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Abstract. We present a mesh optimization algorithm for adaptively improving the
finite element interpolation of a function of interest. The algorithm minimizes an ob-
jective function by swapping edges and moving nodes. Numerical experiments are per-
formed on model problems. The results illustrate that the mesh optimization algorithm
can reduce the W 1,∞ semi-norm of the interpolation error. For these examples, the L2,
L∞, and H1 norms decreased also.

1 Introduction

Engineering applications often involve solutions with different scales of variations
along different directions. For these problems, recent works have illustrated the
importance of anisotropic mesh adaptation, see [18, 21, 25] and the references
therein. Courty et al. [12] show that meshes aligned with the solution charac-
teristics allow to capture the solution details with fewer nodes than isotropic
meshes. When using anisotropic meshes, they observe second-order convergence
with respect to the number of degrees of freedom for representing a step function
with continuous linear finite elements.

Several techniques exist for anisotropicmesh adaptation.Remeshing approaches
define an anisotropic metric map that governs the generation of a new anisotropic
mesh [1, 12, 18, 21]. Mesh modification techniques (refinement, coarsening, edge
swapping, and node movement) operate locally to adapt the mesh [14, 25]. The
approach followed in this paper is mesh optimization via edge swapping and node
smoothing guided by the minimization of an appropriate objective function.

We can distinguish the objective functions available in the literature into
two major categories. In the first category, the objective functions rely on a
variational formulation or a governing partial differential equation. Examples of
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy under Contract DE-
AC04-94AL85000.
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such objective functions include the energy functional [15, 22, 28] and the least-
squares norm of residuals [27, 29, 31]. For these examples, the exact solution
minimizes the objective function. The functional provides a natural criterion for
the design of computational grids adapted to this solution via node movement
and edge swapping. In the second category, the objective functions rely on re-
covery of derivatives of the function of interest u. This second category is more
function-centric and does not depend on the problem origin (variational formula-
tion or partial differential equation). Typically, the objective function exploits an
approximation to the Hessian matrix of u. Examples of such objective functions
include geometric quality functionals in a transformed space [8, 14, 25] (where
the metric map is built on the Hessian matrix of u) and functionals based on
local interpolation errors [3, 6, 11, 23].

We choose here to focus on an Hessian-based objective function. Defining
an optimization problem independent from a particular engineering application
enables the development of a black box mesh optimization algorithm that can
impact many different simulation groups and packages. Such a strategy has been
implemented successfully in the Mesquite mesh optimization library [24]. Cur-
rently, though, Mesquite does not include an algorithm to adapt a mesh to the
physical solution in an engineering simulation. The present work is a stepping-
stone toward filling this gap.

Several mesh smoothing schemes have been designed to reduce the inter-
polation error. These works differ on how to measure the interpolation er-
ror. When measuring the interpolation error in the L2 norm, the optimization
[3, 8, 10, 11, 14, 25] aims to equidistribute the edge length under some metric map
related to the Hessian matrix of the approximated function. Additional geomet-
ric criteria must be used in conjunction with the edge length criterion, otherwise
inverted elements or sliver tetrahedra may appear. The approach is efficient at
reducing the L2 norm of the error. For many engineering applications, a good
representation of the solution gradient is as important as a good representation
of the solution itself. Unfortunately, a mesh optimized for reducing the L2 norm
of the interpolation error may be inappropriate for representing the gradient of
the solution. Long thin elements are good for linear approximation if we measure
the error in the L2 norm [11, 26]. But such elements can be undesirable when
we look for a good representation of the solution gradient (see [4]). Bank and
Smith [6] (node movement) and Lagüe [23] (edge swapping and node movement)
introduced two mesh optimization algorithms to minimize the H1 norm of the
interpolation error. Their objective functions incorporate naturally a “barrier”
term, which helps prevent elements from becoming degenerate or tangled. To
the best of our knowledge, these two works are the only ones optimizing for the
gradient of the interpolation error.

