
Delaunay-Based Anisotropic Mesh Adaptation

Doug Pagnutti and Carl Ollivier-Gooch

Advanced Numerical Simulation Laboratory
The University of British Columbia

Summary. Science and engineering applications often have anisotropic physics and
therefore require anisotropic mesh adaptation. In common with previous researchers on
this topic, we use metrics to specify the desired mesh. Where previous approaches are
typically heuristic and sometimes require expensive optimization steps, our approach
is an extension of isotropic Delaunay meshing methods and requires only occasional,
relatively inexpensive optimization operations. We use a discrete metric formulation,
with the metric defined at vertices. To map a local sub-mesh to the metric space, we
compute metric lengths for edges, and use those lengths to construct a triangulation
in the metric space. Based on the metric edge lengths, we define a quality measure
in the metric space similar to the well-known shortest-edge to circumradius ratio for
isotropic meshes. We extend the common mesh swapping, Delaunay insertion, and
vertex removal primitives for use in the metric space. We give examples demonstrating
our scheme’s ability to produce a mesh consistent with a discontinuous, anisotropic
mesh metric and the use of our scheme in solution adaptive refinement.

1 Introduction

Numerical solution of PDEs is an important analysis tool for scientists and engi-
neers. Ideally, such numerical software should require only specifying the physics,
geometry, and boundary conditions of the problem and then produce a solution
of a certain accuracy. Unfortunately, assessing and minimizing discretization er-
ror is a non-trivial task, requiring time consuming mesh dependence analysis or
computation of solutions on meshes that are much finer than the required solu-
tion accuracy dictates. Mesh adaptation seeks to automate this process by first
computing the solution on a coarse mesh and then successively refining the mesh
so that each mesh is more nearly optimal for the solution being computed. Un-
structured meshes are well-suited for adaptation because they can be modified
locally much more easily than structured meshes, which have a fixed topology.

Labelle and Shewchuck [7] have developed a theoretically sound extension
of guaranteed-quality Delaunay meshing by constructing anisotropic Voronoi
diagrams and then dualizing to a Delaunay triangulation. Unfortunately, these
anisotropic Voronoi diagrams can be difficult to generate, and the dualization to
a valid triangulation requires restrictions on metric smoothness. Alternatively,

142 D. Pagnutti and C. Ollivier-Gooch

there are other more heuristic methods for generating anisotropic meshes that
rely on local optimization algorithms. Dompierre et al. [5] suggest splitting edges
with length1 above a threshold, removing nodes with all edge lengths below a
threshold, and swapping edges and moving nodes to equidistribute length. New
edges are assigned lengths based on an interpolated error estimate from the
background mesh. Buscaglia and Dari [3] take this a step further by testing a
large set of potential operations on a sub-mesh and then selecting the one that
most increases quality according to an error estimate on a background mesh;
this approach can produce excellent meshes, but at a high cost.

Our algorithm combines the heuristic nature of these two approaches with
some of the attributes of isotropic Delaunay meshing. This gives us two prin-
cipal advantages over other heuristic methods. First, we do not rely on moving
vertices and so metric information can be easily retained without storing and
referencing the original mesh. Second, because of an improved choice of where to
insert vertices, our algorithm produces quality anisotropic meshes without the
expense of methods like Buscaglia and Dari’s [3], or the challenges in updating
the metric when moving nodes of the scheme of Dompierre et al [5]. In addition,
our scheme does not require the use of a background mesh to maintain error /
metric information.

To explain our algorithm we will examine, in Section 2 metric spaces and how
they can be used for anisotropic meshing. Then, we will create a quality measure
for our anisotropic mesh (Section 3) and modify several existing mesh operations
to increase that quality measure (Section 4). Next, we turn our attention to
treatment of boundaries during anisotropic adaptation (Section 5). Finally, we
will demonstrate that our algorithm produces meshes well suited to the desired
metric.

