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Summary. Optimizing surface and volume triangulations is critical for advanced numerical sim-
ulations. We present a simple and effective variational approach for optimizing triangulated sur-
face and volume meshes. Our method minimizes the differences between the actual elements
and ideal reference elements by minimizing two energy functions based on conformal and iso-
metric mappings. We derive simple, closed-form formulas for the values, gradients, and Hes-
sians of these energy functions, which reveal important connections of our method with some
well-known concepts and methods in mesh generation and surface parameterization. We then
introduce a simple and efficient iterative algorithm for minimizing the energy functions, includ-
ing a novel asynchronous step-size control scheme. We demonstrate the effectiveness of our
method experimentally and compare it against Laplacian smoothing and other mesh optimization
techniques.
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ational methods.

1 Introduction

Optimization of mesh quality is a fundamental problem for numerical simulations in
science and engineering. It has become increasingly important in recent years, because
modern computational applications often involve dynamic interfaces or moving bound-
aries. These applications require on-line optimization of the meshes to maintain the
validity and quality within the simulation codes as the physical domains deform. There-
fore, the mesh-optimization algorithms must be effective and robust without user inter-
vention, and at the same time be efficient and easy to implement. These requirements
pose decidedly nontrivial new challenges. For problems with very large deformation or
motion, one may have to change the mesh connectivity by adding or removing points or
flipping edges for best robustness. However, it is often desirable to maintain the mesh
connectivity as far as possible to minimize numerical errors, such as in the Arbitrary
Lagrangian Eulerian (ALE) methods [15]. In this paper, we focus on mesh optimization
with fixed connectivity, i.e. the mesh smoothing problem.

� Corresponding author.
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1.1 Related Work

Mesh smoothing has a vast amount of literature. The most popular methods for opti-
mizing two-dimensional meshes are probably Laplacian smoothing and its variations
[6, 13], which move each point to a weighted average of its neighbors. Their popularity
is largely due to their simplicity and efficiency, though they are ineffective at concave
regions. A simple but more effective approach is the angle-based smoothing in [27],
which provides no theoretical guarantee either but often works well in practice. The
most effective methods are optimization based, such as those in [21, 24]. However,
these methods are much more expensive and difficult to implement than other simpler
alternatives. An ideal method should be simple, efficient, and effective, which we strive
to achieve in this paper.

Most methods for optimizing triangular meshes are designed for meshes in R
2. They

can be applied to surface meshes by first parameterizing the surface locally or glob-
ally and then optimize the flattened mesh (see e.g. [12, 19]). To preserve geometry,
these methods typically require a smooth or discrete CAD model and associated point-
location procedure to project the points, which increase implementation complexity and
computational cost. We propose a simpler approach in this paper.

Mesh smoothing of volume or even higher-dimensional meshes is far more complex
than smoothing 2-D meshes. Many methods fail to generalize. For example, Laplacian
smoothing often produces inverted elements in 3-D, angle-based method [27] no longer
applies, and condition-number based optimization [8, 21] becomes increasingly cum-
bersome. One of more successful methods is the minimization of the inverted mean
ratio [10, 23]. A side product of this paper is to derive the inverted mean ratio from a
differential geometry point of view, shows its intimate connection with the aspect ratio
of tetrahedra [25], and in turn provide a justification and a simpler and more efficient
algorithm for minimizing it.

In mesh optimization, there have been some notable endeavors to unify different
methods and concepts, such as the study in [1] from an algorithmic point of view, the
algebraic framework in [19, 20], and the finite-element-based methods in [14]. One of
the objectives of this paper is also such a unification, but in the aspect of unifying the
optimization methods for different dimensions. A notable benefit of such a unification
is to enable simultaneous optimization of surface and volume meshes, which we will
demonstrate to be critical for effective mesh optimization.

1.2 Contributions and Overview

In this paper, we strive to meet the needs of mesh smoothing within numerical simu-
lations. We make contributions in both theoretical and practical aspects. Theoretically,
our first contribution is to establish a unified framework of variational mesh optimiza-
tion in arbitrary dimensions (including surfaces and manifolds) based on the theory
of isometric mappings in differential geometry. The core of this framework is two en-
ergy functions that capture angle and volume preservation, respectively. We show the
connection of the angle-preservation energy with the well-known harmonic smoothing
in mesh generation (e.g., [17]) and conformal parameterization in computer graphics
(e.g., [7]).
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Our second theoretical contribution is a set of simple, closed-form formulas for the
gradient and Hessian of the energy functions for surface and volume meshes. These for-
mulas provide us direct proofs of the convexity of our energy functions and enable effi-
cient algorithms and simple implementations for solving the minimization problems. In
addition, they reveal the equivalence of angle-preserving energy with the inverse mean
ratio in Euclidean space and establish an important connection of these energies with
the aspect ratios of tetrahedra [25]. These results substantially enhance the fundamental
understandings of variational mesh optimization.

