertex lies on an input
segment in S.

The smallest angle in the input PLC will be denoted by α. In 2D, this is the
smallest angle between adjacent input segments. In 3D, this is the smallest angle
between any pair of adjacent input features: faces or segments. Let Cd,α denote
the set of d-dimensional PLCs for which no two features meet at an angle of less
than α.

An appropriate notion of feature size is essential to the analysis of Delaunay
refinement algorithms. The standard definition of local feature size is given below
as well as another sizing function (mesh feature size defined below) which is used
throughout the arguments.

Definition 2. Let C be a PLC.

• The i-local feature size at point x with respect to C, lfsi(x, C), is the radius
of the smallest circle centered at x which touches two disjoint features of C
of dimension no greater than i.

• The i-mesh feature size at point x with respect to C, mfsi(x, C), is the
radius of the smallest circle centered at x which touches two features of C of
dimension no greater than i.

• The current feature size with respect to C′, N(x, C′) := lfs0(x, C′), is the
distance from x to its second nearest neighbor in P ′.

Each of these feature size functions is Lipschitz (with constant 1). For a fixed
PLC, local and current feature size each have a strictly positive minimum value
while mesh feature size can equal zero.

If the argument supplied to any of the above feature size functions is a set of
points, rather than a point, then the result is defined to the be infimum of the
function over the set. The dimension argument will be omitted when considering
the d−1 dimensional feature sizes. For instance lfsi(s, C) := infx∈s lfsi(x, C) and,
in 3D, lfs(x, C) := lfs2(x, C).

The distinction in notation between local/mesh feature size and current fea-
ture size is deliberate: these functions will be used differently.

Convention: Throughout the analysis, local/mesh feature size will always be
evaluated with respect to the input PLC, while current feature size will always
involve the current refined PLC. By adhering to this usage, the PLC argument

40 A. Rand and N. Walkington

q

lfs(q)

lfs0(q)
mfs(q)

N(q)

Fig. 1. Example of sizing functions in Definition 2 for a 2D PLC. The black points
represent input points while the white points represent points added by the algorithm.

can be omitted. See Figure 1 for an example the different feature size functions
for a simple PLC.

Finally, much of the analysis involves giving identical estimates for the local
feature size of end segments and the mesh feature size of non-end segments. It
is useful to refer to these two cases with the same notation.

Definition 3. The i-feature size of segment s is defined as follows.

fsi(s) =

{
lfsi(s) if s is an end segment,
mfsi(s) if s is a non-end segment

Given a segment or triangle s in C′, point x is called an i-feature size witness
for s if x is contained in a feature of C of dimension at most i which is disjoint
from s. For segment or triangle s in C′, point x is called a local feature size
witness for s if x is contained in a feature of C which is disjoint from another
feature of C containing s.

This definition of feature size is similar to the local gap size used by Chen and
Poon [2]. The notion of i-feature size witness is used by recognizing that if x is
an i-feature size witness of segment s then

fsi(s) ≤ dist(x, s).

3 Delaunay Refinement Algorithm in 2D

The following algorithm can be used to mesh any 2D PLC and extends many of
the properties of Ruppert’s Delaunay refinement algorithm for PLCs in C2,90.
Several effective approaches to protecting acute angles from cascading encroach-
ment sequences have already been developed for this problem [9, 10, 5, 8].
However, we present a different corner-lopping algorithm which mirrors the 3D
algorithm given in Section 4. In what follows, small angles are protected by split-
ting all acutely adjacent segments at an equal distance. Then, these segments are

3D Delaunay Refinement of Sharp Domains 41

protected by rejecting any circumcenters proposed for insertion which encroach
the diametral disk of an end segment. This algorithm differs from previous ver-
sions as we compute an acceptable length for the protected end segments in the
output mesh before refining any triangles for quality.

Algorithm Overview

The algorithm consists of the following steps.

• (Step 0) Compute the Delaunay triangulation of the input point set.
• (Step 1a) Estimate local feature size at all input points.
• (Step 1b) Protect small input angles with a “collar”.
• (Step 2) Perform standard Delaunay refinement away from the collar.

Step 0 is a standard procedure and common in many Deluanay refinement
algorithms. Steps 1a and 2 are Delaunay refinement algorithms. Step 1b involves
a single pass over the set of input points to insert points. Properties of the mesh
generated by this algorithm are summarized in two theorems.

