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Traditionally, methods for solving partial differential equations such as the
Finite Element method and the Finite Difference method can not deal with
open region problems. On the other hand, when applying these methods, the
computational domain has to be truncated to keep the computational costs
at a reasonable level. To resolve this discrepancy, many different approaches
have been followed. Techniques that treat the interior as well as the exterior
problem by discretising the underlying partial differential equation rely on a
discretisation of the exterior domain that satisfies several crucial conditions.
We will discuss the problems these conditions pose and present an algorithm
that will provide such a discretisation if one exists.

1 Background

The ambivalence between bounded computational domains and unbounded
problem formulations is inherent in many applications. Each method applied
to resolve this discrepancy requires the coupling of interior and exterior do-
mains. This is either accomplished by the construction of transparent bound-
ary conditions or by combining differentiation techniques for the solution of
the coupled problem. The techniques we consider are the Perfectly Matched
Layers (PML) Method as formulated by Bérenger in [1] and the Pole Con-
dition formulated by F. Schmidt in [2]. Both require a discretisation of the
unbounded exterior domain. Yet, while the triangulation of inhomogeneous
bounded interior domains via constraint delaunay algorithms and Rupperts
algorithms for refinement and mesh quality enforcement is already very elab-
orate [3, 4, 5], to our knowledge the discretisation of inhomogeneous exterior
domains was not approached so far.
Surprisingly enough, it is sometimes non-trivial to find discretisations of het-
erogeneous exterior domains and we will show that even in the two dimensional
case we can find simple examples where such a discretisation does not exist
at all.
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2 Discretisation in two dimensional space

In this section we will start by defining the conditions a discretisation of
the exterior will have to fulfil in order to be admissible for our application.
We will then introduce an algorithm that can produce such discretisations and
prove the existence of solutions and the consistence of the algorithm. Both our
applications require a discretisation of the exterior domain with quadrilaterals
(two dimensions) or prisms (three dimensions) for our discretisation to be
admissible we will require the following conditions:

A1: The quadrilaterals have to have one side on the boundary of the compu-
tational domain and the other side infinitely far from it

A2: Each quadrilateral or prism has to be homogenous in its interior. So if
the inhomogeneities in the exterior domain such as waveguides in optics,
are depicted as infinite rays leaving the computational domain, these rays
must be contained in exactly one quadrilateral or prism for all times.

A3: For our application these prisms are cut off parallel to the boundary of
the computational domain at a finite distance from it. It is necessary for
both methods, that the so-created edges parallel to the computational
domain form a closed polygon or in the three dimensional case a closed
polyhedron, a scaled and distorted version of the computational domain.

While the conditions A1 and A2 are merely local criteria, condition A3 is a
global condition to be fulfilled which is one of the difficulties to be mastered
to gain a valid discretisation of the exterior domain.

2.1 Challenges

We will first depict the challenges of creating a valid discretisation and then
show an example where no valid discretisation can exist. For our example we
will choose the unit square as computational domain. Assume light scattering
off an object containing four waveguides that leave this computational do-
main, each on one side of the square, and stretch to infinity. Now let these
waveguides stretch into the directions c1, c2, c3 and c4 numbered counter
clockwise starting from the waveguide leaving the domain through the edge
on the x-axis (c.f. Fig. 1).
If one considers the corners of the computational domain, rays for the dis-
cretisation of the exterior, that attach to these corners have to lie within a
cone that is spanned by the prolongation of the edges. If an inhomogeneity
is given, this cone is narrowed by a side parallel to this inhomogeneity going
through the corresponding corner. In Fig. 1 at the edges of the computational
domain, these narrowed cones are marked grey and the discretisation rays are
depicted as dashed lines. Note that each inhomogeneity only affects one cone.
This is not the general case since in computational domains with inner angles
larger than 90◦ some inhomogeneities might affect several edges.
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Fig. 1. Four waveguide inhomogeneities leaving the computational domain each
through one edge. Dashed lines are exemplatory discretisation rays.

Let αi denote the angle between ci and the edge through which the inhomo-
geneity defined by ci leaves the computational domain.

Lemma 1. Let the computational Domain be the unit square and the inho-

mogeneities ci be defined as before. Let 0 < αi < π
4 for i = 1, ..., 4. Then there

exists no discretisation of the exterior domain that satisfies the conditions A1,

A2 and A3.