In the practical aspect, our main contribution is a new algorithm for mesh optimiza-
tion. The most notable features of our method include 1) its ability to smooth surface
and volume meshes simultaneously for improved effectiveness, and 2) a simple asyn-
chronous step-size control scheme. Other virtues of our algorithm include ease of im-
plementation and parallelization (comparable with Laplacian smoothing), effectiveness
(at least as comparable as inverse mean ratio), and high efficiency (significant improve-
ment in computational cost and memory requirements compared to other optimization-
based methods). These properties make our algorithm especially well suited for direct
implementation within numerical simulation codes.

The remainder of this paper is organized as follows. Section 2 defines the notation
and reviews some fundamental concepts for variational mesh optimization. Section 3 de-
scribes our formulation for optimizing surface meshes. Section 4 generalizes our method
to volume meshes. Section 5 contains some experimental results of our method and com-
parisons with other methods for optimizing static and dynamic meshes. Section 6 con-
cludes the paper with discussions of future research directions.

2 Unified Variational Framework for Mesh Optimization

In mesh optimization, there are typically desired shapes and/or sizes of the elements in
the resulting mesh. Therefore, we envision each element has a corresponding “ideal”
reference element of the desired shape and size. We focus on isotropic (instead of
anisotropic) meshes. In this setting, the desired shape is typically regular (i.e., equi-
lateral), and the desired size may be determined by a density function over the domain.
The elements of an “optimal” mesh should be as “close” to their corresponding ideal el-
ements as possible. To achieve this, we must define the measures for the “closeness” and
then optimize them over the mesh. We seek inspirations from the continuous mappings
between surfaces (or manifolds in general), which have been well studied in differential
geometry.

2.1 Harmonic, Conformal, and Isometric Mappings

Mappings between surfaces (or manifolds in general) are central in differential and Rie-
mannian geometry (see e.g. [4, 5, 22]). Before delving into the details, we first review
the intuitive meanings of three types of mappings to motivate our method.

The most well-known type of mapping is probably harmonic mappings. Such map-
pings are “smooth,” as they satisfy some elliptic partial differential equation (PDE),
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namely the Laplace equation. Harmonic mappings are popular especially for optimiz-
ing structured meshes for their simplicity and efficiency [17], but unfortunately less so
for unstructured meshes.

Another important type is conformal mappings, which preserve angles locally within
a infinitesimal neighborhood of every point on the surface. Conformal mapping is a
special type of harmonic mapping. The two types are equivalent under some conditions
(such as for simply connected surfaces without boundaries and holes).

The former two types are more widely used. However, the most classical type is
in fact isometric mapping, which is the foundation of intrinsic differential geometry.
Such mappings preserve the first fundamental forms, and in turn preserve the length
measures along all directions. In other words, an isometric mapping preserves angles
and areas/volumes locally at all points, so it is a special type of conformal mapping and
also of harmonic mapping.

We develop our method based on conformal and isometric mappings, as they are
well suited for controlling the shapes and/or sizes of isotropic meshes. As we will ex-
plain, isometric mappings provide a powerful and flexible framework that can supersede
conformal mappings in a variational framework.

2.2 Computational Aspects of Conformal and Isometric Mappings

We now give a more detailed and rigorous treatment of the mappings. Consider two
m-dimensional manifolds Γ1 and Γ2 embedded in R

n1 and R
n2 , respectively, where

n1 ≥ m and n2 ≥ m. Let u(ξ) : Ω ⊆ R
m → R

n1 and x(ξ) : Ω ⊆ R
m → R

n2 denote
the corresponding coordinate functions of two parametric patches on Γ1 and Γ2, where
ξ = [ξ1, . . . , ξm]T , u = [u1, . . . , un1 ]T and x = [x1, . . . , xn2 ]T . Let J1(ξ) and J2(ξ)
denote the Jacobian matrices of u(ξ) and x(ξ), respectively. For brevity, we will omit
the argument ξ in the following discussions. The first fundamental tensors of Γ1 and
Γ2 are G1 = JT

1 J1 and G2 = JT
2 J2, respectively. Let G denote the matrix G2G

−1
1 ,

which is in general nonsymmetric. Let F denote the mapping from u(ξ) to x(ξ) over
the local patches. The mapping F is said to be isometric if G2 = G1 or equivalently
G = I , i.e., if the first fundamental tensor is preserved by the mapping. Similarly, the
mapping F is conformal if G2 = cG1 or equivalently G = cI , where c > 0 and in
general varies from point to point. These definitions of the mappings are classical but
inconvenient for numerical computations. It turns out to be revealing to consider the
eigenvalues of G.