Theorem 1 (Termination/Grading). The algorithm terminates. Moreover,
there exists cα > 0 such that for each point p added by the algorithm,

N(p) ≥ cαlfs(p)

Verifying Theorem 1 holds for each step in the algorithm uses the standard
arguments; the insertion radius of each point is inductively bounded below by
feature size.

Ruppert’s analysis of the standard Delaunay refinement algorithm for non-
acute domains showed that this condition is sufficient to ensure a size-competitive
output mesh. In our case, cα = O(1

sin α) and thus, this condition does not guar-
antee a competitive output size over the class of all 2D PLCs but does ensure
that the output is size competitive on C2,α for any fixed α.

When considering the standard Delaunay refinement algorithm for non-acute
domains, termination implies that the output conforms to the input PLC and
that no poor quality triangles remain. A guarantee of this type requires more
attention when dealing with acute angles.

Theorem 2 (Conformity/Quality). At termination, the resulting Deluanay
triangulation conforms to the input PLC. Moreover, any remaining poor quality
triangles are near the collar region.

Ensuring that the conformity/quality theorem holds requires a series of lemmas
related to each step. With the lemmas, the notion that a triangle is near the
collar will be made precise.

Step 1a

This step is a Delaunay refinement algorithm. Segments are queued to be split
based on the following encroachment criteria and no triangles are split for quality
during this step.

42 A. Rand and N. Walkington

• (Segment Encroachment) Segment s is encroached if it has an endpoint q
with a Delaunay neighbor p which lies in the diametral disk of s and either p
is a feature size witness for s or s is an end segment and is more than twice
as long as its shortest adjacent end segment.

This is the usual definition of encroachment with one modification: an end
segment cannot be encroached by a point on a sufficiently long adjacent end
segment. This ensures that adjacent end segments do not alternately encroach
each other and prevent termination of the algorithm. Thus, this definition of
encroachment is strictly weaker than the standard diametral disk notion, yet
shares the property that encroachment of a segment can be checked by only
considering the Delaunay neighbors of its endpoints.

The triangulation resulting from this step does not necessarily conform to
the input PLC and may contain poor quality elements. However, using this
triangulation, it is possible to bound the local feature size at input points in
terms of a local quantity (in the Delaunay triangulation): the distance from the
input point to its nearest neighbor.

Lemma 1. After Step 1a terminates, the following inequality holds for all input
points q0 ∈ P.

N(q0) ≤
√

2lfs(q0).

This inequality is in the opposite direction of those in the standard analysis
of Delaunay refinement algorithms and Theorem 1. Rather than guaranteeing
points are far enough apart, it ensures that the distance from each input point
to its nearest neighbor is not much greater than the local feature size.

While the constant in Theorem 1 depends on α and can be large, the constant
in Lemma 1 is sharp and independent of α. This estimate gives an appropriate
length at which segments can be split to protect acutely adjacent segments.

While the bound in Lemma 1 can be shown for any point in the mesh, q ∈ P ′,
the statement is deliberately only made for input points. In order to protect
sharp angles, it is necessary to estimate the feature size on all d− 2 dimensional
input features. The same principle will be applied in the 3D version.

Step 1b

End segments are split in this step to form a “collar” around each input point
which ensures end segments conform to the input, even near skinny input angles.
For each input point q0, all segments containing q0 are split at a distance of N(q0)

3
away from q0.

Any point added during this step will be called a collar point. All end seg-
ments are considered to be collar simplices. (This distinction is not particularly
useful in the 2D algorithm but it will be necessary to consider the analogous sim-
plices in the 3D version.) The collar region is defined to be the set of collar
simplices.

3D Delaunay Refinement of Sharp Domains 43

q0

N(q0)

Fig. 2. Adjacent segments are split at equal length in Step 1b

Lemma 2. Following Step 1b, the following properties hold.

• The diametral disk of each collar simplex contains no points of P ′.
• The diametral disk of each collar simplex does not intersect any non-collar

segment.

Lemma 1 is used to show that the ball of radius N(q0)
3 centered at q0 does

not intersect any segments which are disjoint from q0. The results of Lemma 2
will ensure that these segments will not need to be split again in the following
Delaunay refinement step.