Proof. The situation is depicted in Fig. 2. If the first quadrilateral of an exte-
rior domain discretisation is cut off at a distance d1 from the computational
domain, then the closest cut off distance for its neighbour such that a line
connecting the corner of the computational domain with the corner created
by both cut offs for trigonometrical reasons has a distance of d2 = d1

tan α1

to
the computational domain. Since α1 < 45◦, d2 > d1. So if all four inhomo-
geneities have angles less than 45◦, by applying the same argument at each
corner of the computational domain, we see that the minimal distance for the
last cutoff is d4 > d1. Via d1, the x-coordinate of the intersection between the
first and the last cutoff is already fixed while −d4 determines the y-coordinate.
For the discretisation to be conforming to the given criteria, said intersection
point has to lie in the cone formed by the x-axis and c1. Yet a line parallel
to the second edge of the computational domain with a distance of d1 to it,
intersects this cone only in the interval [0,−d1 ∗ tan(α1)] which contains only
points whose y-coordinate is less than d1. Thus both lines can not intersect in
the given cone and thus not form a valid discretisation of the exterior domain.
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Fig. 2. Schematic of a computational domain together with constraints that make
a valid discretisation of the exterior domain impossible.

2.2 Algorithmic solution

We will now present an algorithmic solution of the problem of creating a valid
discretisation of the exterior domain if it exists and subsequently prove the
existence of a solution and the consistence of the algorithm. The algorithm is
given for 2D computational domains for graphic reasons, but it may also be
extended to 3D computational domains.

Theorem 1. Let the following algorithm find appropriate ξi in step 5 and

thus not terminate in step 6: Algorithm:

1. Embed the problem into R
3 (“lifting”), leaving the computational domain

in the (x1, x2) plane;

2. Define an axis Ξ that is orthogonal to the (x1, x2) plane and intersects

the computational domain in an interior point;

3. For each edge ei of the computational domain, define a plane Ei containing

ei and a point on Ξ having −ξi as x3-coordinate;

4. At each corner Vi of the computational domain, form the intersection of

the planes Ei−1 and Ei containing the adjacent edges ei−1 and ei thus

obtaining lines of intersection Si ⊂ R
3;

5. Select appropriate ξi such that the projections of the Si into the (x1, x2)-
plane do not conflict with any constraints given by inhomogeneities and

do not intersect each other;

6. If such ξi exist, continue. Otherwise exit, there is no valid discretisation;

7. Intersect all Si with a plane parallel to the (x1, x2)-plane;

8. Project the Si into the (x1, x2)-plane. The points of intersection formed

in the last step now define the corners for the quadrilaterals required for

a discretisation of the exterior domain.

Then the following holds true:
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1. Existence: The algorithm it produces a valid discretisation of the exterior

domain, if one exists.

2. Consistence: For each valid discretisation of the exterior domain, there

exist ξ1, ..., ξn for which the algorithm will produce this discretisation.

Proof. The first proposition is evident from the construction principle. If the
algorithm terminates, in step 5, appropriate ξi were chosen. The resulting
lines of intersection of the Ei will then form a valid discretisation of the
exterior domain and since each Ei contains one edge ei of the computational
domain, the endpoints of the projected cut off intersection lines will form
edges parallel to the edges of the computational domain which in turn form a
closed polygon thus resulting in a valid discretisation of the exterior domain.
To prove the second proposition, we lift the scaled computational domain
created by the given discretisation of the exterior domain to a plane in R

3

that is parallel to the (x1, x2)-plane. The corners of this lifted scaled version
of the computational domain are then connected to the corners of the original
computational domain with rays, yielding the Ei and thereby unambiguously
defining the ξi.

2.3 Conclusions

The algorithm presented here may easily be extended to three dimensions. Yet
the selection of the ξi in step 5 is an open issue that will require utilisation of
optimisation algorithms for non-convex, non-linear programming problems.
Also the lifting of the surface grids onto the parallel sides of the prisms in
3D is an open issue that will have to be tackled in the near future. Thus the
first steps towards a fully automatic discretisation of the exterior domain have
been presented, while more work will still have to be done to arrive there.
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