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Abstract. The mesh adaptation is a classical method for accelerating and improving
the PDE finite element computation. Two tools are generally used: the metric [10] to
define the mesh size and the error indicator to know if the solution is accurate enough.

A lot of algorithms used to generate adapted meshes suitable for a PDE numerical
solution for instance [15, 1] for discrete metrics, or [15, 2] for the continuous one, use
those tools for the local specification of the mesh size.

Lot of PDE softwares like Freefem++ [14] use metrics to build meshes, the edges
sizes of which are equal with respect to the metric field. The construction of metrics
from the hessian matrix [16, 18, 13] is only justify for the piecewise linear Lagrange
finite element.

So there is the problem of metric generation when we have another interpolation
error estimator [6, 11] that could be used for instance when the Lagrange interpolation
needed is a k degree polynomial, k > 1.

To answer that question, we propose in this paper an algorithm whose complexity
is quasi-linear, in two spacial dimensions; assuming that the error is locally described
by a closed curve representing the error level set. Some efficient numerical examples
are given. This algorithm allows us to obtain the analytical metric [1], when the error
indicator is based on the hessian matrix.

We have also done one comparison in the software Freefem++ of mesh adaptation
with metrics computed using this algorithm with respect to the interpolation error
estimation described in [11], and the method with metrics based on the hessian. The
results seem to be better for the maximal error.

1 Introduction

We suppose once a metric field on a mesh is known, we can built an adapted mesh
for that metric field [8, chap 21.4], [12, chap 20.3]. If we know the metric value
on each vertex of the mesh for example, the method described in [12] modify the
mesh by evaluating each edge length in the metric field (control space) using an
interpolation of the metrics defined on the two vertices of the edge. When an edge
length exceeds the ”unity”, a subdivision of that edge is done in the control space.
This method is used in the software Freefem++ with the mesh generator Bamg [9]

Thanks to Cea lemma, the approximation error is upper bounded by the
interpolation error. So our problem is posed for the interpolation error, we’ll use
the recent results described in [11] which aim to bound the interpolation error
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of a function on a simplex with the norm of a vector inside a metric given by
the D(l) derivative of the function.

We suppose that we know an estimation of the local interpolation error of a
function on a 2D mesh around a vertex P in each direction ξ given by a function,
and we want to dispose the points M of the triangulation around P such that
the local interpolation error should be satisfy.

Let Ep(ξ) be an estimation of the interpolation error in the direction of the
vector ξ. If the mesh size is less than or equal to ‖ξ‖ in the direction of ξ then
the interpolation error will be less than Ep(ξ). We want to have locally

|Ep(ξ)| ≤ E ; ξ ∈ R
2. (1)

The previous inequality represents an area bounded by the level set

|Ep(ξ)| = E .

Dispose the points M of the triangulation around the vertex P as close as
possible to the level set while being inside the area delimited by that level set
is equivalent to say that the interpolation error evaluated at each vertex of the
triangulation going from the vertex P is less than or equal to its value on the
level set. If we want to have a mesh whose edges are equal with respect to a
metric field, i.e all the points M are equi-distant from P in a local metric M, so
they belong to the unit ball of the metric M; the biggest as possible that could
be contained inside the closed line described by equation (1).

Let us find a metric prescribing the mesh size around that vertex P such
as the triangles vertices should be close as possible to the level set while being
inside the area delimited by that level set. How to build that metric?

In the following, after introducing shortly the results of [11] and the met-
ric notion, [15, 10, 1], we formulate the optimization problem that goes with
and it resolution algorithm. Then we’ll explain the algebraic consequences of
the obtained equations in the third section. The fourth section talk about our
algorithm convergence and complexity and some illustrating figures. The last
section before concluding explains shortly the analytic metric obtainability from
the hessian matrix, that our method allows to approach. We also give in that
section an example of mesh adaptation for a function with metrics generated
by our algorithm with respect to the local interpolation error of [11], and we
compare the results obtained with mesh adaptation using metrics based on the
hessian matrix, both of them done with the software Freefem++.

2 Definitions

We use the notations [3, Chap. VII], which are introduced in the books [7] [5,
chap II].