Step 2

With the collar in place, it is now safe to perform a slightly modified version
of Ruppert’s algorithm. In this step, segments are queued for conformity based
on the standard diametral disk encroachment criteria, and triangles are queued
based on the radius edge-quality criteria. As the input may contain small angles,
an additional rule is needed to ensure the algorithm terminates despite some poor
quality triangles near these small input angles. When processing poor quality
triangles from the queue, the following policy is considered before inserting the
circumcenter.

• Let c be a circumcenter proposed for insertion to split a poor quality triangle.
If c lies in the diametral disk of a collar simplex, reject c.

Lemma 3. No point is inserted in the diametral disk of a collar segment.

With this lemma, standard techniques can be used to verify Theorem 1 and
Theorem 2. Any remaining poor quality triangles must have circumcenters which
lie in the diametral disk of some collar simplex (i.e. end segment). This makes
precise what it means in Theorem 2 for a triangle to be “near the collar.”

4 Delaunay Refinement Algorithm in 3D

A similar approach to that given in 2D can be applied to 3D PLCs. It is important
to note that input points in the two dimensional problem play the role of segments
in the 3D case. In 2D, we used the distance to the nearest neighbor to estimate
the local feature size at an input point, while, in 3D, each segment’s length will
be used to estimate its feature size.

44 A. Rand and N. Walkington

Algorithm Overview

The first steps of the algorithm provide an estimate of the feature size on each
segment of the input. Then a collar is inserted around the 1-skeleton to ensure
the mesh conforms to the input near skinny input angles. Finally, the usual
Delaunay refinement algorithm is performed with a rejection policy to ensure
both that the algorithm terminates and that the resulting mesh conforms to the
input PLC.

• (Step 0) Compute the Delaunay triangulation of the set of input points.
• (Step 1a) Protect small angles between segments by splitting based on 0-local

feature size.
• (Step 1b) Estimate the 1-feature size on all segments.
• (Step 2a) Split segments to improve the 1-feature size estimate.
• (Step 2b) Estimate the local feature size on all segments.
• (Step 2c) Protect the 1-skeleton with a collar.
• (Step 3) Perform standard Delaunay refinement away from the collar.

Steps 1a, 2a, and 2c occur in one pass over the mesh: they loop through all the
segments and add an appropriate number of points for each segment. Steps 1b,
2b and 3 are Delaunay refinement algorithms. Each of these steps has its own
notion of encroachment by which simplices are queued and split according to
some priority. Only in Step 3 are tetrahedra split based on radius-edge quality.
Figure 9 in Section 5 shows a face of an example mesh produced at each step of
the algorithm.

The output guarantees of the algorithm are split into two theorems.

Theorem 3 (Termination/Grading). The algorithm terminates. Moreover,
there exists cα > 0 such that for any point p in the output mesh,

N(p) ≥ cαlfs(p).

This theorem is shown via induction using similar techniques to algorithms for
large angle input. In the case of inputs with small angles, the next theorem is
also essential.

Theorem 4 (Conformity/Quality). The resulting mesh is a conforming De-
launay refinement of the input PLC. Moreover, all resulting tetrahedra with
radius-edge ratio greater than κ are near the collar region.

Throughout the refinement, independent Delaunay meshes for each of the in-
put features (segments and faces) are maintained in additional to the complete
tetrahedralization. (This also occurs in 2D case, but the meshes of segments are
simple and no hierarchy needs to be considered.) To ensure correctness of the
algorithm, simplex splits and point insertions must be processed following a par-
tial order given in [4]. Segments and triangles in the refinement refer to simplices
in the separate meshes of the input features. However, when discussing Delaunay
neighbors of the endpoint of a segment or vertex of a triangle, we are referring

3D Delaunay Refinement of Sharp Domains 45

to the neighbors in the 3D mesh. To ensure that this makes sense, we further
restrict the required partial order to always handle forced point insertions before
handling simplex splits. For example, if a segment is split, then its midpoint is
immediately inserted into all meshes containing the segment before another sim-
plex is split in any mesh. This ensures that for any point in a lower dimensional
mesh, its Delaunay neighbors in the 3D mesh can still be considered.

In order to prove Theorem 4, conditions on the mesh following each step are
shown.

Step 1a

Once the Delaunay triangulation of the point set has been computed, each seg-
ment is split at one-third the distance from an input point to its nearest neighbor.
This is a typical “grooming” step in two dimensional algorithms [5]. This ensures
that each end segment in the mesh conforms to the input.