2 Metric Spaces

Before defining what a quality anisotropic mesh is, we must first define the
desired cell sizes and shapes using a metric to measure distance between two
points. For a vector space X , a metric is a function d : X ×X → R for which
the following conditions are satisfied for every x, y, z ∈ X .

d(x, y) = d(y, x) > 0 ⇐⇒ x �= y

d(x, x) = 0
d(x, z) ≤ d(x, y) + d(y, z)

For uniform isotropic meshing, the metric is the standard distance measure
‖x− y‖. More complicated metrics allow for distance to be measured differently
depending on orientation, thus introducing anisotropy. In particular, the metric
1 The term error is used in the cited paper, however the metric length can be defined

as equivalent to the error and so we will use the term length to be consistent with
usage later in the paper.

Delaunay-Based Anisotropic Mesh Adaptation 143

most commonly used in anisotropic meshing can be found by linearly trans-
forming the standard distance measure diso(x, y) into one which is anisotropic
dani(x, y) as follows:

diso(x, y) =
√
V TV

dani(x, y) =
√

(TV)T (TV)

dani(x, y) =
√

V T (T TT)V

Where V = x−y and T is an invertible linear transformation. Since a triangle is
perfectly defined by the lengths of its sides, any triangle in an anisotropic mesh
has an equivalent triangle when its edge lengths are measured by the metric.
Quality measures can typically be rewritten to use only edge lengths as well. For
example, if a triangle’s edges have metric lengths (a, b, c) then the area A and
circumradius R of a triangle can be calculated by the following formulas

A =
1
4

√
(a + b + c)(−a + b + c)(a− b + c)(a + b− c)

R =
abc

4A
(1)

and subsequently used to compute quality measures in the metric space. Al-
though we use the linear transformation metric throughout this article, our al-
gorithm is based purely on vertex spacing in the metric space and could be
adapted to use any metric.

For most problems of interest, different metrics must be used in different
areas of the domain. This is the principal difficulty faced by anisotropic meshing
algorithms, because even if the metric function is valid at a specific point, the
interpolated metric space between any two points might not be valid. We deal
with this problem by defining the metric discretely at vertices. When refining the
mesh, we measure the length of each triangle’s edges according to the average
metric of the three vertices. This provides a good estimate of whether the triangle
is large enough that it requires insertion. If a vertex is inserted, the metric at
that vertex is assigned based on a linear interpolation from the three vertices of
the triangle in which it was inserted.2 Alternatively, when coarsening the mesh
we estimate the length of each edge by first calculating what that length is
according to the two adjacent triangles and then averaging those lengths. These
two definitions give unique triangle quality and edge length measures which can
then be used for mesh improvement operations.

3 Quality Measures

There are a staggering number of triangle quality measures used to determine
how good the elements of a mesh are. Since no quality measure is known to be
2 Note that this is not necessarily the triangle it was inserted to split!

144 D. Pagnutti and C. Ollivier-Gooch

Minimum
Angle

Equilateral Triangle
With Desired Area

Equilateral
Triangles

Quality
Bounding
Box

η

ξ

(1,1)

1−τ

1+τ

η = ξ

Fig. 1. The quality space used to evaluate triangles in the mesh

superior for every numerical solver, we have chosen to use the quality measure
that best suits our meshing approach. Miller, Talmor and Teng [10] pointed out
that the most natural quality measure for Delaunay refinement is the ratio of
circumradius to shortest edge. We will therefore define a quality space

(ξ, η) =

(
3

1
4

2
√

Ades
lmin,

3
3
4

2
√

Ades
R

)
.=

(
0.658√
Ades

lmin,
1.140√
Ades

R

)
(2)

where lmin is the length of the shortest edge, R is the circumradius, and Ades is
the desired area. For a uniform isotropic mesh, the ideal triangle is an equilateral
triangle with area Ades = AΩ

Nv
where AΩ is the total area of the domain Ω and

Nv is the number of triangles; this triangle has (ξ, η) = (1, 1) for our chosen
constants. We use this same concept to choose Ades in Equation 2. To estimate
the area AΩ of the domain Ω in the metric space, we sum the area of individual
triangles in the metric space. Then, the ideal area Ades is found by dividing the
total area AΩ by the number of triangles Nv and a desired refinement ratio r,
so that Ades = AΩ

rNv
. The equilateral triangle with this area would be located at

(ξdes, ηdes) = (1, 1) in the quality space.
Having defined the perfect triangle, we define the range of triangle qualities

are considered acceptable based on a value τ such that triangles with ξ < 1− τ
or η > 1 + τ are considered bad. To ensure shape quality, we restrict τ to so
that we have a lower bound on the minimum angle of the triangle, which can be
written as lmin