Other choices of norms are possible. For example, one might consider con-
structing an objective function based on the L∞-norm in order to reduce point-
wise the interpolation error of some physical quantity of interest. Reducing the
L∞-norm of the error does not always guarantee a decrease in the error as mea-
sured by the Lp-norms (p finite), but it provides an upper bound for these error
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norms when the function of interest is smooth. A similar remark holds for the
W 1,∞ and W 1,p norms. By reducing the W 1,∞-norm, we control point values
of the error and its gradient. This control can provide an upper bound for the
W 1,p-norms, like the H1-norm (H1 = W 1,2). Since engineering problems are
often interested in a good representation of the solution gradient at a point, we
here construct an objective function that can lead to a reduction of the W 1,∞

semi-norm of the interpolation error.
To the best of our knowledge, no work has studied the max-norm for the

gradient of the interpolation error. The goal of this paper is to fill this gap and
to assess numerically whether local mesh modification techniques can reduce the
W 1,∞ semi-norm of the linear interpolation error. In Section 2, we motivate and
derive the adaptation algorithm. Starting from the objective function of Bank
and Smith [6], we will present a new algorithm targeting the W 1,∞ semi-norm of
the interpolation error. In Section 3, we study on model problems the capability
of this algorithm to reduce the interpolation error measured in the L2, L∞, H1,
and W 1,∞ norms. Throughout the paper, by mesh optimization, we mean a
combination of edge swapping and node movement.

2 Optimization-Based Adaptation Algorithm

In this section, we describe our approach. Section 2.1 reviews the algorithm
of Bank and Smith [6]. Next, Section 2.2 motivates and derives the new ob-
jective function. Section 2.3 describes the edge swapping and node smoothing
algorithms.

The focus of this paper is on two-dimensional triangular meshes because they
are an important stepping stone toward a practical algorithm. For other meshes
(quadrilateral, tetrahedral, ...), the method may apply but important details
would need to be worked out, like swapping for tetrahedral elements. In our
study, we do not incorporate h-adaptivity via refining or coarsening elements.
Several works have illustrated the importance of combining h-adaptivity with
mesh smoothing to generate adaptively anisotropic meshes (see [6, 12, 25]). In
general, h-adaptivity and mesh smoothing are applied sequentially or in a black-
box mode. We think that our algorithm could be plugged into such an approach.
Most likely, some work would be required in order to get these approaches to
play nicely together.

2.1 Review of the Bank and Smith Algorithm [6]

Given a domain Ω in R
2 and a function u ∈ H1(Ω), Bank and Smith [6] intro-

duced an optimization of node locations to compute approximately

min
T ∈F

∫
Ω

|∇u−∇uL|2 dΩ, (1)

where F is the family of conforming triangulations with fixed number of vertices.
Members of F differ by the positions of the vertices in the mesh and, possibly,
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a finite number of edge flips. uL denotes the continuous piecewise linear nodal
interpolant of u defined on the triangulation T .

Since problem (1) is expensive to solve, Bank and Smith [6] considered

min
T ∈F

∫
Ω

|∇uQ −∇uL|2 dΩ, (2)

where uQ denotes the quadratic interpolant of u on K. They showed that∫
K

|∇uQ −∇uL|2 dK ≈ l21 + l22 + l23
192 |K| s(HK ,K), (3)

where the function s(HK ,K) is defined by

s(HK ,K) = (l21t
T
1 HKt1)2 + (l22t

T
2 HKt2)2 + (l23t

T
3 HKt3)2. (4)

ti is a unit tangent vector for edge i and li is the length of the same edge. HK

is the Hessian matrix for the quadratic interpolant uQ. Their objective function
approximates the squared H1 semi-norm for the linear interpolation error in Ω,∑

K∈T

l21 + l22 + l23
192 |K| s(HK ,K) ≈

∫
Ω

|∇uQ −∇uL|2 dΩ ≈
∫

Ω

|∇u−∇uL|2 dΩ. (5)

In objective function (5), the factor

l21 + l22 + l23
|K|

is proportional to a well-known triangle quality metric [16]. It acts as a “bar-
rier” function that guarantees untangled elements provided the initial mesh is
untangled. Bank and Smith [6] combine a few sweeps of mesh smoothing with
refinement and coarsening. They do not include edge swapping. Numerical ex-
periments by Bank and Xu [7] illustrate reductions for the L2 and H1 interpo-
lation error norms. However, they do not study the point-wise maximum norm.
It is conceivable that the H1-norm of the interpolation error decreases while the
W 1,∞-norm increases.