Step 1b

This is the first Delaunay refinement step. In this case, segments are queued
based on the following encroachment criteria.

• (Segment Encroachment) Segment s is encroached if it has an endpoint q
with a Delaunay neighbor p such that p is a 1-feature size witness for s and
|p− q| < |s|.

• (End Segment Balance) Non-end segment sn is encroached if it is adjacent
to an end segment se and |se| < |sn|.

The encroachment criteria only depend on the Delaunay neighbors of the
endpoints of the segment in question in the current Delaunay triangulation.

Fig. 3. (Left) Encroachment region for a segment in Ruppert’s algorithm. (Right) En-
croachment region for a segment in Step 1b.

Also, observe that the end segment balance criterion is necessary in order to
ensure that the feature size bound in the next lemma holds. This ensures that
a long non-end segment segment will be split even if a nearby feature is hidden
from the non-end segment by an input point. See Figure 4.

46 A. Rand and N. Walkington

s q

fs1(s)

q0

Fig. 4. End segment balance is essential. Without this, segment s may be much longer
than the local feature size on the segment.

Both Segments Queued

Possible Refinement

Not Delaunay Neighbors

Fails Lemma

Fig. 5. Poor refinement order can lead to a failure of Lemma 4

Lemma 4. After Step 1b, for any segment s in the mesh, |s| ≤
√

2 fs1(s).

Ideally, this lemma would follow from the algorithm without further restriction.
However, for the algorithm as specified this may not be true! Consider a situation
as seen in Figure 5. If the algorithm always processes segments on the left first,
once the segment on the right splits for the first time, it may no longer have a
1-feature size witness which is on its Delaunay cavity. At this point, though, the
segment will not have been split enough to satisfy Lemma 4.

To prevent this issue we prioritize the queue of segments to be split according
to the following rule.

• Segments are prioritized by length. Longer segments are always split first.

We choose this ordering to get a sharp constant in the lemma. This can be seen
from the following example. Consider the segment between (−1, 0, 0) and (1, 0, 0)
and the segment between (0,−1,

√
2) and (0, 1,

√
2). Each segment has length

two and the distance between the two segments is
√

2. The distance between any
pair of endpoints is 2, and thus neither segment is encroached according to this
step of the algorithm. The following proposition shows that this example gives
the nearest two segments which are not encroached.

Proposition 1. Let s and s̄ be segments in R
3. If |s| ≥ |s̄| and dist(s, s̄) < |s|√

2
,

then there are endpoints q and q̄ of s and s̄, respectively, such that |q − q̄| < |s|.

Step 2a

The constant in the bound of Step 1b is not strong enough for the upcoming
argument in Step 2b. Thus, in this step, all segments are split into fourths, giving
the needed bound.

3D Delaunay Refinement of Sharp Domains 47

Lemma 5. Following Step 2a, for any segment in the mesh,

|s| ≤ 1
2
√

2
lfs1(s).

The estimate |s| ≤ 1
2
√

2
fs1(s) does not hold after this step. This is due to the

fact that when an end segment is split, the resulting non-end segment can have
a 1-mesh feature size which is much smaller than its 1-local feature size.

Step 2b

This step is similar to Step 1b with an additional encroachment rule for triangles
in the current Delaunay triangulation of the faces. Segments and faces are queued
for encroachment according to the following rules.

• (Segment Encroachment) Segment s is encroached if it has an endpoint q
with a Delaunay neighbor p such that p is a 1-feature size witness for s or a
local feature size witness for s and |p− q| < |s|.

• (End Segment Balance) Non-end segment sn is encroached if it is adjacent
to an end segment se and |se| < |sn|.

• (Face Encroachment) A triangle t is encroached if it has a vertex q with
Delaunay neighbor p such that p is not in the face containing q and |p− q| <
2rt. (The circumradius of t is denoted rt.)

Without a rejection policy, the above encroachment rules can (and do) lead
to non-termination. This can occur when two acutely adjacent faces alternately
cause each other to split. This is prevented by the following rule.

• Suppose a circumcenter of a triangle, ct, is proposed for insertion into a face
F and has a prospective Delaunay neighbor, p, which is the end point of a
segment, s, contained in F , and |ct − p| < |s|. Then ct is not inserted into
the mesh.