R = 2 sin θmin. Eliminating lmin and R in favor of ξ and η, we have

ξ
√

3
η

= 2 sin θmin

and so for the corner point (1 − τ, 1 + τ) in Figure 1,

Delaunay-Based Anisotropic Mesh Adaptation 145

1− τ

1 + τ
=

2√
3

sin θmin (3)

τ =
3− 2

√
3 sin θmin

3 + 2
√

3 sin θmin

(4)

So choosing θmin is equivalent to choosing τ . Chew’s uniform isotropic De-
launay refinement algorithm[4] produces triangles whose angles are all greater
than thirty degrees so we have chosen to use this as the target angle giving
τ = 2−

√
3 ≈ 0.2679. An illustration of the quality space is found in Figure 1.

4 Mesh Operations

There are three principal operations that our algorithm uses to improve the qual-
ity distribution of triangles in the mesh. The first two operations, edge swapping
and point insertion, are extensions of isotropic Delaunay operations for use with
metric spaces. The last operation, vertex removal, is done simply to remove the
smallest edges in the mesh.

4.1 Swapping

The first and simplest operation is edge swapping. For isotropic Delaunay mesh-
ing algorithms, edge swapping is used to ensure all triangles have empty cir-
cumcircles. For our discrete representation of the metric, this is not necessarily
possible. Furthermore, whenever an edge is swapped, the metric used to examine
the new triangles can differ from the metric of the old triangles, possibly revers-
ing the swapping decision. Both of these problems are solved using a heuristic
approach. Instead of swapping for cells with non-empty circumcircles, we instead
swap to maximize the minimum quality ratio ξ/η — after mapping according
each triangle according to its own metric — for each pair of adjacent triangles.
For an isotropic metric, this is equivalent to maximizing the minimum angle,
which produces a Delaunay triangulation. To determine which configuration
does this, we calculate (ξ, η) explicitly both for the current triangles and the
triangles that would be formed if the edge were swapped. Note that our discrete
metric definition — specifically, the metric function we use to compute metric
edge lengths for a triangle — is dependent on vertex connectivity, so swapping
an edge effectively changes the metric. Because of this, a Delaunay triangula-
tion cannot be found by simply mapping the local vertex locations to the metric
space, as one might do with a continuous metric.

4.2 Vertex Insertion

The second mesh modification operation that we use is vertex insertion. In
isotropic Delaunay refinement, vertices are inserted for triangles with large cir-
cumradii or poor shape. After insertion, the resulting triangles have smaller
circumradii, and no edge smaller than the original circumradius is created. In

146 D. Pagnutti and C. Ollivier-Gooch

a

c b

d

e
f

Triangles with lengths
measured by the average
metric of the three vertices

a
d

e

a
d

f

bc

a

Triangle T2 is scaled to match
triangle T1 The triangles are tested

for empty circumcircles

T1

Triangles to be tested

T2

Fig. 2. Testing for Empty Circumcircles in the Metric Space

our anisotropic adaptation, we hope for similar behavior by inserting at an ap-
proximate circumcenter. We find this approximate circumcenter by creating a
virtual sub-mesh around the triangle we want to refine. To construct this virtual
sub-mesh, we first transform the initial triangle to one with lengths as described
by the metric. Then, we calculate that triangle’s circumcenter and build the vir-
tual sub-mesh one triangle at a time until the circumcenter lies within it. Once
this circumcenter is found, we transform it back to the actual mesh and insert a
vertex at that location.

Due to our choice of metric, the measured length of a shared edge is not
necessarily the same for both triangles. To address this when creating the virtual
sub-mesh, we scale any added triangle so that the edges match. This does not
deteriorate our insertion result since the Delaunay property is independent of
size. In Figure 2, the triangles T1 and T2 are first transformed to have the
lengths assigned by their respective metrics. Then T2 is scaled by a/d so that
the edges can be aligned. Since the swapping algorithm discussed in Section 4.1
does not guarantee empty circumcircles, each time a triangle is added to the
virtual sub-mesh it must be tested to determine whether it is Delaunay.