2.2 New Objective Function

To derive our objective function, we notice that

max
x∈K

|∇u(x)−∇uL(x)|2 ≈ 1
|K|

∫
K

|∇u−∇uL|2 dΩ

when u ∈ H1(Ω) ∩W 1,∞(Ω) and the mesh is fine enough. After exploiting the
result of Bank and Smith (3), we define the local adaptive quality metric µ by

µ(K) =
l21 + l22 + l23

192 |K|2
s(HK ,K) ≈ max

x∈K
|∇uQ(x) −∇uL(x)|2 . (6)
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µ(K) differs from (3) only in that the power of |K| is two instead of one. The
first term in µ(K) still acts as a “barrier” function, but it is no longer a triangle
shape-metric since it is not scale-invariant. A different but related approach to
derive objective functions is used in [20], where we construct objective functions
from upper bounds for the interpolation error.

Bank and Smith did not prove that objective function (5) is convex or has
a unique minimum. To study the convexity of µ(K), we plot level curves for
µ. In Figure 1, the triangle K is composed of two fixed vertices at (0, 0) and
at (1, 0) and a free vertex at (x, y). Two different choices of matrix HK are
presented. When the free vertex gets closer to the horizontal axis, µ(K) increases
highlighting the effect of the barrier function. The choice of matrix HK modifies
the level curves of µ. When HK has both positive and negative eigenvalues, the
contour lines are not convex and, consequently, the function µ is not a convex
function. On the other hand, when the matrix HK is positive definite, the contour
lines are convex.

Fig. 1. Contour lines with HK = diag(1, 1) (left) and HK = diag(1,−1) (right)

In Figure 2, showing contour lines for a local patch of elements, the interior
node is free while the corner nodes are fixed. The plotted isolines are for

max
K1,K2,K3,K4

µ(K), (7)

when the interior node moves in the rectangle. The matrices vary per element
such that

HK2 = HK4 =
[

1 0
0 −3

]
and HK1 = HK3 = 10−2HK2 . (8)

The isolines are not convex.
Convexity of the objective function is fundamental in optimization. If the

optimization algorithm converges to a stationary point of a convex objective
function, then the algorithm has converged to a global minimizer. When the
matrix HK has positive and negative eigenvalues, the function µ is not always
convex. So we prefer to replace the matrix HK with its absolute value and
introduce the function

µ̃(K) =
l21 + l22 + l23

192 |K|2
[(l21t

T
1 |HK | t1)2 + (l22t

T
2 |HK | t2)2 + (l23t

T
3 |HK | t3)2]. (9)
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(0,0)

K1

K2

K3

K4

(4,0)

(4,1)

Fig. 2. Contour lines on a patch of four elements

|HK | is the absolute value of the matrix HK , defined as |HK | = S |Λ|ST where
(S,Λ) are the eigenpairs for the matrix HK and |Λ| is a diagonal matrix with
the absolute values of eigenvalues as diagonal entries. For every vector t, we have(

tTHKt
)2 ≤

(
tT |HK | t

)2
.

So the function µ̃ is an upper bound for the local quality metric µ. Asymptoti-
cally, the function µ̃ is also an upper bound for the max-norm of the gradient of
the interpolation error. We were not able to prove that the function µ̃ is convex.
But our experiments gave convex level curves for this function. For example,
with the matrices HK defined in (8), the isolines for the functional

max
K1,K2,K3,K4

µ̃(K), (10)

are convex (see Figure 3).

Fig. 3. Contour lines for functional (10) on a patch of four elements

Even though µ̃ formally has a “barrier”, the “barrier” term can become very
weak when the matrix |HK | approaches zero. The function µ̃ satisfies

0 ≤ µ̃(K) ≤ ‖HK‖2
2

l21 + l22 + l23

192 |K|2
(
l41 + l42 + l43

)
.

When the matrix HK is exactly zero in a mesh region, the “barrier” term is
canceled for the elements in that region. Then degenerate elements or elements
of infinite size may appear where the function u is linear. When the matrix
HK has a small norm, i.e. when the function u is almost linear, the “barrier”
term will prevent inverted elements. But a small norm for HK can postpone the
impact of the barrier function, i.e. the function µ̃ can remain small even when
the element K becomes flat.

To minimize the interpolation error, the aspect ratio of a triangle aligned with
a function u must depend on the condition number of the Hessian matrix, i.e.
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the ratio of largest over smallest eigenvalues (see [9, 13, 26]). A condition number
of 1 will result in an equilateral triangle. A large condition number will result
in a stretched triangle. To control the level of anisotropy in the optimized mesh,
we modify µ̃ and introduce the function µ̃ε,

µ̃ε(K) =
l21 + l22 + l23

192 |K|2
s(|HK |+ εI,K). (11)

This regularization controls the level of anisotropy in the optimized mesh because
it sets an upper bound on the condition number of |HK |+ εI,

λmax(|HK |+ εI)
λmin(|HK |+ εI)

=
λmax(|HK |) + ε

λmin(|HK |) + ε
≤ 1 +

λmax(|HK |)
ε

. (12)

This upper bound on the condition number will limit the aspect ratios for tri-
angles in the optimized mesh.