As in Step 1b, an ordering of the queue is necessary to get the proper bounds
on segment lengths. The queue priority is as follows.

1. Triangles.
2. Segments by length. Longer segments are split first.

Using this algorithm, it is now possible to extend the result in Lemma 4 to
include a bound based on local feature size.

Lemma 6. After Step 2b, for any segment s in the mesh, |s| ≤ 5
3 lfs(s) and

|s| ≤
√

2fs1(s).

Step 2c

Lemma 6 allows for the insertion of points to form a collar region around the
segments in each face. This will ensure both that the mesh conforms to the input

48 A. Rand and N. Walkington

Fig. 6. Collar simplices in a face

near skinny angles and that Ruppert’s algorithm will terminate when applied
away from these regions.

The collar ensures conformity near the boundary by placing points in each
face based only on the segments on the boundary of the face. This ensures that
end triangles in adjacent faces “line up” so they do not encroach each other.

In order to prevent the collar from tangling, we need a slightly stronger bound
on the feature size of segments: |s| < fs1(s). This can be attained by splitting all
non-end segments, as all end segments satisfy this bound following Step 2a.

The collar is formed by inserting points according to the following rules.

• If s and s′ are adjacent non-end segments containing point q, then a point
p is inserted at distance max(|s|,|s′|)

2 from q, in the direction into the face
perpendicular to s.

• If s is an end segment and s′ is an adjacent non-end segment, both containing
q, then insert p at the intersection of the line parallel to s in the face at
distance |s′|

2 away from s and on the circle of radius |s| around the input
point on s.

• Given any input point q0 in the face, insert a point p in the face such that the
circle of radius N(q0) around q0 has no arcs of angle greater than 90 degrees.

Let each point added during this step be called a collar point. For each
segment, let the segment between the two collar points corresponding to the
end points of the segment be called a collar segment. Similarly, the segments
which connect collar points on the disk in a face around an input point are also
considered collar segments. Collar simplices are both subsegments of input
segments and triangles which are between a segment or input point and its
associated collar segment. While some collar segments may be split in Step 3
of the algorithm, the collar region never changes. This is analogous to the 2D
version: once adjacent end segments are split at an equal distance, they are never
split again. See Figure 6 for an example of the points added to a face to form
the collar.

Lemma 7. After Step 2c, the following properties hold.

• All adjacent collar segments meet at non-acute angles.
• In each face, the diametral disk of each collar segment contains no points of

P ′.
• The circumball of any collar simplex contains no points of P ′.

3D Delaunay Refinement of Sharp Domains 49

• The circumball of any collar simplex does not intersect any disjoint faces or
segments.

Each of the above properties is important. Since the circumball of each collar
simplex is empty, this ensures that the collar simplices conform to the input.
Collar segments meeting non-acutely ensures that the complement of the collar
region in each face is well-suited for Ruppert’s algorithm. The final property is a
result of the feature size bounds in the Step 2b, and is needed to guarantee that
subsequent points inserted in the mesh for conformity will not encroach disjoint
collar simplices.

Step 3

In the final step, the volume mesh is refined based on both quality and con-
formity criteria using Ruppert’s algorithm. Similar to the non-acute case, any
maximum radius-edge threshold κ > 2 can be selected for determining poor
quality tetrahedra. As seen in the 2D case, a rejection policy must be followed
to ensure that adjacent faces do not lead to cascading encroachment.

• Let c be a circumcenter proposed for insertion to split a skinny tetrahedron.
If c lies in the circumball of a collar simplex, reject c.

During the algorithm, it is important to ensure that the properties of the
collar in Lemma 7 continue to hold while allowing refinement of the non-collar
region of each face to create a conforming mesh. As in 2D, the “collar region”
does not change, however the set of collar simplices does change. This occurs
when the standard Delaunay refinement algorithm seeks to insert a point in a
face that encroaches upon a collar segment. Instead of adding this encroaching
point, this collar segment is split. This new point is considered a collar point and
the collar segment is broken into two new collar segments. The collar region has
not changed but there are new collar simplices. This new point may encroach
upon the circumball of another collar element in an adjacent face. In this face,
the collar segment associated with this encroached circumball is also split so that
the collar simplices on adjacent faces again “line up.”