Lemma 1. Let G1 and G2 denote the first fundamental tensors of local patches on Γ1

and Γ2 with parameterization u(ξ) : Ω ⊆ R
m → R

n1 and x(ξ) : Ω ⊆ R
m → R

n2 ,
respectively. Let F denote the mapping from u(ξ) onto x(ξ). (a) The eigenvalues λi of
G = G2G

−1
1 are all positive. (b) F is conformal iff λ1 = · · · = λm. (c) F is isometric

iff λi = 1 for i = 1, . . . ,m.

Due to length limitations we omit all the proofs in this paper. The presence of eigen-
values in Lemma 1 may appear to be daunting computationally in high dimensions.
Note that the sum of the eigenvalues of a matrix is equal to its trace (i.e.,

∑m
i=1 λi =

tr(G2G
−1
1 )), and the product of the eigenvalues is equal to its determinant (i.e.,
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∏m
i=1 λi = |G2G

−1
1 |). We use |A| to denote the determinant of a matrix A in this

paper. We then obtain the following lemma.

Lemma 2. The mapping F is conformal if and only if

tr(G2G
−1
1 )

m
√
|G2|/|G1|

= m. (1)

F is isometric if and only if F is conformal and

|G2| = |G1|. (2)

Based on Lemma 2, we can verify whether a mapping is conformal or isometric from
tr(G), |G2|, and |G1|, which are easy to compute as we will explain in later sections.
Eqs. (1) and (2) are essentially measures for angle- and area-preservation, respectively.
This separation of concerns will prove to be very convenient.

2.3 Variational Formulation for Discrete Isometric Mapping

Our preceding discussion focused on continuous surfaces. In meshing or more generally
in most numerical computations, the domain is discretized (i.e., triangulated or tessel-
lated), so the surfaces are discrete. Fortunately, variational calculus provides us exactly
what we need for generalizing the formulations from continuous to discrete surfaces.
The basic idea is to define the mappings over each element, where the formulas for the
continuous surfaces apply. We refer to the mapping for each element as the elemental
mapping, which maps from an ideal element to the actual element through a paramet-
ric element. As in the continuous case, we use u, x, and ξ to denote the coordinates of
these elements, respectively. Fig. 1 illustrates the elemental mappings between triangles
in 2-D and tetrahedra in 3-D.

conceptual map

ideal triangle actual triangle

F2  F1
-1

u1 u2

u3

x0

x1

x2

parametric triangle

F1 F2

helper

(0,0) (1,0)

(0,1)

(a)

conceptual map

ideal tetrahedron actual tetrahedron
u3

F2  F1
-1

x3

u0

u1

u2

x0

x1

x2

parametric tetrahedron

F1 F2

helper

(0,0,0) (1,0,0)

(0,1,0)
(0,0,1)

(b)

Fig. 1. Schematic of elemental mapping for (a) triangles and (b) tetrahedra
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Ideally, we hope all of the elemental mappings are isometric or conformal. Unfortu-
nately, these requirements in general are over-determined and in turn would not yield
a solution. We solve the problem in an approximate sense by minimizing a potential
energy function (or objective function). This is in spirit similar to solving an over-
determined linear system using linear least squares approximations, except that our
equations are more complex and nonlinear.

A fundamental question in a variational method is the definition of the energies. For
best effectiveness, we require an energy to have the following properties:

Optimality: It must be positive and be minimized for an “ideal” mesh;
Barrier: It should be infinite for degenerate elements with zero area/volume;
Convexity: It should be free of local minimum;
Simplicity: It should be simple and efficient to evaluate and differentiate.

Based on Lemma 2, for each element τ we define two energies Eθ and El for angle
preservation and area/volume preservation:

Eθ(τ) =
tr(G2G

−1
1 )

m
√
|G2|/|G1|

(3)

El(τ) = (|G2|/|G1|)p + (|G1|/|G2|)p . (4)

In El, p > 0, and the larger p is, the steeper the gradient of El becomes. In particular,
we choose p = 0.5, as we explain later. Per Lemma 2, Eθ is minimized for conformal
mappings, and Eθ and El are minimized simultaneously for isometric mappings. If the
volume of an element is zero, then |G2| = 0 and in turn Eθ = El = ∞. Therefore, the
first two requirements are satisfied. The convexity and simplicity of these functions are
far more involved, which we address in later sections.