• x = (x1, . . . , xd) ∈ R
d, Sphere Sd = {x ∈ R

d; ||x|| = 1},
• D(�)u is the the derivative of u of order � so if u is a real function, we have

D(0)u = u.
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• B⊗� : (ξ1, ..., ξ�) �→ (Bξ1, ..., Bξ�)
• W �,p(K) is the set of functions of Lp(K) such that all the partial derivatives

of order ≤ � are in Lp(K).
• |u|W �,p(K) = (

∫
K

∑
α∈[1..d]� |∂αu|p) 1

p

• Let F be an affine application of R
d with values in R

d,

||D(k)(v ◦ F )||Lp(K) ≤ ||D(1)F ||k||D(k)v||Lp(F (K))

d is the space dimension , K is a d-simplex (triangle if d = 2, or tetrahedron if
d = 3), hK the diameter of K and ρK the diameter of its inscribed ball, |K| the
measure of K and |∂K| the measure the border of K.

Definition 1 ( d-simplex finite element of degree k)
A finite element (K, PK , ΣK) will be called d-simplex of degree k, if K is a
d-simplex and if Pk(K) ⊂ PK where Pk(K) is the set of polynomials P [Rd]
restricted to K of degree less than or equal to k. Let Ik

K be the interpolation
operator with values in PK and which keep unchanged the polynomials of Pk(K),
i.e if u ∈ Pk(K), then u = Ik

Ku.

Definition 2 (reference element)
The reference element is a regular d-simplex denoted K̂, chosen with the size 1.

Let FK be the affine transformation such that K = FK(K̂), we denote: BK the
linear part of FK which corresponds to the derivate of FK ; and det(BK) the
determinant of BK which is the Jacobian of FK .

The size hK,ξ of an element K in the direction ξ, the size of the edges in the
direction ξ of that edge. ||B−1

K ||−1 is the smallest size of the element denoted
h−

K = infξ∈Sd
hK,ξ. This element size can be represented by an ellipse associated

to the “natural” metric of the element introduced in [17, 4].
Let u be a real function of K, we define its corresponding function
û = u ◦ FK on K̂. We have

x = FK(x̂), û(x̂) = u(x), u = û ◦ F−1
K .

A finite element K is affine-equivalent if it has the following property

Îk
Ku = Ik

K̂
û.

Main Result
For any finite element (K, PK , ΣK) of definition 1 satisfying the previous prop-
erty, with an associated metric MK ; let u be a function. For all integer
� ∈ [0..k + 1] and for all (p, q) ∈ [1,∞]2 such that W �,p(K) be included in
C0(K) and u ∈ W �,p(K). If it exists a real constant κ ∈ R such that

||(D(�)u)(ξ, ..., ξ)||Lp(K) ≤ κ ||ξ||�MK
(h−

K)� = κ (ξ,MKξ)
�
2 (h−

K)�, (2)

then we have
||u − Ik

Ku||Lq(K) ≤ κC |K|
1
q−

1
p (h−

K)�,

where C is a real positive constant depending only on d, �, p, q.
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And if W �,p(K) ⊂ W 1,q(K) then we have

|u − Ik
Ku|W 1,q(K) ≤ κC |K| 1q− 1

p (h−
K)�−1,

with C positive constant depending only on d, �, p, q.

Definition 3. A constant metric M of R
2 is a symmetric matrix positively def-

inite that allows to define a distance in the euclidian metric space R
2.

In fact the scalar product of two vectors
−→
X and

−→
Y under the metric space R

2 is
defined as: [8]

〈−→X,
−→
Y 〉M =

t−→
XM−→

Y ∈ R.

The euclidian norm of a vector
−−→
AB or the distance between the points A and

B for the metric M is defined by:

dM(A, B) = ‖−−→AB‖M =

√
t−−→
ABM−−→

AB.

There is the situation for which the metric is non constant but continuous. In
this case we have a metric field M(X) defined in each point X of the space. In
this case, the norm of a vector

−−→
AB is given by

dM(A, B) = ‖−−→AB‖M =

1∫
0

√
t−−→
ABM(A + t

−−→
AB)

−−→
ABdt.

A metric M can be represented by it unit ball [1], The unit ball under the
metric M defined at the vertex P is the set of points M that satisfies:

‖−−→PM‖M =

√
t−−→
PMM−−→

PM = 1.

Let us consider M =

⎛⎝a c
2

c
2 b

⎞⎠ a > 0, b > 0, 4ab−c2 > 0; P (xp, yp); M(x, y).