The construction of a virtual sub-mesh is illustrated in Figure 3. In this case,
triangle T 1 is chosen for insertion and the circumcenter X of the mapped triangle
T 1′ is calculated in the virtual space. Additional triangles are added to the virtual
sub-mesh: their shape is determined by their relative edge lengths in the metric
space, and they are scaled so that both copies of each edge have the same length

Delaunay-Based Anisotropic Mesh Adaptation 147

T2

T1
T2

x
T3

T3

Virtual Sub−mesh

x

x

Actual Mesh Virtual Triangles

x − circumcenter

x−Insertion Location

Actual Mesh

T1
T1’

T2’

T3’

T1’

T1’

T2’

T3’

Fig. 3. Finding an approximate circumcenter of triangle T1 by constructing the virtual
mesh

in the metric space. In this case, T 2 and T 3 are mapped, scaled, and stitched onto
the virtual sub-mesh, at which point the sub-mesh contains the circumcenter of
T 1′ (in this case, in T 3′). Once that insertion location is chosen in the virtual
sub-mesh, it is linearly transformed back to the real mesh so that it has the
same barycentric coordinates in both the real and the virtual triangle. The new
vertex is inserted with the most simple connectivity and swapping is performed
recursively. The desired effect of each insertion is to decrease circumradii without
dramatically reducing the quality of the local triangles. Unfortunately, due to
the discrete nature of the metric, there are some cases where this approach fails.

The first degenerate case occurs when the circumcircle of the triangle we wish
to eliminate by insertion is not empty in the virtual mesh. When this occurs, we
instead split the longest edge of that triangle. There is theoretically no limit on
the minimum edge that this operation will create. To address this, we smooth
the new vertex to maximize the minimum angle in the virtual mesh, resulting in
a much better insertion location. A similar approach is used in other anisotropic
refinement algorithms [1, 3]. In our algorithm, however, optimization is only
required for degenerate cases, which are a small fraction of the total number of
insertions.3

3 The exact percentage of degenerate cases is entirely dependent on how the metric
varies within the mesh. Experience has shown that degeneracy in 5-10% of insertions
is typical for the metric we used.

148 D. Pagnutti and C. Ollivier-Gooch

The second degenerate case occurs when inserting the new vertex does not
affect the triangle for which it was inserted. In other words, insertion did not
reduce the largest circumradius in the mesh. This happens most often when
there is large difference in metric size between triangles. Currently, insertion is
simply repeated for the original triangle. Since that triangle will no longer have
an empty circumcircle, refinement will split the longest edge and then locally
optimize the location.

4.3 Vertex Removal

The final operation that we use to improve the mesh is coarsening. Coarsening is
not a natural component of Delaunay meshing so there are no standard isotropic
techniques to apply on the virtual mesh. Instead, we know that removing vertices
increases edge lengths in the mesh. Thus, removing a vertex that is part of
the shortest edge will always increase the minimum edge length. To remove a
vertex, we first swap edges until there are only three edges incident on that
vertex and combine the three incident triangles to form one triangle when the
vertex is removed. The edges are then swapped recursively in the same manner
described in Section 4.1. Coarsening is the only operation that can destroy metric
information. Because of this, repeated refinement and coarsening tends to smooth
the metric.

5 Boundary Protection

A key element of Delaunay meshing is boundary treatment. While the previous
discussion of point insertion assumed that the circumcenter lies within the do-
main, that is not necessarily true. For cases when the circumcenter lies outside
the domain or across a boundary, the virtual mesh cannot be completely con-
structed. When this happens, the boundary edge which terminated the virtual
mesh is split. For cases where the circumcenter of a triangle lies inside the do-
main, but near the boundary, there are no constraints on the circumradius of
the new triangle formed. To address this problem, we adapt the boundary pro-
tection proposed by Shewchuk [19]. That is, we disallow any insertion within the
diametral lens of a boundary segment and instead split that boundary segment.
A diametral lens can be found by taking the intersection of the two circles of ra-
dius 1√

3
L with the boundary segment (of length L) as a chord. For an anisotropic

mesh, the diametral lens is approximated by transforming any potential bound-
ary triangles using the average metric of the two boundary vertices.