We remark that in Euclidean spaces, the inverse mean ratio [10, 23] is

‖J2J
−1
1 ‖2

F

m (|J2|/|J1|)2/m
, (5)

which is equal to Eθ/m, because tr(G2G
−1
1 ) = tr(J−T

1 JT
2 J2J

−1
1 ) = ‖J2J

−1
1 ‖2

F

and |Gi| = |J i|2. However, the energy (3) is more general as it is directly applicable
to surfaces and manifolds. Given the energy of elemental mappings, we define the total
energy over a mesh M as

E(Γ, µ) =
∑
τ∈M

(µEθ(τ) + (1− µ)El(τ)) , (6)

where µ ∈ [0, 1) controls the significance of angle versus volume conservation.
Overall, our method computes the energy and their first and second derivatives with

respect to the vertex positions, and then moves each vertex to reduce the energy subject
to constraints (such as boundary conditions, validity of the mesh, and preservation of
sharp features). We repeat this process for a number of iterations or until the mesh
quality no longer improves. This framework applies to meshes in any dimensions. It
produces approximations to special types of harmonic maps, so it is justified to refer to



Simple and Effective Variational Optimization 321

our method as variational mesh optimization or mesh smoothing. However, we have not
yet to derive efficient formulas for evaluating and differentiating the energy functions
and define simple and effective numerical solutions for solving the resulting nonlinear
optimization. We address these issues for surface and volume meshes in the next two
sections, respectively.

3 Optimizing Triangular Surface Meshes

We now present our formulation and algorithm for optimizing a triangulated surface
mesh embedded in R

3. Obviously, this algorithm would also be applicable to 2-D
meshes, but we derive it directly for curved surfaces for generality. As illustrated in
Fig. 1(a), we construct a mapping from the ideal to the actual triangle through a para-
metric triangle. In this specific setting, x has three components, namely {x, y, z}, while
u and ξ has two components, namely {u, v} and {ξ, η}, respectively.

3.1 Energy for Angle Preservation

We first derive the formulas for Eθ over a triangle τ = x1x2x2. For efficient minimiza-
tion of the energy over the mesh, we need to evaluate its value and compute its gradient
and Hessian with respect to the vertex positions of the triangle. Fortunately, these can
be computed efficiently from the angles (or the first fundamental tensor) of the ideal
triangle as well as the edge lengths and area of the actual triangle. As illustrated in
Fig. 2, let θi denote the angle at the ith vertex of the ideal triangle. Let a =

√
|G1| and

A =
√
|G2|, i.e., twice of the areas of the ideal and actual triangle, respectively. Let li

denote the opposite edge of the ith vertex of the actual triangle, n̂ is its unit normal in
R

3, and l⊥i = n̂×li , the 90◦ counter-clockwise rotation of li. We define the shorthands

i+ =

{
i + 1 i < 3
1 i = 3

and i− =

{
i− 1 i > 1
3 i = 1

. (7)

Given a function f = [f1|f2|f3]T , let ∇x1f = [∇x1f1|∇x1f2|∇x1f3]. Let ‖x‖
denote the 2-norm of a vector x. We obtain the following theorem.

Fig. 2. Naming convention for triangles
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Theorem 1. The energy Eθ(τ) in (3) for a triangle τ = x1x2x3 in R
3 is

Eθ =
1
A

3∑
i=1

ωi‖li‖2, (8)

where ωi = cot θi. Its gradient ∇xiEθ and Hessian ∇2
xi

Eθ with respect to the xyz
coordinates of vertex xi for i = 1, 2, 3 are

∇xi
Eθ =

2
A

(ωi+li+ − ωi−li−)− Eθ

A
l⊥i , (9)

∇2
xi

Eθ =
2
A

(ωi+ + ωi−) I − 1
A

Bi −
Eθ‖li‖2

A2
n̂n̂T , (10)

where I is the 3× 3 identity matrix and Bi = (∇xi
Eθ) l⊥T

i + l⊥i (∇xi
Eθ)

T .

We note that in R
2, the energy Eθ has re-occurred many times in the literature: It

is essentially equivalent to the functional for harmonic mapping in [17], the “MIPS
energy” for conformal parameterization in [16], and the condition-number-based met-
ric in [12]. The notation using cotangent is due to Pinkall and Polthier [26], but we
generalized it to triangles in R

3. Our formulas for the gradient and Hessian in (9) and
(10) appear to be new. In (13), the n̂n̂T term has no effect if the surface is flat and is
negligible if a vertex moves only nearly tangentially. In surface mesh optimization, all
vertices move nearly tangentially, so we can omit this term. Under this assumption, for
any reference triangle with acute angles,−Bi is positive definite, so is∇2

xi
Eθ , and Eθ

is therefore convex. A different analysis in R
2 can be found [23].

For isotropic meshing, the ideal triangle is regular, and ωi = cot 60◦ = 1/
√

3 for
i = 1, 2, 3. It is more convenient to use Ẽθ =

√
3Eθ instead of Eθ for the energy. In

this case, the energy is simply the ratio between the sum of the squared edge lengths
versus twice of the area, and we then have the following simplified formulas:

Ẽθ =
1
A

3∑
i=1

‖li‖2, (11)

∇xi
Ẽθ =

1
A

(2li+ − 2li− − Ẽθl
⊥
i ), (12)

∇2
xi

Ẽθ ≈
1
A

(
4I − B̃i

)
, (13)

where B̃i =
(
∇xi

Ẽθ

)
l⊥T
i + l⊥i

(
∇xi

Ẽθ

)T

.

