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Summary. The derivation of the Monge-Ampère (MA) equation, as it results from a
variational principle involving grid displacement, is outlined in two dimensions (2D).
This equation, a major element of Monge-Kantorovich (MK) optimization, is discussed
both in the context of grid generation and grid adaptation. It is shown that grids which
are generated by the MA equation also satisfy equations of an alternate variational prin-
ciple minimizing grid distortion. Numerical results are shown, indicating robustness to
grid tangling. Comparison is made with the deformation method [G. Liao and D. Ander-
son, Appl. Analysis 44, 285 (1992)], the existing method of equidistribution. A formula-
tion is given for more general physical domains, including those with curved boundary
segments. The Monge-Ampère equation is also derived in three dimensions (3D). Several
numerical examples, both with more general 2D domains and in 3D, are given.

1 Introduction

In this paper we describe an approach to grid generation and adaptation in 2D
and 3D based on equidistribution. This means that we take a monitor function or
density ρ(x, y) (in 2D) and find a mapping from the logical space ξ = (ξ, η) ∈ Ξ
(the unit square in our case) to the physical domain x = (x, y) ∈ X satisfying
ρ(x, y)dxdy = dξdη, or ρJ0 = 1, where J0 = ∂(x, y)/∂(ξ, η) is the Jacobian. Thus
the rectangular grid cells in the logical space, all having equal area dξdη = dA,
map to physical cells with equal measure ρ(x, y)dxdy = dA. In 3D this takes the
form ρ(x, y, z)dxdydz = dV .

Equidistribution is an important general principle, and has potentially many
applications. For example, the density ρ can be an estimate of the error in a nu-
merical scheme. It has been shown that equidistribution of the local error leads
to minimization of the global error [1]. Another example consists of compressible
hydrodynamics when the sound speed cs varies greatly over the domain, e. g. due
to a large change of density. Then the CFL (Courant-Friedrichs-Lewy) condition
for an explicit code ∆t � ∆x/cs, where ∆t is the time step and ∆x is the grid cell
size respectively, can in 1D be made uniform over the domain by equidistributing
ρ = 1/cs.

In one dimension, the equidistribution requirement ρ(x)dx = dξ determines
x(ξ). In higher dimensions, the equidistribution requirement cannot be satisfied
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uniquely. In Sec. 2.1 we introduce a variational principle to determine a unique
solution. In this principle, the L2 norm of the grid displacement is minimized.
This leads to the Monge-Ampère (MA) equation. This is a key element of Monge-
Kantorovich (MK) optimization, applied here to grid generation and adaptation.
In Sec. 2.2 we discuss the relationship with another variational principle based
on minimization of the grid distortion, defined as the trace of the covariant
metric tensor. Minimization of grid displacement and particularly grid distor-
tion suggest strongly that grids generated by such methods should be robust to
tangling.

In Sec. 3 we discuss briefly the numerical methods used, namely multigrid
preconditioned Newton-Krylov. In Sec. 4 we show numerical results on the grid
produced by the MK method, in 2D with the physical domain X equal to the
unit square. We compare these results with the grid produced by the deformation
method of Ref. [2], the only other area/volume equidistribution method in the
literature. The deformation method is based on finding a flow related to the
required Jacobian of the map ξ → x, and integrating an ODE with that flow.
The flow is, however, not unique; in fact in Ref. [2] several examples of such
a flow are given. We show that the grid obtained using one of these flows is
considerably less smooth than the grid obtained by MK optimization, and more
prone to tangling.

In Sec. 5 we formulate the problem in 2D with more general physical domains
and show numerical examples. In Sec. 6 we outline the formulation in 3D, with a
numerical example. In the Appendix we show some detail related to the analysis
in Sec. 2, as a template for the analysis in Sec. 6.

2 Monge-Kantorovich Optimization in 2D

In this section we introduce a variational principle based on Monge-Kantorovich
optimization as a method of grid generation and adaptation. We also discuss
briefly the relationship with another variational principle based on minimizing
the grid distortion, and discuss grid tangling. This material reviews Ref. [3].