A further complication with boundaries is that any curvature of the boundary
must be preserved throughout refinement. If the curvature of the boundary is
not preserved, then the geometry will not converge to the modeled geometry,
introducing unnecessary modeling error. This is also very important for high-
order solutions because correct curved boundary representation is essential to
achieving high order accuracy. Ollivier-Gooch and Boivin [2] solved this problem
for isotropic meshes by limiting the curvature of the boundary discretization and

Delaunay-Based Anisotropic Mesh Adaptation 149

Boundary
Curve

Boundary Offset

Diametral Lense
Offset

Diametral Lense

Boundary
Curve

Boundary Offset

Fig. 4. Isotropic, modified diametral lens for curved boundary

thus enforcing that the diametral lens lie outside the boundary curve. This is a
much more difficult task when the metric is allowed to vary along the bound-
ary edge because the measured curvature changes depending on what metric is
used. Instead we rely again on heuristics: expansion of the diametral lens and
encroachment checking before boundary insertion.

First, we expand the diametral lens to better account for the curvature. To do
this, we first calculate the vertical offset between the linear boundary segment
and the actual curved boundary. Then, we scale the diametral lens of the segment
to have a height that is the sum of the original lens height and the offset. An
isotropic example of this is shown in Figure 4. For an anisotropic metric, we
compute the offset in the metric space based on the average metric of the two
boundary vertices.

As with similar approaches in isotropic meshing, making this adjustment still
does not guarantee that new vertices will be inserted within the domain or that
splitting a boundary curve will produce good quality triangles. To remedy this,
whenever a boundary edge is split, any vertex that encroaches on the new edges
in the virtual mesh must be removed. Together, these methods ensure that the
refined meshes will respect the boundary discretization and that no overly-flat
triangles will be created along the boundary.

6 Algorithm Summary

We apply the following algorithm to produce quality anisotropic meshes that
match an arbitrary metric and have a prescribed maximum number of vertices.

1. Assign a metric to each vertex.
2. Sum the anisotropic area of each triangle and calculate Ades and thus (ξ, η)

for every triangle.
3. Remove any interior vertices that encroach on a boundary segment according

to the metric.
4. Recursively swap edges to minimize the ratio η/ξ. If this does not result

in an anisotropic Delaunay triangulation, mark offending edges as being
non-Delaunay.

5. Insert vertices for triangles with η > (1 + τ) until the maximum number
of vertices is reached or there are no more triangles with large circumradii.

150 D. Pagnutti and C. Ollivier-Gooch

Assign metrics to new vertices based on a linear interpolation from the three
vertices of the triangle in which the vertex was inserted. If a face used in
constructing the virtual mesh is marked as non-Delaunay, then the treatment
for non-empty circumcircles from Section 4.2 is applied.

6. Remove vertices for edges with ξ < (1− τ) until there are no more small
edges or sufficiently many triangles with large η are created. Limiting how
many large triangles can be created is an effective way of reducing the overlap
between refinement and coarsening. If this limit is a fraction of the number
of vertices inserted in the previous refinement step then it adds a guarantee
of termination irrespective of how many iterations are allowed.

7. Repeat the process of inserting and removing vertices until all triangles are
within the acceptable tolerance, no more vertices can be removed, or a fixed
number of iterations are performed. For quality meshes, the final process
must always be mesh refinement.

7 Results

To demonstrate our algorithm’s ability to create anisotropic meshes from a met-
ric, the metric d(x1,x2) defined by Equation 5 is assigned at every vertex.

d(p1,p2) =
√

(p2 − p1)TM(p2 − p1)

M(x, y) =
[
a 0
0 b

]
a =

{
1× 104

1
0.475 < x < 0.525

Elsewhere

b =
{

1× 104

1
0 ≤ x < 0.05
Elsewhere (5)

This metric should produce a mesh with distinct anisotropic regions. We first
assign the analytic metric to vertices of a very coarse mesh and then refine the
mesh so that the metric-based area per triangle is approximately halved. Then,
the vertices of the new mesh are again assigned the metric from Equation 5.
We repeat this process four times to produce a mesh that is approximately
sixteen times more refined then the original mesh and well representative of the
analytic metric. The meshes produced from one iteration to the other are shown
in Figure 6. To demonstrate that the mesh achieved the desired anisotropy we
can view the mesh around the point (0.525, 0.1) with different axis scalings. It is
obvious in Figure 7 that the mesh has achieved the desired anisotropy because
the mesh appears isotropic when certain regions are scaled appropriately.