The goal of our mesh optimization algorithm is to compute approximately

min
T ∈F

max
K∈T

µ̃ε(K) (13)

via edge swapping and node movement in order to reduce the interpolation error.
The max-norm for the gradient of interpolation error and the function µ̃ε satisfy

max
x∈K

|∇u(x)−∇uL(x)|2 ≈ µ(K) ≤ µ̃(K) ≤ µ̃ε(K). (14)

2.3 Edge Swapping and Node Movement Algorithms

In this section, we describe our algorithm to solve approximately (13). Problem
(13) is a non-smooth optimization problem because the max-value function is
non-differentiable. Such a problem requires special-purpose algorithms (see, for
example, Fletcher [17]). Here we prefer to look for a cheap approximate solu-
tion to the optimization problem and we replace problem (13) by the following
optimization problem

min
T ∈F

∑
K∈T

µ̃ε(K). (15)

The goal of our algorithm is now to compute an approximate solution to (15).
First, we describe our edge swapping algorithm. Figure 4 illustrates the swap-

ping of edge e into edge γ. Note that when edge e is flipped, the surrounding
elements Ke,1 and Ke,2 are replaced with the elements Kγ,1 and Kγ,2. Let Ωe

denote the patch surrounding the edge e such that

Ωe = Ke,1 ∪Ke,2 = Kγ,1 ∪Kγ,2.

Algorithm 1 describes our edge swapping algorithm for problem (15). The
first step is to check that the patch Ωe is convex. When Ωe is not convex, the
flip would generate inverted elements, so the algorithm skips the edge. Then we
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Ke,1

Ke,2

e
Kγ,1

Kγ,2

γ

Fig. 4. Illustration of swapping the edge e into the edge γ

Algorithm 1. Edge Swapping Algorithm:
repeat

for any edge e in the mesh do
if Ωe is not convex then

Skip the edge
end if
Compute µ̃ε(Ke,1) and µ̃ε(Ke,2).
Let γ denote the candidate flipped edge.
Compute µ̃ε(Kγ,1) and µ̃ε(Kγ,2).
if max(µ̃ε(Kγ,1), µ̃ε(Kγ,1)) ≥ max(µ̃ε(Ke,1), µ̃ε(Ke,1)) then

Skip the edge.
end if
if µ̃ε(Kγ,1) + µ̃ε(Kγ,1) ≥ µ̃ε(Ke,1) + µ̃ε(Ke,1) then

Skip the edge.
end if
Perform the edge swapping.

end for
until no edge is flipped.

compare the value of the function µ̃ε on all the four elements. If the maximum
and the sum of µ̃ε over the patch both decrease, then we perform the flipping of
edge e into edge γ. When swapping an edge, the value of the objective function,∑

K∈T µ̃ε(K), varies only for the elements in Ωe. So we perform checks on the
maximum and the sum only over the patch Ωe. These checks arise from the fact
that the algorithm looks for an approximate solution to problem (15) and to the
original problem (13).

A key component of the edge swapping algorithm is the evaluation of µ̃ε on
the four elements. This evaluation requires a matrix |HK | on each element. The
inputs for our mesh optimization algorithm are a non-inverted initial mesh T 0

and, for every vertex V of T 0, a matrix H̃V . The initial mesh will be stored as a
background mesh for the piecewise linear interpolation of the absolute value of
these nodal matrices, Π0({|H̃V |}V ∈T 0). For any point x in element K0 of the
background mesh T 0, we choose

Π0({|H̃V |}V ∈T 0)(x) = |H̃V1 |λ0
V1

(x) + |H̃V2 |λ0
V2

(x) + |H̃V3 |λ0
V3

(x), (16)
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where the vertices V1, V2, and V3 form the element K0 and λ0
V (x) denotes the

barycentric coordinate of x with respect to vertex V in element K0. To evaluate
µ̃ε, we set the matrix |HK | to be

|HK | = Π0({|H̃V |}V ∈T 0)(GK), (17)

where GK is the centroid of element K. Requiring the matrices H̃V as input
of an adaptive scheme is reasonable. Indeed, HK is the Hessian matrix for the
quadratic interpolant, uQ, of u in element K. As uQ is usually unknown, the
discrete Hessian matrix at vertex V is recovered from a discrete solution. Several
nodal-based recovery schemes of Hessian matrix from a discrete solution are
available. Discussing such recovery schemes is outside the scope of this paper.
For further details, we refer to [30] and the references therein.

