
GMDS: A Generic Mesh Data Structure

F. Ledoux1, J.-C. Weill1, and Y. Bertrand2

1 CEA/DAM Île de France, Arpajon, France
{franck.ledoux,jean-christophe.weill}@cea.fr

2 Laboratoire IRCOM-SIC, Université de Poitiers, France
yves.bertrand@univ-poitiers.fr

1 Introduction

The development of a mesh data structure is a crucial task that needs to
get the right balance between memory consumption and speed performances
and to predict the useful and pertinent characteristics of the data structure.
Today, working in a massive parallel context increases the difficulty of such
a development. For software engineering reasons (code reusing, development
cost) and technical reasons (mesh connectivity management, generality level,
parallelism), the need for general meshing infrastructures has been recognized.
Several development efforts have been done in the last few years [2, 3, 4, 5].
From our point of view, FMDB [5] is the most complete work. It is a C++
library providing a mathematically-founded mesh data structure which repre-
sents any cellular mesh in a memory distributed context. But, essentially due
to an intensive use of STL containers, it consumes too much memory. In our
applicative context, this drawback is very penalizing that is why we develop a
new generic parallel C++ mesh data structure dedicated to mesh generation
and modification. The proposed data structure, called Generic Mesh Data
Structure (GMDS) is based on two mathematical models: a traditional cellu-
lar model [5] optimized in memory consumption, and the combinatorial map
model [1] which allows us to handle global unpredictable topological modifi-
cations and provides a high level of genericity that you can not reach with
traditional approachs.

This paper provides a snapshot of this work in progress. Sections 2 and3
describe our cellular model and the one based on combinatorial maps. Section
4 provides first memory consumption comparisons between our data structure,
FMDB and MSTK [2].



2 F. Ledoux, J.-C. Weill, and Y. Bertrand

2 Cellular Model

A n-dimensional cellular mesh model can be defined by the cells it handles and
the available connectivities between these cells3. Such a description is topolog-
ical, it gives an unambiguous shape-independent representation of the mesh.
Some mesh models are given in Fig. 1. The description we use to modelize a
mesh consists of a n-dimensional vector C and a n × n matrix4 D. Vector C
describes the stored cells and matrix D the stored connectivities. Di,j = 1 (re-
spectively 0) means that connectivities from i-cells to j-cells are stored (resp.
not stored). A second n × n matrix I is computed from D and C to know
which indirect adjacencies are available in the mesh model. Direct and indirect
matrices of models M3 and M4 are given in Fig. 2. Indirect adjacencies are
computed on the fly to satisfy a user request. A similar representation is used
in FMDB where a single 4×4 matrix stores the available cells in the diagonal
and cell adjacency otherwise. Adjacency between same dimension cells can
not be stored while it is important in many meshing algorithms.

Fig. 1. Some mesh models. M1 and M2 are reduced models where only nodes and
regions are present. Connectivities are modelized by arrows. In M2, a region stores
its nodes and some adjacent regions.

GMDS is a C++ library that intensively uses object-oriented concepts and
generic programming. Generic classes are used to optimize storage consump-
tion while interface classes provide flexibility and a user-friendly interface.
every template classes has a parameter defining available cells and connectiv-
ities in the mesh. Direct and indirect matrices are computed from it. Generic
programming techniques, like traits usage, optimize accesses and basic mod-
ifications throw exceptions without any test when an operation is not avail-
able for a specific mesh model. Generic cell classes have an extra parameter
specifying the cell type (quad, triangle, hexahedron, tetrahedron,etc). This
parameter coupled with the mesh model description allows us to optimize cell
storage: Every cell class has a pointer C-style tabular whose size is defined
at compile time considering mesh model and cell type. Downward connectiv-
ities are stored with the just necessary space while upward connectivities use
two extra pointers to handle an extensible collection of connectivities. Let us
3 Such a definition is not sharp enough to define a family of meshes. Generally,

supported n-dimensional meshes are equivalent to n-dimensional quasi-manifolds.
4 In this paper, we do not mathematically define what a cellular mesh is.



GMDS: A Generic Mesh Data Structure 3

consider models M1 and M2 of Fig. 1. Connectivities of a tetrahedron in M1

are stored inside a 4-size tabular while connectivities of the same tetrahedron
in M2 are stored in a 8-size tabular, the four first item store node adjacency
while four last items store region adjacency. In M2, hexahedron connectivities
are stored using a 16-size tabular.

D3 =

0BB@
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

1CCA I3 =

0BB@
1 × 1 1
× 0 1 2
1 × 1 ×
2 2 × 2

1CCA D4 =

0BB@
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1CCA I4 =

0BB@
1 × × ×
× 0 × ×
× × 1 ×
× × × 2

1CCA
Fig. 2. Direct and indirect matrices of mesh models M3 and M4 given in Fig. 1.
With matrix I3 we know that to get the adjacent nodes of a face we have to go
through edges (I3

2,0 = 1 and I3
1,0 = ×).

3 Combinatorial Map Model

Combinatorial maps define a general framework to encode any subdivision of
n-dimensional topological spaces orientable or non-orientable with or without
boundaries. Traditional cells are replaced by algebraic definitions where topol-
ogy is built from a set of abstract elements, the darts, and applications αi,
with 0 < i ≤ n, defined on these darts. In 3D, we get the following definition
which can be generalized to any dimension.

Definition 1 A combinatorial 3-map M is a 4-tuple (D,α1, α2, α3) where α1

is a permutation5 on D and α2 and α3 are involutions6 on D.