‖−−→PM‖2
M = 1 ⇐⇒ a(x − x0)2 + c(x − x0)(y − y0) + b(y − y0)2 = 1.

By writing

a =
cos θ2

α2 +
sin θ2

β2 ; b =
cos θ2

β2 +
sin θ2

α2 ; c = sin 2θ

(
1
α2 − 1

β2

)
; (3)

which are bounded by:
1
α2 ≤ a ≤ 1

β2 ;
1
α2 ≤ b ≤ 1

β2 ;
1
α2 − 1

β2 ≤ c ≤ 1
β2 − 1

α2 ; (4)

we obtain:
((x − x0) cos θ + (y − y0) sin θ)2

α2
+

((y − y0) cos θ − (x − x0) sin θ)2

β2
= 1,

which is an ellipse equation centered at P with semi-axes of length α > 0 and
β > 0; α ≥ β; where θ is the angle between the major axis and the abscises axis
of the R

2 canonic base.



Metric Generation for a Given Error Estimation 573

3 The Problem Description

We do not take care of the different norms used and the different constants of
equation (2). We consider that

|Ep(ξ)| = ||(D(�)u)(ξ, ..., ξ)||(K). (5)

We want to find a local metric M such that the right member of (2) should
be closed to E in (1).

Let F (x, y) be Ep(ξ). Our problem becomes drawing an ellipse that have the
maximum area centered at P contained inside that given error curve or finding
the parameters α , β and θ of that ellipse.

Let us consider α1 = 1
α2 and α2 = 1

β2 , we obtain from (3)

α2 =

√
(a − b)2 + c2 + (a + b)

2
; α1 =

−
√

(a − b)2 + c2 + (a + b)
2

.

Maximizing the ellipse area, the parameters of which are α; β; θ is the same as
maximizing αβ or minimizing α1α2 which is equivalent to minimize (4ab − c2).

We look at the problem in a numerical point of view and suppose that the
vertex P is at the origin.

Let us consider a discretization of our curve with n points Mi of position
(xi, yi). We have to find three reals a, b and c that minimize (4ab− c2) under the
constraints ⎧⎨⎩

a > 0, b > 0,
ax2

i + by2
i + cxiyi ≥ 1, 0 ≤ i ≤ n − 1,

4ab > c2.

Without “good” properties of the minimization function (convexity, quasi-
convexity), we didn’t find any algorithm that guarantees a global minimum;
although it exists because the linear constraints form a close set. The resolution
of this problem in this form need the construction of the constraints polyhedron
where we’ll find the minimum. As (a, b, c) ∈ R

3 the resolution algorithm will be
O(n3) complexity in the best case; but it is very cheap inside an a mesh adapta-
tion process. To reduce that cost we propose to solve an approximated problem
whose algorithm will be O(nk) ; k ≤ 2 complexity.

Let us consider two real non negative numbers ε0 and ε close to zero, let us
call M0 the point of the error curve the most closed to the origin P of our ellipse,
and Mi another point of that error curve. Then we find an ellipse that have the
maximal area. Let ε0 be the distance between that ellipse and M0, and let ε be
the distance between that ellipse and Mi (figure 1). The distance between the
ellipse and a point Mj of the error curve will be consider as the distance between
Mj and the intersection point of the vector

−−−→
MjP and the ellipse. Let us consider

a point X of the ellipse on the segment [P, Mi] such that ‖−−−→MiX‖ = ε, the value
of X is (1 − ε

‖Xi‖)Xi. let us consider ri = ‖Xi‖.
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error curve

   ellipse

−2
 0  1  2  3−2

 3

 2

 1

 0

−1

−1

M0

P

Mi

ε

ε0

Fig. 1. Parameters

Our problem becomes:

Find three real numbers a, b and c that minimize (4ab − c2) under the con-
straints ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a > 0, b > 0,

ax2
0 + by2

0 + cx0y0 =
(

r0
r0 − ε0

)2

,

ax2
i + by2

i + cxiyi =
(

ri
ri − ε

)2

, 1 ≤ i ≤ n − 1,

ax2
k + by2

k + cxkyk ≥ 1, 1 ≤ k ≤ n − 1, k �= i,
4ab > c2.

(6)

Numerically, the constraint 4ab > c2 need a threshold T > 0 for which a
solution of 4ab − c2 − T will be consider as a minimizer of 4ab − c2.