For a more practical example, and one involving curved boundaries, we exam-
ine laminar flow around the NACA-0012 airfoil. To compute the solution on each
mesh, we use a second-order, vertex-centered finite-volume solver. This solver
uses least-squares reconstruction [14], Roe’s scheme [18], and Newton-GMRES
for rapid convergence [9, 11]. Viscous terms are discretized as described in [14].

Delaunay-Based Anisotropic Mesh Adaptation 151

1:100

100:1 100:1100:
100

1:1 1:1

Fig. 5. Expected Triangle aspect ratios given the metric from Equation 5

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Initial Isotropic Mesh
(37 Vertices)

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) First Refinement (117
Vertices)

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) Second Refinement
(364 Triangles)

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) Third Refinement
(985 Vertices)

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(e) Fourth Refinement
(2423 Vertices)

Fig. 6. A square mesh being recursively refined according to the metric defined by
Equation 5

To calculate the metric between adaptation loops, we use the reconstruction er-
ror metric proposed in [15]. The initial mesh, shown in Figure 8a, is constructed
using the isotropic mesh generator in GRUMMP [2, 13, 12]. This mesh is obvi-
ously ill-suited to computing viscous flow around the airfoil since refinement is

152 D. Pagnutti and C. Ollivier-Gooch

X

Y

0.5 0.51 0.52 0.53 0.54 0.55

0.04

0.06

X

Y

0 0.5 1 1.5
0.03

0.04

0.05

0.06

X

Y

0.5 0.51 0.52 0.53 0.54 0.55

-0.5

0

0.5

1

1.5

Fig. 7. Mesh from Figure 6e viewed with different axis scalings

Fig. 8. NACA 0012, Mach=0.5, Re=5000, 197 Vertices

done based only on boundary curvature. The resulting solution in Figure 8b is
evidence of how poor the mesh is.After choosing a metric based on this solution,
we create a new mesh that should be better suited to the flow solution. We

Delaunay-Based Anisotropic Mesh Adaptation 153

Fig. 9. Intermediate Meshes and Solutions: NACA 0012, Mach=0.5, Re=5000

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 5000 10000 15000 20000 25000

P
re

ss
ur

e
D

ra
g

+
 V

is
co

us
 D

ra
g

of Vertices

Drag Convergence

Anisotropic
Isotropic

Fig. 10. NACA 0012, Mach=0.5, Re=5000: Drag Convergence

repeat this process and generate the intermediate meshes in Figure 9. The drag
convergence plot of Figure 10 illustrates that the solution is converging to a sin-
gle value and that this convergence occurs much more quickly with anisotropic
refinement than isotropic refinement. This increase in accuracy is also visible in
the improved resolution of the wake on the final mesh of Figure 9.In Table 1 we
show that the fine mesh results for both anisotropic and isotropic refinement are
comparable to other results in the literature. Close inspection of the stagnation
point in Figure 11 shows that cells are small and isotropic around the stagna-
tion point and quickly become highly anisotropic as the boundary layer develops.

154 D. Pagnutti and C. Ollivier-Gooch

Table 1. Comparison of drag, lift, and separation point for NACA 0012 airfoil: Mach =
0.5, Re = 5000, α = 0

Method Final Mesh Size CD,P CD,ν CL
xsep

xchord

Anisotropic 20187 0.0226 0.0323 0.000114 0.795
Isotropic 20642 0.0224 0.0332 0.0095 0.834

ARC2D [16] 320 x 128 cells 0.0221 0.0321 – 0.824
Mavriplis [8] 320 x 64 cells 0.0229 0.0332 – 0.814
Radespiel [17] 512 x128 cells 0.0224 0.0330 – 0.814

X

Y

0 0.01

-0.005

0

0.005

0.01

0.015

Fig. 11. Close up view of the stagnation point of the finest mesh in Figure 9 a

Since the metric in this case is based on the Hessian of the flow variables, this
is exactly the type of mesh that one would expect.