For the node movement algorithm, an iterative Gauss-Seidel-like method is
used where we sweep through the vertices, locally optimizing the position of a
single vertex while holding all others vertices fixed. Given a vertex V , let ΩV

be the patch of elements sharing V as a vertex. Algorithm 2 describes our node
movement algorithm for problem (15). The first step is to compute the matrices
|HK | for all the elements K. To reduce computational expenses, these matrices
are kept constant during one whole sweep through the mesh vertices. To opti-
mize the position of vertex V , we use the nonlinear conjugate gradient algorithm
CG DESCENT [19] on the objective function,

∑
K∈T µ̃ε(K), viewed as a func-

tion of (xV , yV ). Algorithm CG DESCENT is stopped when the norm of the
gradient of the objective function has been reduced by a factor 10−6, when the
relative change in objective function is smaller than 10−12, or when 100 iterations
have been performed. The barrier term in µ̃ε will keep vertex V in ΩV or in the
subregion of ΩV visible from all points on the boundary of ΩV (when ΩV is not
convex). Moving a vertex V can affect the values of µ̃ε only for the elements hav-
ing V as vertex, i.e. the elements in ΩV . Algorithm CG DESCENT will reduce

Algorithm 2. Node Movement Algorithm:
for iter = 1, · · · , itmax do

Get all the matrices |HK | with formula (17).
Compute the objective function µinit =

∑
K∈T µ̃ε(K).

for any vertex V in the mesh do
Compute the maximum value of µ̃ε on ΩV , µmax,init.
Apply the nonlinear conjugate gradient to move vertex V in ΩV .
Compute the maximum value of µ̃ε on ΩV , µmax,new .
if µmax,new ≥ µmax,init then

Reset vertex V to the latest position.
end if

end for
Compute the objective function µnew =

∑
K∈T µ̃ε(K).

if |µnew − µinit| ≤ tol · µinit then
Stop the iterations.

end if
end for
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the value
∑

K∈ΩV
µ̃ε(K). As the original optimization problem (13) looks at the

maximum value of µ̃ε, we check also the maximum value of µ̃ε on ΩV . When
the movement of vertex V creates an increase, we do not perform the movement
and set vertex V to its latest position. Finally, we stop sweeping through ver-
tices when the relative change in objective function is smaller than a tolerance,
tol, or when a maximal number of iterations has been reached. For boundary
vertices, we apply the same algorithm, but with appropriate constraints to keep
the vertex on the boundary.

Several choices are available to combine the edge swapping and the node
smoothing algorithms. In the following section, we will study on model problems
how to combine these two algorithms.

3 Numerical Experiments

In this section, numerical experiments on model problems are presented to il-
lustrate the mesh optimization algorithm. The goal is to assess whether the
algorithm can reduce the interpolation error or not. The meshes are adapted to
three given analytical functions with different anisotropic features, so that we
can compute exactly the interpolation error. We do not use a realistic engineering
problem because the exact solution would not be known.

The inputs for the mesh optimization algorithm are a non-inverted initial mesh
and Hessian matrices at the vertices of the initial mesh. The input matrices at the
vertices are computed with the analytical expression of the function to separate
the potential error reduction, due to the mesh algorithm, from the effect of a
Hessian recovery operator.

3.1 Experiment on the Regularization Parameter

For the first test case, only the node movement algorithm is used. Based on a scal-
ing argument via (12), the regularization parameter ε is set to σ maxV ∈T 0 ‖H̃V ‖2,
where σ is a parameter in [0, 1]. We compare numerically the effect of σ on the
optimization algorithm.

The first function u is given by

u(x, y) = exp
[
−100(x− 1

2
)2 − 100(y − 1

2
)2
]

(18)

in the domain Ω = (0, 1)× (0, 1). The Gaussian function u is symmetric, decays
rapidly to zero, and exhibits a large region where it is flat and where the norm∥∥D2u(x)

∥∥
F

is small. The function has no anisotropy in it. Figure 5 illustrates the
initial uniform structured mesh with 32 elements per direction and the contour
of function (18).