3.2 Energy for Area Preservation

For triangles, our definition of El in (4) reduces to

El =
A2p

a2p
+

a2p

A2p
, (14)
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where a =
√
|G1|, A =

√
|G2|, and p > 0. This energy controls the triangle areas.

Assume a is independent of xi. It can be shown that the gradient and Hessian of El

with respect to xi are

∇xiEl =
2p
A

(
A2p

a2p
− a2p

A2p

)
l⊥i =

2p
(
A4p − a4p

)
a2pA1+2p

l⊥i , (15)

∇2
xi

El ≈
(

8p2A4p

a2pA2+2p
−

(1 + 2p)2p
(
A4p − a4p

)
a2pA2+2p

)
l⊥i l⊥T

i

=
(4p2 − 2p)A4p + (4p2 + 2p)a4p

a2pA2+2p
l⊥i l⊥T

i , (16)

where the residual in ∇2
xi

El is a negligible n̂n̂T term. ∇2
xi

El is positive semi-definite
if p ≥ 0.5. For p = 0.5, the formulas simplify to

∇xiEl =

(
A2 − a2

)
aA2

l⊥i and ∇2
xi

El ≈
2a
A3

l⊥i l⊥T
i . (17)

Therefore, we choose p = 0.5 in practice. This choice of El coincides with the energy
used for area distortion for surface parameterization in [3].

3.3 Energy Minimization

The total energy is the sum of the elemental energies over all the triangles. The gradient
and Hessian of the total energy with respect to a vertex xv is equal to the summation of
those in the incident triangles of the vertex, i.e.,

∇xv
E =

∑
{τ |v∈τ}

(
µ∇xv

Ẽθ(τ) + (1− µ)∇xv
El(τ)

)
, (18)

∇2
xv

E =
∑

{τ |v∈τ}

(
µ∇2

xv
Ẽθ(τ) + (1− µ)∇2

xv
El(τ)

)
. (19)

Because ∇2
xv

Ẽθ(τ) is positive definite and ∇2
xi

El is positive semi-definite, ∇2
xv

E
is positive definite if 0 ≤ µ < 1 and all the triangles have positive areas. In other
words, E is convex locally at each vertex. In practice, we choose µ = 0 for conformal
optimization and µ = 0.5 for isometric optimization. After obtaining the gradient and
Hessian, one could apply one step of Newton’s method to determine a displacement dv

for the vertex, i.e., by solving
(
∇2

xv
E
)
dv = −∇xv

E. To preserve the geometry, we
must constrain the displacement to be nearly tangential. We compute the tangent vectors
using an eigenvalue analysis as described in [18]. For a vertex on a smooth surface, let
t̂1 and t̂2 denote two orthonormal tangent vectors at v, and let T = [̂t1 | t̂2]. Instead of
solving for dv in R

3, we reformulate the problem to solve for dv = Tu, where u ∈ R
2.

The gradient and Hessian of E with respect to u are then ∇uE = T T∇xv
E and

∇2
uE = T T

(
∇2

xv
E
)
T , respectively. Therefore, Newton’s equation for minimizing

E with respect to u becomes(
T T

(
∇2

xv
E
)
T
)

u = −T T∇xv
E,
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and therefore

dv = −T
(
T T

(
∇2

xv
E
)
T
)−1

T T∇xv
E. (20)

Note that ∇2
uE is symmetric positive definite for any reasonable approximations of T .

For a point on a ridge curve, we replace T in (20) by the unit tangent vector to the ridge
curve. If a point is at a corner, we fix the vertex and set dv = 0. This procedure pre-
serves sharp features and preserve smooth surface geometry to second-order accuracy.
If higher-order accuracy is required, the displacement dv can be adjusted by projecting
onto a high-order reconstruction of the surface as in [11].

3.4 Overall Algorithm

For the overall algorithm, it is most efficient and convenient to compute the gradient
and Hessian of Eθ and El over all the triangles, accumulate them to vertices, and then
compute the displacements for all the vertices concurrently. This is similar to a typical
finite-element code. When applying the displacements, we determine a relaxation factor
αv for each vertex and then addαvdv to the vertex, where the relaxation factor is chosen
to ensure mesh validity, as we will explain shortly. Algorithm 1 summarizes the core
of this variational algorithm, which is essentially a block-Jacobi solver for one step of
Newton’s method. Our overall algorithm repeatedly invokes this procedure for a desired
number of iterations or until the mesh no longer improves.