For each mesh adaptation, there is an inner series of refinement and coarsening
loops that aim to improve the final mesh. To illustrate the effect of these inner
iterations on the quality of the mesh, we have shown the distribution of the
triangles within the quality space in Figure 12 for the intermediate mesh created
in Figure 9a. The change between distributions a and b in Figure 12 clearly shows
that the initial refinement step is very effective at concentrating triangles within
the the desired area. Unfortunately, it also produces many small edges and some
poor angles. After coarsening is performed in Figure 12c, most of the triangles
with small edges are removed but some triangles with very large circumradii
are created. Those small edges that do remain are all located in regions of high
boundary curvature. The next refinement again eliminates the large circumradii
triangles without creating many small edges. The final two passes of coarsening
and refinement have very little net impact on the quality of the mesh. While

Delaunay-Based Anisotropic Mesh Adaptation 155

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

η

ξ

Triangles

(a) Initial Mesh

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

η

ξ

Triangles

(b) First Refinement Pass

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

η

ξ

Triangles

(c) First Coarsening Pass

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

η

ξ

Triangles

(d) Second Refinement
Pass

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

η

ξ

Triangles

(e) Second Coarsening
Pass

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

η

ξ

Triangles

(f) Final Refinement Pass

Fig. 12. Sample Quality Distribution During Refinement and Coarsening

the final mesh contains some triangles outside the desired bounds, this appears
unavoidable for a general geometry and metric.

8 Conclusions and Future Improvements

We have presented a method for anisotropic mesh refinement that produces high
quality meshes without expensive local optimization routines. Our methods as-
signs metrics to vertices and then defines triangle quality based on approximate
metric lengths. The three mesh modification tools we use are swapping to max-
imize quality, inserting at approximate circumcenters to decrease circumradii,
and removing vertices to eliminate small edges. Because there are no guarantees
on the results of these modification tools, we use them iteratively to produce
an optimal mesh. We have presented examples demonstrating that our algo-
rithm produces meshes that are well adapted to the prescribed metric. When
we combine this anisotropic adaptation with an effective metric estimator, we
can recursively improve CFD solutions much more cheaply than with uniform
refinement.

There are also several improvements to our algorithm that could be imple-
mented in the future. For example, we have stated that local mesh optimiza-
tion is generally an expensive procedure. However, experience with isotropic

156 D. Pagnutti and C. Ollivier-Gooch

meshing in GRUMMP has shown that if the mesh is already of high quality,
local optimization-based smoothing can be a fast and effective way of further
improving the mesh [6]. It is therefore our belief that the most efficient way of
creating high-quality anisotropic meshes would be to insert and remove vertices
according to our algorithm and then perform a limited number of passes over the
mesh using local optimization. Since the mesh is already of high quality, many
fewer passes over the mesh would be required to maximize the quality then if
local optimization was the principal tool for mesh improvement. The challenge
here will be defining an appropriate objective function for the anisotropic mesh,
including determining its gradient with respect to the location of the vertex
being smoothed.

Another potential improvement to our algorithm is a modification of the de-
sired quality bounds in areas near boundaries with small features. The isotropic
approach is to assign length scales based on the boundary geometry [19]. A sim-
ilar approach might work for anisotropic meshing by decreasing the area of the
desired equilateral triangle used in the calculation for (ξdes, ηdes) in Figure 1.
This would likely reduce the number of instances where vertex removal creates
poor quality triangles and thus it should reduce the need for repeated vertex
insertion and removal iterations.

Finally, our meshing algorithm produces some small angle triangles that could
be improved by further insertion. This would result in smaller triangles than de-
sired, but the improvement in triangle quality might be worth the extra compu-
tation cost associate with more triangles. A final pass of quality-based refinement
seems a likely way of addressing this problem.

Although many two dimensional meshing algorithms proclaim a straightfor-
ward extension to three dimensions, experience in three-dimensional isotropic
meshing shows that this is rarely the case. The main stumbling block in extend-
ing the current algorithm to three dimensions will be developing an analog to
the triangle mapping procedure described in Section 4.1. Mapping tetrahedra
and scaling faces will definitely fail because of shape differences between the two
mapped copies of a single face; mapping faces and patching those together to
form tetrahedra in the metric space seems the most promising approach.