Table 1 lists the norms of interpolation error on the initial mesh and af-
ter optimization via node movement, when σ varies. The interpolation error
norms decrease after optimization. Except for the L2-norm, the decrease is al-
most monotone with σ. For the W 1,∞ norm, the reduction of interpolation error
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Fig. 5. Initial structured mesh (left) — Contour for function (18) (right)

Table 1. Evolution of interpolation error for function (18) as a function of σ

‖u − uL‖L2 ‖u − uL‖H1 ‖u − uL‖L∞ ‖u − uL‖W1,∞ ‖AK‖F

∥∥A−1
K

∥∥
F

Initial 3.28 × 10−3 3.52 × 10−1 3.80 × 10−2 2.40 [2, 3]

σ = 10−2 0.80 × 10−3 1.57 × 10−1 1.24 × 10−2 1.67 [2, 10]

σ = 10−4 1.63 × 10−3 1.43 × 10−1 1.01 × 10−2 1.53 [2, 69]

σ = 10−8 1.52 × 10−3 1.42 × 10−1 0.98 × 10−2 1.51 [2, 560]

σ = 0.0 1.52 × 10−3 1.43 × 10−1 1.00 × 10−2 1.52 [2, 567]

is between 30% and 37%. The other norms are reduced by at least 50%. Table 1
also lists the range for condition number of AK . We recall that AK is the Jaco-
bian matrix for mapping the unit right-angled triangle to the physical triangle
K. The range of the condition numbers increase when σ gets smaller, indicating
that some elements become more anisotropic.

Figure 6 describes the optimized meshes for σ = 10−2 and σ = 10−4. When∥∥D2u(x)
∥∥

F
is large, small isotropic elements are created. In the region where∥∥D2u(x)

∥∥
F

is small, the mesh optimization allows flat or stretched elements as
these elements do not increase the interpolation error.

Function (18) has no anisotropic feature. Therefore, anisotropic elements are
not needed to represent this function. The optimized meshes contain anisotropic
elements because of the flatness of u, the boundary constraints, and the fixed

Fig. 6. Optimized meshes for (18) with σ = 10−2 (left) and σ = 10−4 (right)
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topology. In order to reduce the error, the optimization gathers nodes in the
regions that matter. In those regions, the mesh is notably isotropic. Elsewhere,
the function is almost linear and anisotropic elements do not cause the error to
increase. The regularization controls here the degree of anisotropy at the expense
of a slight increase in the error.

3.2 Experiments on Combining Swapping and Smoothing

For the second series of tests, we combine edge swapping and node smoothing and
compare numerically different combinations for the mesh optimization algorithm.
In the following, the letter E denotes one call to Algorithm 1 and the letter N
one call to Algorithm 2.

Table 2. Evolution of interpolation error for function (18) with σ = 10−2

‖u − uL‖L2 ‖u − uL‖H1 ‖u − uL‖L∞ ‖u − uL‖W1,∞ ‖AK‖F

∥∥A−1
K

∥∥
F

Initial 3.28 × 10−3 3.52 × 10−1 3.80 × 10−2 2.40 [2, 3]

N 0.804 × 10−3 1.57 × 10−1 1.24 × 10−2 1.67 [2, 10]

(N, E, N) 0.702 × 10−4 1.36 × 10−1 0.986 × 10−2 1.51 [2, 8.1]

E 2.71 × 10−3 2.98 × 10−1 3.79 × 10−2 2.40 [2, 3]

(E, N) 1.57 × 10−3 2.37 × 10−1 2.23 × 10−2 2.16 [2, 5]

σ is set at 10−2. Table 2 lists the interpolation error norms with different
combinations of edge swapping and node movement for function (18). All the in-
terpolation error norms decrease after optimization. The combination (N,E,N)
gives the smallest error norms. The W 1,∞ norm is reduced by 37%, the H1 norm
by 55%, the L2 norm by 78%, and the L∞ norm by 67%. The W 1,∞ error in
Table 1 corresponding to Figure 6 (right) is nearly the same as the error in Ta-
ble 2 corresponding to Figure 7 (left). Therefore, one can achieve the same error
level with a lot less mesh anisotropy by adding the ability to swap edges to the
adaptive algorithm.

Figure 7 plots the optimized meshes for the Gaussian function (18) with the
combinations (N,E,N) and (E,N). The meshes are visually different from the
optimized mesh with node movement only (see Figure 6). For this function and
this initial mesh, starting with edge swapping creates a mesh topology that
prevents outer vertices to gather in the middle of the mesh. This behavior limits
the error reduction in comparison to combinations starting with node movement.