Minimization of 4ab − c2.
Let us call Rmax the euclidian norm of the error point of the curve the most far
away from it center P ; we obtain:

T =
(

2
Rmax(r0 − ε0)

)2

4 Algebraic Resolution

Let us examine the two equations of system (6)
If x0 = 0, then b = 1

(|y0| − ε0)
2 .

• If xi = 0, then b = 1
(|yi| − ε)2

so we must have

ε = |yi| − |y0| + ε0. (7)
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• If yi = 0 and yk = 0, we must have

ε ≥ |xi| − |xk|. (8)

• If xiy0 − yix0 = 0 and xi �= 0, we must have in this case

ε = ri

(
1 − x0(r0 − ε0)

xir0

)
. (9)

Remark. We observe that if one coefficient of system (6) equal zero or if the
points Mi, M0 and the origin P are aligned, the choice of the parameters ε (or ε0
in some cases) is not arbitrary. Those parameters should satisfy (7), (8) or (9)
for the previous cases, but it will add new constraints to the problem and will
not allow the precision we want.

The points representing those coefficients, when they equal zero, are almost
four (the four halve-axes). They will be turn out of the axes with a small angle
and also the eventually point on the axe (P, M0). Doing that will not sensitively
modify the problem neither its solution. We will consider that x0, xi, xk, y0, yi, yk

are all not zero for all i and for all k, and that xiy0 − yix0 is not zero for all i.
From both two equations of system (6), we extract c and a as a function of b.

Let us write:

∆ =
xi

x0(xiy0 − x0yi)

(
r0

r0 − ε0

)2

− x0

xi(xiy0 − x0yi)

(
ri

ri − ε

)2

;

γ = − yi

x0(xiy0 − x0yi)

(
r0

r0 − ε0

)2

+
y0

xi(xiy0 − x0yi)

(
ri

ri − ε

)2

;

τ =
yiy0

xix0
; λ =

x0yi + y0xi

xix0
; βk = y2

k + x2
kτ − xkykλ;

Ck = 1 − xk(ykxi − yixk)
x0(xiy0 − x0yi)

(
r0

r0 − ε0

)2

+
xk(ykx0 − xky0)
xi(xiy0 − x0yi)

(
ri

ri − ε

)2

;

then,
c = ∆ − λb; a = γ + τb.

The inequality before the last one of (6) becomes

βkb ≥ Ck, 1 ≤ k ≤ n − 1; k �= i. (10)

So the function to minimize becomes

G(b) = (4τ − λ2)b2 + 2(2γ + λ∆)b − ∆2 − T ,

the roots of which are

b1 =
(

1
xiy0 − x0yi

)2
[(

x0ri

ri − ε

)2

+
(

xir0

r0 − ε0

)2

+ D
]

;
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b2 =
(

1
xiy0 − x0yi

)2
[(

x0ri

ri − ε

)2

+
(

xir0

r0 − ε0

)2

−D
]

;

where

D =
2|xix0|

(r0 − ε0)

√(
rir0

ri − ε

)2

+
(

x0yi − y0xi

Rmax

)2

.

The inequalities (4), (10) and the following bounds

(r0 − ε0)2

Rmax
≤ β ≤ r0 − ε0 ≤ α ≤ Rmax,

gives bmin and bmax such that b ∈ [bmin, bmax]. So, we will compare G(bmin)
and G(bmax) to determine the value of b that minimize G.

5 Numerical Resolution

The algorithm consists in:

• Discretizing the error curve around the vertex P into n points, determining
the point M0 of the curve which is the most closed to the origin P and the
point Mmax of the curve which is the most far away from P ;

• moving out the points on the axes and also the point which is eventually
aligned with M0 and the origin;

• for all fixed Mi, switching the constraints for all the Mk (k �= 0; k �= i) and
determining the optimal values of a, b and c.

5.1 Algorithm Order

This algorithm is globally quasi-linear because for each fixed Mi only one (the
first) unsatisfied constraint on the Mk implies an interruption of the Mk’s loop
and switch to the next Mi+1(when the distance between a point of the error curve
and the ellipse is greater than ε, that point will not satisfy any constraints). The
points that satisfy the constraints are only those in the regions where the ellipse
is tangent to the error curve, and their number is few. The only case where for
each fixed Mi we go trough all the Mk is the case where the error curve is already
an ellipse and in this case the algorithm order is O(n2). But if the error curve
is already an ellipse, we don’t need this algorithm.