Proposition 2. Let A be the set of vertices on the boundary of some face F and
let A′ be a set of points inside F . Suppose that for each boundary segment of F
there is a circle through the end points of the segment which does not contain
any points of A ∪A′ in its interior. Then the Delaunay triangulation of A ∪A′

conforms to F . Moreover, for any Delaunay triangle t in the interior of F , the
circumcenter of t either lies inside F or inside the empty disk associated with a
boundary segment.

A face with the collar simplices removed satisfies the hypothesis of the lemma
(as the circumdisk of each collar segment is empty). This ensures that whenever
a circumcenter of a triangle in a face is proposed for insertion, it either lies in
the face or encroaches a collar segment. Thus whenever a triangle is processed

50 A. Rand and N. Walkington

to be split, some action is taken and encroached faces are never forgotten. At
termination, all faces must conform to the input.

Another proposition used in this step comes from [4].

Proposition 3. [4, Lemma 4.5] Let T be the Delaunay triangulation of a planar
face F such that the circumball of each bounding segment is empty. Let B1 be
the union of the circumballs of all bounding segments of F and B2 be the union
of the circumballs of all triangles in F .

Let p ∈ F \ B1. If T ′ is the Delaunay triangulation of the face resulting from
the addition of p, define B′

1 and B′
2 to be the union of the circumballs of bounding

segments and triangles, respectively. Then,

B′
1 ∪ B′

2 ⊂ B1 ∪ B2

During this step of the algorithm, when a circumcenter is inserted it does not
encroach any collar simplices. The above proposition ensures that as the collar
is split the new collar simplices are not encroached by previously added circum-
centers. Observe that once the collar is added the circumball of each segment
always remains empty. Thus the conditions of Proposition 3 hold for every face
in the mesh.

Lemma 8. Whenever the queue of collar segments to be split is empty, the fol-
lowing properties hold.

• The circumball of any collar element contains no points in P ′.
• Adjacent collar segments meet at non-acute angles.
• In each face, the protecting disk of each collar segment contains no points in

P ′.

In the final property, the term protecting disk is used, rather than diametral
disk. For the initial collar segments this protecting disk is the diametral disk.
When a collar segment is split, the protecting disk for a new collar segment
is the smallest disk containing the new collar segments and contained in the
old protecting disk. This disk is not the diametral disk when collar segments
corresponding to input points are split. In this case, the split point is added on
the circle around the associated input point, and the diametral disks of the new
collar segments are not contained in the old protecting disk. See Figure 7.

Fig. 7. A collar segment associated with an input point is split. When a proposed point
(denotd by the empty dot) encroaches a collar segment, the segment is split by adding
the midpoint of the arc of a circle around the input point. The new collar segments are
protected with disks which are contained in the old protecting disk.

3D Delaunay Refinement of Sharp Domains 51

Also, Lemma 8 only applies when the queue of collar segments to be split is
empty. Collar segments can be queued when a collar point on an adjacent face
encroaches some collar simplex. When this occurs, the circumball of some collar
simplices are not empty. However, once all collar segments have been split on
adjacent faces, the circumball of each collar simplex is empty and thus the collar
simplices conform to the input.

5 Implementation Details and Examples

When implementing the algorithm, several minor enhancements have been made
which greatly reduce the output mesh size. Since the collar is needed to protect
sharp input angles, it only needs to be inserted near segments and input points
which violate the standard requirements for the termination of Ruppert’s algo-
rithm. (Any acute angle between adjacent faces is protected with a collar. For
angles involving segments, this bound can be weakened as stated in [4].) In some
examples, this greatly reduces the number of points which must be added to the
mesh in Step 2c and thus the size of the final result.

Fig. 8. Initial PLC input and final refined mesh for the pyramid example

Fig. 9. Refinement of the base of the pyramid after each step, showing the mesh of
the face after Steps 0, 1a, 1b, 2a, 2b, 2c, 3

52 A. Rand and N. Walkington

Fig. 10. Initial PLC input and final refined mesh for the wheel example. The base
face is not connected to the other faces.

Fig. 11. One spoke in the wheel example is shown following Step 1b (left), Step 2b (cen-
ter), and Step 3 (right). The center of the wheel is at the bottom of the face and the
disjoint, nearby plane is very close to the right side of the face.