In the subsequent experiments, we use a heuristic formula to set the regular-
ization parameter ε. We choose ε to be

ε = σ0 max
V ∈T 0

‖H̃V ‖2 and σ0 =
1

100 maxK0∈T 0 ‖AK0‖F

∥∥A−1
K0

∥∥
F

. (19)

In this formula, the constant σ0 depends only on the initial mesh T 0.
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Fig. 7. Optimized meshes for (18) with (N, E, N) (left) and (E, N) (right)

The next function, from Huang [21], is given by

u(x, y) = tanh(24y)− tanh
[
24

(
x− y − 1

2

)]
(20)

in the domain Ω = (0, 1) × (0, 1). This function simulates the interaction of a
boundary layer (along the line y = 0) with an oblique shock wave (along the
line y = x − 1/2). Figure 8 illustrates the initial unstructured mesh with 1002
vertices and 2006 elements and the surface defined by function (20). Based on
(19), this initial mesh results in σ0 to be 1/420.

Fig. 8. Initial unstructured mesh (left) – Contour surface for function (20) (right)

Table 3 lists the interpolation error norms on the optimized mesh with differ-
ent combinations of edge swapping and node smoothing. All the interpolation
error norms decrease with more levels of optimization. Combining edge swap-
ping and node movement results in smaller error norms than using only the edge
swapping or only the node movement. Combinations starting with node move-
ment produce larger reduction in error norms than the ones starting with edge
swapping. After the combinations (N,E,N) and (E,N), adding more cycles of
edge swapping and node smoothing does not reduce significantly the interpola-
tion error. The combination (N,E,N) reduces the W 1,∞ norm by 37% and the
other norms by at least 63%. It reduces the error more than the combination
(E,N) and exhibits a larger condition number range, indicating that anisotropic
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Table 3. Evolution of interpolation error for function (20) for σ0 = 1/420

‖u − uL‖L2 ‖u − uL‖H1 ‖u − uL‖L∞ ‖u − uL‖W1,∞ ‖AK‖F

∥∥A−1
K

∥∥
F

Initial 1.72 × 10−2 1.74 1.75 × 10−1 15.17 [2, 4.2]

N 0.655 × 10−2 0.755 0.575 × 10−1 9.56 [2, 28.0]

(N, E, N) 0.471 × 10−2 0.628 0.575 × 10−1 9.56 [2, 28.5]

(N, (E, N)2) 0.467 × 10−2 0.620 0.575 × 10−1 9.56 [2, 28.4]

(N, (E, N)3) 0.459 × 10−2 0.619 0.575 × 10−1 9.56 [2, 28.1]

E 0.933 × 10−2 1.11 1.48 × 10−1 15.17 [2, 23.4]

(E, N) 0.538 × 10−2 0.78 0.902 × 10−1 11.37 [2, 18.0]

(E, N)2 0.525 × 10−2 0.762 0.902 × 10−1 11.37 [2, 23.2]

(E, N)3 0.524 × 10−2 0.759 0.902 × 10−1 11.37 [2, 24.7]

Fig. 9. Optimized meshes for (20) with (N, E, N) (left) and (E, N) (right)

elements help reducing the error. Figure 9 illustrates the optimized meshes for
the combinations (N,E,N) and (E,N). Starting with edge swapping creates a
mesh topology that prevents vertices to gather along the anisotropic features of
function (20).

Finally, we study the function from [2]

u(x, y) = sin
[
5(2x− 1.2)3(4y2 − 6y + 3)

]
. (21)

The initial mesh was generated by the code BAMG of Hecht [5] and it is pre-
adapted to function (21) so that the relative L∞-norm of the interpolation error
is smaller than 5 %. The mesh contains 3173 vertices and 5962 elements. Based
on (19), this initial mesh results in σ0 to be 1/73520. The value of σ0 is smaller
because the pre-adapted initial mesh contains stretched elements. Figure 10 il-
lustrates the initial pre-adapted mesh and the contour for function (21). Table 4
lists the interpolation error norms on the optimized mesh with different combi-
nations of edge swapping and node smoothing. All the interpolation error norms
decrease after optimization. For this function and this initial mesh, the H1 and
W 1,∞ norms are more reduced when the mesh optimization starts with node
movement. For the L2 and L∞ norms, it is better to start with edge swapping.
The combination (N,E,N) decreases the W 1,∞ norm by 53% and the other
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Fig. 10. Initial mesh pre-adapted for (21) (left) – Contour surface for (21) (right)