5.2 Convergence of the Approximation

It is natural to think that M0 will not be the point of the error curve that is the
most far away from the ellipse. So we can find ε0 for which the solution of our
approach problem converges to the optimal solution.

We can have an upper bound of ε0:

The disc area of radius r0 is less than the ellipse area of parameters r0−ε0 and
Rmax so, ε0 < r0

(
1 − r0

Rmax

)
. Although we don’t have any absolute criteria of
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Fig. 2. An ellipse of parameters θ = π
4 , α = 3, β = 2, n = 159; left: ε0 = 10−1; right:

ε0 = 10−4
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Fig. 3. left: E = 59, ε0 opt. = 10−5, n = 285, F (x, y) = −0.2y3x2 − yx4 +
0.2y3 − 9x3 − 0.5xy2 + 0.005x2 − 0.1y2, right: F (x, y) = 0.05x2 − 0.01y2 + 0.05xy, E =
1, ε0 opt. = 0.001, n = 304

choosing ε0, when changing its values within a few iterations (one dozen) inside
the code between 10−5 and it upper bound, we optimize the approximation (see
figures 2, 3).

6 Validation

When solving numerically a partial differential equation with piece wise linear
Lagrange finite element, one can use the hessian matrix of the function to ap-
proach as error estimator to generate adapted meshes [1].

As the hessian matrix H is a symmetric matrix, it absolute value define bellow
when invertible is positive semi definite so it can be used to define a metric.

|H| = R|Λ|R−1,

where |Λ| is the diagonal matrix formed by the absolute value of the eigenvalues
and R the matrix of the eigenvectors of H. When H is not invertible, the zero
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eigenvalue is replaced by 1
h2

max
, where hmax is the maximal authorized edge size

in the mesh.

6.1 Some Examples

When applying our algorithm in some cases with

F (x, y) = 〈(x, y),H · (x, y)〉,

we obtain comparative results with the metric given by the absolute value of H
(analytical) figures 4 and 5.

In the example of figure 4 for the case H invertible, one can observe that the
obtained ellipse is closed to the analytical one when the number n of discretiza-
tion points is enough, which equation in that example is

x2 + y2 + xy = 1.

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1  0  1  2  3

error curve 
approximated ellipse

analytical ellipse
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 3

 4

-3 -2 -1  0  1  2  3

error curve 
approximated ellipse

analytical ellipse

Fig. 4. E = 1; F (x, y) = 0.5x2 + 0.5y2 + 2xy; left: n = 228; right: n = 288
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 1
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 3

 4

-3 -2 -1  0  1  2  3

error curve 
approximated ellipse

analytical ellipse

Fig. 5. E = 1; n = 234 F (x, y) = x2 + y2 − 2xy
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The example of figure 5 show the case H non invertible where hmax have been
arbitrary chosen in the analytical case which equation in that example is

0.5
(

(
1

h2
max

+ 2)(x2 + y2) + 2(
1

h2
max

− 2)xy

)
= 1.
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We just need to variate the value of hmax to coincide with the approached
solution.

6.2 Test with Freefem++

This algorithm have been implemented into Freefem++ and we present the
obtained results when doing mesh adaptation for a function, in the following
code.

In that code, the error function is given by the third derivates of the function
f . That error function is written as an homogenous third degree polynomial of
the coordinates of the local unit ball, as it’s shown in [11]. We use our algorithm
with E = 1, to compute the metric on each vertex of the mesh, and the mesh is
adapted with the obtained metric in the first loop. In the code, the parameters

Fig. 6. Adapted meshes for the maximal error level around 10−5, cc=10, coef=10,
metrics computed with this algorithm for the (5) error estimator
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cc and coef are used to change the value of the error. Let err be the maximal
error, and let Ct be a constant. err is given by

err =
Ct

coef · ccl/2
.

Using the second loop and the result of the first loop, we computed backward
the real cerr useful to have the same error level on each final mesh.

In the second loop, we made the usual mesh adaptation of Freefem++ for the
same function f , based on metrics given by the hessian matrix.

Comments
In our example l = 3. According to the results of the second table of figure 9, if
we take Ct � 2.6e−5, we obtain Ct

103/2 = 8.22e−5. It corresponds to the level of
the maximal error in the first table.