Usual mesh cells can be built as dart subsets obtained using αi applications.
For instance, on Fig. 3, the quad face can be described by dart d and applica-
tion α1. Note that a cell is a particular case of orbit7. An example of orbit is
a face inside a region which allows you to attach properties to the two sides of
a face. Combinatorial map model provides us a generic data structure which
eases algorithm development: orbit notion gives flexibility to attach new types
of properties; the management of any 3D cell is direct as cells are implicitly
defined; all topological traversals and adjacency retrievals are possible. More-
over, it is a performing issue to handle dual meshes, block-structured meshes
and non-conforming meshes.

Combinatorial maps are defined using three classes for maps, darts and
orbits. Parameters defining a map-based mesh are the mesh dimension and
5 A permutation f on X is a one-to-one mapping on X such that ∀x ∈ X,∃k ≥

1, fk(x) = x.
6 An involution f on X is a one-to-one mapping on X such that f2 = id.
7 In 3D, there exist 16 orbits and 4 cells.



4 F. Ledoux, J.-C. Weill, and Y. Bertrand

Fig. 3. A 2-dimensional combinatorial map. Darts are modelized by arrows as they
are oriented. α1 (resp. α2) links darts belonging to adjacent edges (resp. faces).

the available orbits. Adjacency relations have not to be specified since they
intrinsically exist in the combinatorial map model. The storage is very simple
since the only entities to store are darts and orbits. Darts are defined by point-
ers given relation α1, α2 (and α3 in 3D) and pointers to the orbits containing
them. Orbits are defined by a pointer on a dart to access to the topology and
an id defining it.

4 Memory Consumption Comparison

We have compared memory consumption between our data structure, FMDB
and MSTK to evaluate the potential gain of our approach. This comparison
is based on source code analysis by keeping comparable information. For in-
stance, in FMDB, we do not consider elements relative to parallelism and geo-
metric classification. To estimate ”cell cost”, we consider the type of attributes
(int, long, T*), container strategies and potential virtual table pointers. The
cost of a mesh is then computed using the next formula given in [2, 3]:

Storage(M) =
3∑

d=0

Nd∑
i=1

(Scell +
3∑

q=0

|{Md
i {Mq}}| × Sadj)

where Nd is the number of d-dimensional cells, Sent is the amount of mem-
ory each cell uses, Sadj is the amount of memory each adjacency uses, and
|{Md

i {Mq}}| is the number of q-cells adjacent to d-cell Md
i and stored in the

mesh. The formula is different for combinatorial maps:

Storage(M) =
3∑

d=0

Nd∑
i=1

Scell +
Nk∑
k=0

Sdart

where Nk is the number of darts and Sdart is the amount of memory each
dart uses8. We get results of Tab. 1 where the cost of mesh is the specified
number of bytes × the number of mesh nodes. For any models M1, M2, M3

and M4, we consider tetrahedral (T) and hexahedral (H) meshes. The current
GMDS cellular model consumes less memory than FMBD and MSTK while
8 That is, 2 or 3 pointers to store αi and a pointer by available orbit type.



GMDS: A Generic Mesh Data Structure 5

combinatorial maps are expensive for reduced models. The low cost of cellular
models is due to the fact we do no store downward adjacencies with generic
containers. The high cost of combinatorial maps is due to the presence of
all connectivities whatever the mesh model it is. Note this overcost is not
prohibitive for full models.

Table 1. Memory Consumption Comparison on 64 bit machines (in bytes).

M1 (T) M1 (H) M2 (T) M2 (H) M3 (T) M3 (H) M4 (T) M4 (H)

FMDB 193 66 × × 882 284 1247 408
MSTK 145 50 203 70 513 168 822 272

GMDS(cell) 71 28 117 44 325 112 506 178
GMDS(map) 642 254 642 254 1015 392 1015 392

5 Conclusion and Future Works

In this note, we have shortly introduced a mesh data structure based on a
generic cellular model and combinatorial maps. This combination will allow
us to represent any kind of meshes while optimizing memory consumption for
cellular models. Combinatorial maps are memory expensive but they provide
a high genericity level allowing us to easily handle complex kinds of meshes.
Moreover it is a perfect framework to prototype new algorithms before con-
verting them into an memory-optimized mesh model. The development of this
data structure just begins and several studies and developments are expected
in little time. Other memory consumption comparisons and speed compar-
isons will be then done. Some other developments are also planned: conversion
from a model to another one, managment of memory-distributed applications,
user-friendly mecanism to develop algorithms above GMDS and so on.

References

1. Lienhardt P (1991) Topological models for boundary representation: a compar-
ison with n-dimensional generalized maps. Computer-Aided Design 23(1):59–82

2. Garimella RV (2002) Mesh data structure selection for mesh generation and
FEA applications. International Journal for Numerical Methods in Engineering
55:451–478

3. Remacle JF and Karamete BK and Shephard MS (2003) Algorithm Oriented
Mesh Database. International Journal for Numerical Methods in Engineering
58:349–374

4. Tautges T, Ernst C., Merkley K, Meyers R and Stimpson C (2005) Mesh Ori-
ented datABase (MOAB). http://cubit.sandia.gov/cubit

5. Seol ES (2005) FMDB: Flexible Distributed Mesh Database for Parallel Auto-
mated Adaptative Analysis. Thesis, Faculty of Renssealer Polytechnic Institute