Algorithm 1. One step of variational smoothing of surface triangulation.
1: Initialize vector grad and matrix H to zero for each vertex;
2: for each triangle τ do
3: for each vertex xi of τ do
4: v ←vertex id of xi

5: grad[v] ← grad[v] + µ∇xi Ẽθ(τ ) + (1 − µ)∇xiEl(τ );
6: H[v] ← H[v] + µ∇2

xi
Ẽθ(τ ) + (1 − µ)∇2

xi
El(τ );

7: end for
8: end for
9: for each vertex v do

10: let T be composed of tangent vector to surface at v;
11: xv ← xv − αvT

(
T T (H[v]) T

)−1
T T grad[v];

12: end for

In Algorithm 1, we compute the displacements for all the vertices concurrently for
better efficiency and ease of implementation. However, concurrent vertex motions may
lead to mesh folding if checking is not performed. To address this problem, we introduce
a safeguard via an asynchronous step-size control: For each triangle x1x2x3, we solve
for the maximum α ≤ 1 such that the triangle x

(α)
1 x

(α)
2 x

(α)
3 does not fold, where

x
(α)
i = xi + αdi. We scale the displacement dv at v by a factor αv equal to the

minimum α among the incident faces of v. After rescaling the displacement of all the
vertices, we recompute α and repeat the rescaling process until αv = 1 for all vertices.
Finally, we move all the vertices by the scaled displacement.
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Note that this rescaling scheme can be used with any smoothing algorithms to pre-
vent mesh folding. It is particularly effective for our method because the “barrier” prop-
erty of the energy functions prevents the formation of poor-shaped elements. In practice,
the rescaling is rarely invoked except during the first few iterations when optimizing an
extremely poor-shaped input mesh.

4 Optimizing Tetrahedral Meshes

We now extend our algorithm to optimize tetrahedral meshes. We reuse the same frame-
work, including the definitions of the energies and the control flow in Algorithm 1. In
the elemental mapping, as illustrated in Fig. 1(b), all the coordinates, namely, x, u, and
ξ, now have three components, denoted by {x, y, z}, {u, v, w}, and {ξ, η, ζ}, respec-
tively. Our main focus here will be on the efficient evaluation and differentiation of the
energies.

4.1 Energy for Angle Preservation

For tetrahedral elements, the angle-preserving energy of the elemental map for a tetra-
hedron τ = x0x1x2x3 in R

3 is

Eθ(τ) =
tr(G)

|G2/G1|1/3
. (21)

As illustrated in Fig. 3, we label the edges as li and ri for i = 1, 2, 3, where li = xi−x0

and li = xi−−xi+, where i+ and i− are defined in (7). Let n0 = r2×r1, the normal
to the opposite triangle of x0 pointing toward x0 with magnitude equal to twice of the
triangle area. Let

G1 =

⎡⎣ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤⎦ and G2 =

⎡⎣h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤⎦ ,

where gij = gij and hij = hji, and let gj and hj denote the jth columns of G1 and

G2, respectively. Let ν =
√
|G1| and V =

√
|G2|| = −nT

0 li, i.e., six times of the

Fig. 3. Naming convention for tetrahedron. Underlined symbols indicate edges.
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volumes of the ideal and actual tetrahedra, respectively. Let sum(a) = a1 +a2 +a3 for
any a ∈ R

3. We obtain the following theorem.

Theorem 2. The energy Eθ(τ) for a tetrahedron τ = x0x1x2x3 in R
3 is

Eθ =
1

V 2/3

3∑
i=1

(
αi‖li‖2 + βi‖ri‖2

)
, (22)

where αi = sum(gi+×gi−)/ν4/3 and βi = (giigi−,i+−gi,i−gi,i+)/ν4/3. Its gradient
∇x0Eθ and Hessian ∇2

x0
Eθ with respect to x0 are

∇x0Eθ = − 2
V 2/3

(
3∑

i=1

αili

)
− 2

3V
Eθn0 (23)

∇2
x0

Eθ =

(
2

V 2/3

3∑
i=1

αi

)
I − 2

3V
B − 2

9V 2
Eθn0n

T
0 , (24)

where I denotes the 3× 3 identity matrix and B = (∇x0Eθ)nT
0 + n0 (∇x0Eθ)

T .

The theorem gives only the derivatives with respect to x0, but it is easy to adapt the
formulas for the other vertices by symmetry. To the authors’ knowledge, these closed-
form formulas are all new. For isometric mesh smoothing where the ideal tetrahedra are
regular, αi = βi = 2−4/3, and it is more convenient to omit these constants and use the
alternative function

Ẽθ =
1

V 2/3

3∑
i=1

(
‖li‖2 + ‖ri‖2

)
, (25)

i.e., the ratio between the sum of squared edge lengths versus V 2/3. The gradient and
Hessian of Ẽθ with respect to x0 are then

∇x0Ẽθ = − 2
V 2/3

3∑
i=1

li −
2

3V
Ẽθn0, (26)