Acknowledgments

This work has been funded by the Canadian Natural Sciences and Engineering
Research Council under Special Research Opportunities Grant SRO-299160.

References

1. Ait-Ali-Yahia, D., Baruzzi, G., Habashi, W.G., Fortin, M., Dompierre, J., Vallet,
M.G.: Anisotropic mesh adaptation: towards user-independent, mesh-independent
and solver-independent CFD. Part II: Structured grids. Inter. J. Numer. Meth.
Fluids 39(8), 657–673 (2002)

Delaunay-Based Anisotropic Mesh Adaptation 157

2. Boivin, C., Ollivier-Gooch, C.F.: Guaranteed-quality triangular mesh generation
for domains with curved boundaries. Inter. J. Numer. Meth. Eng. 55(10), 1185–
1213 (2002)

3. Buscaglia, G.C., Dari, E.A.: Anisotropic mesh optimization and its application in
adaptivity. Inter. J. Numer. Meth. Eng. 40, 4119–4136 (1997)

4. Chew, L.P.: Guaranteed-quality triangular meshes. Technical Report TR-89-983,
Dept. of Computer Science, Cornell University (1989)

5. Dompierre, J., Vallet, M.G., Bourgault, Y., Fortin, M., Habashi, W.G.: Anisotropic
mesh adaptation: towards user-independent, mesh-independent and solver-
independent CFD. Part III. Unstructured meshes. Inter. J. Numer. Meth. Flu-
ids 39(8), 675–702 (2002)

6. Freitag, L.A., Ollivier-Gooch, C.F.: Tetrahedral mesh improvement using swapping
and smoothing. Inter. J. Numer. Meth. Eng. 40(21), 3979–4002 (1997)

7. Labelle, F., Shewchuk, J.R.: Anisotropic voronoi diagrams and guaranteed-quality
anisotropic mesh generation. In: Proceedings of the Nineteenth Annual Symposium
on Computational Geometry, Association for Computing Machinery, pp. 191–200
(2003)

8. Mavriplis, D., Jameson, A.: Multigrid solution of the two-dimensional Euler equa-
tions on unstructured triangular meshes. AIAA paper 87-0353 (January 1987)

9. Michalak, K., Ollivier-Gooch, C.: Matrix-explicit GMRES for a higher-order accu-
rate inviscid compressible flow solver. In: Proc. 18th AIAA CFD Conf. (2007)

10. Miller, G.L., Talmor, D., Teng, S.-H.: Optimal coarsening of unstructured meshes.
J. Alg. 31(1), 29–65 (1999)

11. Nejat, A., Ollivier-Gooch, C.: A high-order accurate unstructured finite volume
newton-krylov algorithm for inviscid compressible flows. J. Comp. Phys. 227(4),
2592–2609 (2008)

12. Ollivier-Gooch, C.F.: An unstructured mesh improvement toolkit with application
to mesh improvement, generation and (de-)refinement. AIAA 98-0218 (January
1998)

13. Ollivier-Gooch, C.F.: GRUMMP — Generation and Refinement of Unstructured,
Mixed-element Meshes in Parallel (1998–2005),
http://tetra.mech.ubc.ca/GRUMMP

14. Ollivier-Gooch, C.F., Van Altena, M.: A high-order accurate unstructured mesh
finite-volume scheme for the advection-diffusion equation. J. Comp. Phys. 181(2),
729–752 (2002)

15. Pagnutti, D., Ollivier-Gooch, C.: A generalized framework for high order
anisotropic mesh adaptation. Comp. Struct. (submitted 2008)

16. Pulliam, T.H.: Efficient solution methods for the navier-stokes equations. In: Nu-
merical Techniques for Viscous Flow Computation in Turbomachinery Bladings,
von Kármán Institute for Fluid Dynamics Lecture Series. von Kármán Institute,
Rhode-St-Genese, Belgium (1985)

17. Radespiel, R.: A cell-vertex multigrid method for the Navier-Stokes equations.
NASA TM-101557 (1989)

18. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference
schemes. J. Comp. Phys. 43, 357–372 (1981)

19. Shewchuk, J.R.: Delaunay Refinement Mesh Generation. PhD thesis, School of
Computer Science, Carnegie Mellon University (May 1997)