Fig. 12. Base plane in the wheel example is shown following Step 2b (left) and
Step 3 (right)

Next, instead of adding the collar to the mesh produced by Step 2b, it is
instead added to a blank copy of the input PLC. Since the encroachment property
in Step 2b is stronger than that in Step 3, this often results in a mesh which is
less refined on the faces than the mesh produced in Step 2b. This is especially
effective when using a large radius-edge threshold.

Finally, while the Lemma 5 requires each segment in the mesh to be divided in
to fourths, the implementation has been seen to terminate when splitting only in

3D Delaunay Refinement of Sharp Domains 53

Fig. 13. A PLC with many small angles

Table 1. Number of vertices in the mesh following each step. Following Step 0, the
mesh contains the 1556 input points plus 26 points for the initial bounding box. Step 3
was performed with several maximum radius-edge parameters and the final mesh size
is given for each of these cases with the parameter in parentheses.

Step 0 1a 1b 2a 2b 2c 3 (2) 3 (4) 3 (8)
Vertices 1,582 5,850 13,590 26,628 105,781 13,695 76,522 54,392 46,776

half. We continue to seek a example causing non-termination or stronger proof
which justifies this practical modification.

The first example is a mesh of a pyramid with a square base. The angles
between the base face and each of the side faces is less than 90◦, so each of the
edges around the base is protected with a collar. See Figures 8 and 9.

Another example involves a “wheel” of twenty rectangular faces which meet
at a single segment. This wheel of faces lies very close to an additional disjoint
face. In this example, the collar is only added around the segment in the center
of the wheel. Away from this center segment all of the faces and segments meet
at non-acute angles and do not need to be protected. See Figures 10, 11, and 12.

In the final example, depicted in Figure 13, 100 “wheel” complexes similar
to the previous example are meshed together. Each wheel contains in this com-
plex contains between 3 and 16 spokes. The input contains 1556 vertices, 2134
segments and 678 faces. Table 1 contains a list of mesh sizes after each step of
the algorithm. Note that the final mesh is substantially smaller than the mesh
created in Step 2b. Removing unneeded points before the encroachment criteria
is relaxed in Step 3 greatly reduces the output size.

References

1. Cheng, S.-W., Dey, T.K., Levine, J.A.: A practical Delaunay meshing algorithm
for a large class of domains. In: Proceedings of the 16th International Meshing
Roundtable (October 2007)

2. Cheng, S.-W., Poon, S.-H.: Three-dimensional Delaunay mesh generation. Discrete
Comput. Geom. 36(3), 419–456 (2006)

3. Cohen-Steiner, D., de Verdière, E.C., Yvinec, M.: Conforming Delaunay triangu-
lations in 3D. Comput. Geom. Theory Appl. 28(2-3), 217–233 (2004)

54 A. Rand and N. Walkington

4. Miller, G.L., Pav, S.E., Walkington, N.J.: An incremental Delaunay meshing al-
gorithm. Technical Report 02-CNA-023, Center for Nonlinear Analysis, Carnegie
Mellon University, Pittsburgh, Pennsylvania (2002)

5. Miller, G.L., Pav, S.E., Walkington, N.J.: When and why Ruppert’s algorithm
works. In: Proceedings of the 12th International Meshing Roundtable, pp. 91–102
(September 2003)

6. Murphy, M., Mount, D.M., Gable, C.W.: A point-placement strategy for conform-
ing Delaunay tetrahedralization. International Journal of Computational Geometry
and Applications 11(6), 669–682 (2001)

7. Pav, S.E., Walkington, N.J.: Robust three dimensional Delaunay refinement. In:
Proceedings of the 13th International Meshing Roundtable (September 2004)

8. Pav, S.E., Walkington, N.J.: Delaunay refinement by corner lopping. In: Proceed-
ings of the 14th International Meshing Roundtable (September 2005)

9. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh gen-
eration. J. Algorithms 18(3), 548–585 (1995)

10. Shewchuk, J.R.: Mesh generation for domains with small angles. In: Symposium
on Computational Geometry, pp. 1–10 (2000)

11. Si, H.: On refinement of constrained Delaunay tetrahedralizations. In: Proceedings
of the 15th International Meshing Roundtable (September 2006)

12. Si, H., Gartner, K.: Meshing piecewise linear complexes by constrained Delaunay
tetrahedralizations. In: Proceedings of the 14th International Meshing Roundtable
(September 2005)