∇2
x0

Ẽθ =
6

V 2/3
I − 2

3V
B̃ − 2

9V 2
Ẽθn0n

T
0 , (27)

where B̃ =
(
∇x0Ẽθ

)
nT

0 + n0

(
∇x0Ẽθ

)T

. By plugging (26) into (27), it is easy to

show that ∇2
x0

Ẽθ is positive definite as long as Ẽθ > 0.
Note that the aspect ratio of a tetrahedron [25] is defined as

ρ =
c

V

(
3∑

i=1

(
‖li‖2 + ‖ri‖2

))3/2

,

where c ≈ 0.048113. When a regular tetrahedron is used as the reference element,
Ẽθ and the inverse mean ratio (5) are both a constant factor of ρ2/3. This connection
provides another justification for minimizing Ẽθ for isotropic meshes.



Simple and Effective Variational Optimization 327

4.2 Energy for Volume Preservation

For tetrahedra, the energy for volume preservation is

El =
V 2p

ν2p
+

ν2p

V 2p
(28)

for p > 0. For simplicity, we assume ν is independent of xi. The gradient and Hessian
of El with respect to x0 are

∇x0El =
2p
V

(
V 2p

ν2p
− ν2p

V 2p

)
n0 =

2p
(
V 4p − ν4p

)
ν2pV 1+2p

n0, (29)

∇2
x0

El =
(4p2 − 2p)V 4p + (2p + 4p2)ν4p

ν2pV 2+2p
n0n

T
0 . (30)

As for surfaces, ∇2
x0

El is positive semi-definite if p ≥ 0.5 and all the volumes are
positive. We choose p = 0.5 in practice, which lead to simplified formulas

∇x0El =

(
V 2 − ν2

)
νV 2

n0 and ∇2
x0

El =
2ν
V 3

n0n
T
0 . (31)

Let E be the total energy defined in (6) for tetrahedral meshes. ∇2
xi

E is symmetric
positive definite for any tetrahedral mesh with positive volume, so E is convex locally
at each vertex. To smooth a tetrahedral mesh, it is now a simple matter of plugging in
the above formulas for Eθ and El into Algorithm 1, except that the triangles would be
replaced by the tetrahedra. Regarding to the matrix T in the algorithm, we construct it
from the tangent vectors for the vertices on the boundary but replace T by the identity
matrix for interior vertices.

5 Experimental Study

In this section, we present some experimental results using our methods for static and
dynamic meshes. We report results only for tetrahedral meshes. Because our volume
mesh optimization contains integrated surface mesh optimization, these results are also
representative for surface meshes. To assess the methods, we measure mesh qualities
using the maximum and minimum dihedral angles of tetrahedra. These measures are
intuitive and can capture most bad elements, including slivers.

5.1 Optimizing Static Meshes

For static meshes, we used two meshes of a unit cube generated using GAMBIT of
Fluent/ANSYS Inc., and also meshes of a hand and a dragon from [2], as shown in
Fig. 4. The latter generated the meshes by enhancing some initial meshes through mesh
modification and Laplacian smoothing. We optimized the meshes using conformal op-
timization with fixed boundary, conformal optimization with surface optimization, and
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Fig. 4. Sample test tetrahedral meshes

Table 1. Optimization of tetrahedral meshes

Case #vertices #tets Min and max dihedral angles in degrees
Original Fixed-boundary Conformal Isometric

Cube-1K 1,603 7,417 18.9 / 149.3 22.1 / 141.7 22.1 / 141.7 22.4 / 14.1.3
Cube-10K 10,246 53,068 14.4 / 157.0 19.6 / 152.7 19.6 / 152.7 19.9 / 151.9
Hand-10K 3,144 10,000 7.9 / 164.4 7.9 / 163.5 13.7 / 160.9 13.9 / 160.9

Hand-100K 16,649 99,995 3.6 / 174.6 3.6 / 174.6 6.1 / 171.0 6.4 / 170.8
Dragon-5k 1490 4,999 8.0 / 161.2 8.6 / 160.3 12.1 / 160.3 12.1 / 161.1

Dragon-100k 26,436 100,000 3.4 / 174.7 3.4 / 174.7 4.8 / 171.7 4.8 / 171.7

isometric optimization with surface optimization. In isometric optimization, for each
tetrahedron we used the average volume of its neighbors as the desired volume.

Table 1 shows the quality measures of the initial and optimized meshes. We observe
that the optimization with fixed boundary delivered virtually no improvement for the
hand and dragon meshes. This is likely because the worst mesh qualities are constrained
by the vertices on the boundary. On the other hand, simultaneous surface and volume
mesh optimization improved the dihedral angles in all cases by about 3 to 7.7 degrees.
Furthermore, we observe that isometric optimization produced roughly the same results
as conformal optimization in terms of the dihedral angles while it provides better control
of element sizes and improved the volume ratios by about 50% in our tests.