Fig. 7. Adapted meshes for the maximal error level around 10−5, cc=10, coef=10,
method based on the hessian
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Fig. 8. Adapted meshes for the same maximal error level around 10−3, cc=1, coef=10.
Left: metrics computed with this algorithm for the (5) error estimator. Right: method
based on the hessian.

iterations error min 1 error min 2 error max 1 error max 2 vertices 1 vertices2

1 1.20059e-05 4.22866e-06 0.356521 0.358384 2050 3923

2 3.11655e-09 2.48466e-09 0.0043082 0.00437699 5194 17235

3 3.62071e-09 1.52523e-11 9.67516e-05 9.9182e-05 5198 15381

4 3.69877e-09 2.19181e-10 7.95773e-05 0.000103307 5194 15210

5 1.10912e-09 4.76638e-10 7.79361e-05 0.000106652 5264 15188

6 7.05385e-09 3.61698e-10 7.77929e-05 8.02886e-05 5200 15190

7 1.89551e-09 9.00541e-12 8.01738e-05 7.80091e-05 5200 15186

8 5.05435e-10 1.42422e-10 7.75686e-05 8.22038e-05 5200 15186

9 9.78865e-10 9.68075e-10 8.02579e-05 7.7833e-05 5218 15180

1 1.55839e-07 1.00832e-05 0.358347 0.35043 425 460

2 9.65766e-07 3.80745e-08 0.0134088 0.064436 536 743

3 3.58336e-06 2.93163e-08 0.00281739 0.00536942 536 733

4 2.34807e-07 1.97044e-07 0.0027611 0.00278402 540 733

5 1.10585e-06 9.35475e-08 0.00291751 0.0025183 540 732

6 7.26946e-08 3.9567e-07 0.00264979 0.00275217 540 733

7 1.49178e-06 7.63447e-08 0.00266049 0.00270342 540 733

8 8.80737e-08 5.55839e-08 0.00267491 0.00271847 540 733

9 1.04068e-06 2.8896e-07 0.00269423 0.00285419 540 733

Fig. 9.

We can observe on figures 8, 6, 7 and 9 that for the same maximal error level
around 10−3 or 10−5, the error estimator described in [11] and our algorithm
uses much less elements than the classical mesh adaptation method with metrics
based on the hessian matrix. We see that the convergence is obtained after five
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iterations, see figure 9. For the hessian based error built mesh, if we suppose that
the function is a polynomial of degree 3, then the adaptation will be accurate. As
our function is not a polynomial of degree three, we can observe that on figure 6,
there is two thin mesh layers bounding the middle layer, and the corners of the
domain are meshed with small size elements for the hessian based method. Those
wrong effects are not observed with our new approach.

7 Conclusion

We have proposed a quasi-linear complexity algorithm in two spacial dimension
useful to build numerically metrics for any given error estimation represented
by a closed curve around a mesh vertex. As a metric can be represented by an
ellipse, this algorithm is based on the optimization of an ellipse area. The main
purpose of this work is to adapt mesh when doing numerical simulations where
the interpolation error estimator is not based on the hessian matrix.

The obtained numerical results of our tests are encouraging. We have pre-
sented an example of mesh adaptation using metrics computed with this al-
gorithm with respect to the new interpolation error estimation [11], done in
Freefem++. That example seems to give better results than the usual adap-
tation procedure of Freefem++ with metrics based on the hessian, according
the maximal error. We hope that we can expect ”good” performances of the
future new mesh adaptation routine of the software Freefem++ [14] where this
algorithm could be used for the Lagrange finite element interpolation of higher
order.

A future work on the local representation of other types of error estimators
like residual estimators could be interesting. Then we will see how this algorithm
could used or not on those cases. It development into dimension three is a future
challenge in so far as the software Freefem++ is now moving from dimension
two to dimension three.

We thank the reviewers for their comments which helped to improve the qual-
ity of this paper. We also thank Pascal Ventura who help us for the achievement
of this work.

References

1. Alauzet, F.: Adaptation de maillage anisotrope en trois dimensions. Application
aux simulations instationnaires en mecanique des fluides. PhD thesis, université de
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(September 2001)

16. Manole, C.-M., Vallet, M.-G., Dompierre, J., Guibault, F.: Benchmarking second
order derivatives recovery of a piecewise linear scalar field. Département de génie
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