Table 4. Evolution of interpolation error for function (21) for σ0 = 1/73520

‖u − uL‖L2 ‖u − uL‖H1 ‖u − uL‖L∞ ‖u − uL‖W1,∞ ‖AK‖F

∥∥A−1
K

∥∥
F

Initial 6.15 × 10−3 1.67 3.85 × 10−2 31.73 [2, 735.2]

N 5.19 × 10−3 1.29 3.05 × 10−2 17.49 [2, 430]

(N, E,N) 4.98 × 10−3 1.04 3.05 × 10−2 14.85 [2, 67.5]

(N, (E, N)2) 4.94 × 10−3 0.99 3.05 × 10−2 14.24 [2, 54.65]

E 5.57 × 10−3 1.31 2.92 × 10−2 22.58 [2, 168]

(E, N) 4.83 × 10−3 1.07 2.22 × 10−2 17.24 [2, 52.8]

(E, N)2 4.67 × 10−3 1.01 2.20 × 10−2 17.24 [2, 61.3]

norms by at least 19%. The combination (E,N) reduces the W 1,∞ norm by
45% and the other norms by at least 21%. In comparison with the previous
experiments, it is notable that even when the initial mesh is pre-adapted, our
algorithm can still make worthwhile reductions in the error. Figure 11 plots the
optimized meshes for the combinations (N,E,N) and (E,N).

Based on these experiments, we can draw the following conclusions. Combin-
ing edge swapping and node movement results in smaller error norms than using
only the edge swapping or only the node movement. The edge swapping should

Fig. 11. Optimized meshes for (21) with (N, E, N) (left) and (E, N) (right)
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be followed by node smoothing to benefit from the topology changes. When the
initial mesh is not pre-adapted, it seems important to move the nodes before
swapping any edge. The combination (N,E,N) is usually a good combination.

4 Conclusion

An optimization-based mesh adaptation algorithm has been presented. It com-
bines edge swapping and node movement to minimize an objective function. The
mesh adaptation algorithm exploits information from a discrete Hessian matrix.
The objective function is based on the Bank and Smith [6] formula for the H1

semi-norm of the linear interpolation error. In this formula, we replace the Hes-
sian matrix for the quadratic interpolant of the fonction of interest u with a
symmetric definite positive approximation. The objective function contains nat-
urally a “barrier” term to ensure that starting from a mesh without inverted
elements, the resulting mesh will not contain any inverted elements.

On model problems, we illustrated numerically that the algorithm can dimin-
ish the W 1,∞ semi-norm of the interpolation error. This decrease is gratifying
because our objective function is only asymptotically an upper bound to the
W 1,∞ semi-norm of the interpolation error. In our numerical experiments, the
reduction in the W 1,∞ semi-norm is accompanied by a decrease in the L∞, L2,
and H1 norms. The amount of decrease is problem-dependent. However, when
the initial mesh is already appropriate to represent the function of interest, the
decrease can be limited. When the initial mesh is not aligned with the func-
tion, the algorithm computes a better mesh topology and node distribution to
represent the function. Then the reduction of the error norm can be significant.

A limitation of the algorithm is the lack of guarantee that all the error norms
will always decrease. Report [20] contains a numerical experiment where some
norms increase after optimization. Without more knowledge about the function
of interest (like a governing partial differential equation for engineering applica-
tions), we are not aware of any algorithm with such a guarantee. The focus of this
paper is on triangular two-dimensional meshes. For other situations (quadrilat-
eral element, three-dimensional meshes), we expect that our approach will apply
as well. However, important details remain to be worked out. Future directions
for this work include the coupling with a recovery operator for the Hessian ma-
trix, an efficient implementation into the Mesquite library [24], the extension to
multiple dependent variables, and the use of quantities of interest for defining
the objective function.
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pour l’adaptation de maillage. Partie II: exemples d’applications. Technical Report
4789, INRIA (2003)



A Mesh Optimization Algorithm to Decrease the Maximum Error 549

3. Apel, T., Berzins, M., Jimack, P., Kunert, G., Plaks, A., Tsukerman, I., Walkley,
M.: Mesh shape and anisotropic elements: Theory and practice. In: The Mathe-
matics of Finite Elements and Applications X, pp. 367–376. Elsevier, Amsterdam
(2000)
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