5.2 Optimizing Moving Meshes

One of the motivating applications of our methods is mesh motion. To demonstrate the
effectiveness for such applications, we compressed the smaller mesh of the unit cube
progressively up to 40% of its dimension along the x direction. We adapted the time
steps to prevent mesh folding and performed up to 10 iterations of mesh smoothing
per time step. Before smoothing, the worst minimum dihedral angle was 0.43◦ and
the maximum was 179.3◦ among all the time steps, which were improved to 18.2◦

and 154.4◦ respectively after smoothing. Fig. 5(a) shows the cross-section view of the
mesh after 40% compression along with the original unit cube. Fig. 5(b) and (c) show
the profiles of the minimum and maximum dihedral angles of the original mesh and
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(a) (b) (c)

Fig. 5. Cross section of cube after 40% compression (a) and profiles of dihedral angles (b-c)

after 10%, 20%, and 40% compressions. Our method delivered high quality meshes
throughout the simulation. Furthermore, our optimized mesh after 10% compression
eevn has a higher quality than the original undeformed mesh.

As another example, we deform a sphere of radius 0.15 centered at (0.5, 0.75, 0.5)
in a velocity field given by

u(x, y, z) = sin2(πx)(sin(2πz)− sin(2πy)), (32)

v(x, y, z) = sin2(πy)(sin(2πx)− sin(2πz)), (33)

w(x, y, z) = sin2(πz)(sin(2πy)− sin(2πx)). (34)

We move the boundary vertices by integrating the velocity using the fourth-order
Runge-Kutta scheme and move the interior vertices by mesh smoothing. Fig. 6(a) shows
the deformed shape of the sphere at t = 0.3. As in the previous example, we constrained
the time steps so that the tetrahedra do not become inverted. We compare our variational
smoothing with Laplacian smoothing. Before smoothing, the worst minimum dihedral
angle was as small as 0.004◦ and the maximum was as large as 179.987◦ among all
the time steps, which were improved to 1.74◦ and 175.66◦ by Laplacian smoothing,
respectively. In contrast, our variational smoothing improved the angles to 5.32◦ and
171.08◦, respectively. Fig. 6(b) and (c) show the histograms of the dihedral angles at
times t = 0.15 and 0.3 along with the original mesh. As we highlighted in the figure,

(a) (b) (c)

Fig. 6. Sphere after moderate deformation (a) and profiles of dihedral angles (b-c)
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Laplacian smoothing produced far more poor-shaped elements than variational smooth-
ing, although both methods produced similar distributions for well-shaped elements. In
this test, our variational smoothing was about twice slower than Laplacian smoothing.
However, it allowed time steps twice as large as those allowed by Laplacian smoothing,
so it can result in a net saving in the total computational time in a dynamic simulation,
where the physics solvers dominate the overall computational cost.

5.3 Comparison of Computational Cost

For tetrahedral meshes, computational cost of mesh smoothing is often a major con-
cern. The most computational intensive steps are the evaluation and differentiation of
the energies. We use the methods in [10], including the block coordinate decent method
and inexact Newton method, as the basis of a comparison. The block coordinate de-
cent method requires 480 floating-point operations (flops) to compute the gradient
and Hessian of the elemental energy with respect to each vertex, which amounts to
480 × 4 = 1920 flops per element. The inexact Newton’s method requires 20% extra
operations. In contrast, our formulas require 312 flops per element to compute the gra-
dient and Hessian of the elemental energy with respect to all its vertices (including 159
multiplications, 142 additions, and 1 power operation), which are more than six times
faster than their counterparts in [10]. In terms of memory requirement, our method re-
quires nine floating-point numbers per vertex, which is nearly an order of magnitude
less than what is required by the inexact Newton’s method. Besides these reductions
in cost, our algorithm is easy to implement, without requiring any sophisticated pack-
ages. Therefore, we consider our algorithm as simple, efficient, and effective, and it is
promising for direct integration into simulation codes.

6 Conclusions and Discussions

In this paper, we presented a new variational method for optimizing surface and volume
meshes. We defined the energy functions based on conformal and isometric mappings
between actual elements with ideal reference elements and derived closed-form for-
mulas for their gradient and Hessian. In addition, we developed a simple and efficient
algorithm for optimizing the surface and volume meshes by minimizing the energies.
We compared our method with some existing methods and demonstrated its effective-
ness for optimizing static and moving meshes.

Our method is not without limitations. First, it requires the input mesh to be valid
(i.e., with no folding). This is not a severe constraint for numerical simulations where
mesh validity is required by other numerical computations. However, it may limit the
applicability of our method for other purposes. This limitation can be alleviated by
applying a mesh untangling procedure, such as in [9]. For future research directions, we
plan to extend our method to optimize quadrilateral meshes and hybrid volume meshes
and extend it to anisotropic mesh optimization.
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