2.1 Variational Principle with Local Constraint

Equidistribution of a density ρ(x, y) is determined by the condition ρ(x, y)dxdy =
ρ0(ξ, η)dξdη, with ρ0(ξ, η) = 1. Here, x = (x, y) are coordinates on the physical
domain X , with bouondary ∂X . Also, ξ = (ξ, η) are logical variables on the
logical domain Ξ, in our case the unit square [0, 1]× [0, 1]. For grid generation,
we consider ψ0 : Ξ → X , with ρ(x, y) specified.

For grid adaptation, we consider the sequence Ξ → X → X , and the map ψ :
X → X giving x′ = ψ(x). See Fig. 1. For adaptation, both ρ(x, y) and ρ′(x′, y′)
are specified. One application is for time-stepping with ρ(x, y) an estimate of the
local error of a PDE at time t, and ρ′(x′, y′) the error estimate at time t + ∆t.
Both densities are normalized so that∫

ρ(x, y)dxdy =
∫

ρ′(x′, y′)dx′dy′ = 1. (1)
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Fig. 1. Sketch of the map ψ0 from the unit square Ξ to the physical domain X with
curved boundary segments, and a second map ψ : X → X

The new density ρ′ is also equidistributed if ρ(x, y)dxdy = ρ′(x′, y′)dx′dy′ =
dξdη. In terms of the Jacobian J of the map ψ : x → x′ = (x′, y′), this condition
takes the form

J =
∂(x′, y′)
∂(x, y)

=
ρ(x, y)
ρ′(x′, y′)

. (2)

In one dimension, the corresponding equation ρ(x)dx = ρ′(x′)dx′ has the unique
solution (up to an irrelevant integration constant) R(x) = R′(x′), where R, R′

are cumulative distribution functions. In higher dimensions, Eq. (2) does not
have a unique solution. In a time-stepping context, a grid x′(ξ) satisfying Eq. 2
with a large amount of rotation can be very different from x(ξ), even in the
extreme case in which ρ and ρ′ are equal.

In order to specify a map uniquely and optimally for grid generation and adap-
tation, we develop a variational principle with Eq. (2) as a constraint. Consider
the first variation δ

∫
dxdyL with [3]

L(x, y, x′, y′) = ρ(x, y)
[
(x′ − x)2/2 + (y′ − y)2

]
/2

−λ(x, y) [ρ′(x′, y′) (∂xx
′∂yy

′ − ∂xy
′∂yx

′)− ρ(x, y)] . (3)
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This is the standard L2 form of Monge-Kantorovich optimization [4]. Here,
λ(x, y) is a local Lagrange multiplier, which ensures that the Jacobian condi-
tion (2) holds locally. In the time stepping context, this minimization of the L2

norm of x′ − x = ψ(x) − x (weighted by ρ) minimizes the grid velocity. For
the case for which X is the unit square, the boundary conditions on ∂X take a
simple form: each side of X maps to itself under ψ. That is, n̂ · (x′ − x) = 0,
where n̂ is the vector normal to ∂X . These boundary conditions ensure that the
boundary terms obtained by integrating δ

∫
dxdyL by parts vanish [3].

The variation with respect to x′ leads [3] after some analysis to

x′ = x +∇Φ(x). (4)

See the Appendix. That is, ψ is a gradient map x′ = ∇Ω(x) with Ω(x) =
(x2+y2)/2+Φ(x). This is a major conclusion in Monge-Kantorovich optimization
theory [4]. Substituting into the Jacobian condition (2), we find

∇2
xΦ + Hx[Φ] =

ρ(x, y)
ρ′(x′, y′)

− 1, (5)

where Hx[Φ] is the Hessian ∂xxΦ∂yyΦ− (∂xyΦ)2. This is the 2D Monge-Ampère
(MA) equation, a single nonlinear equation for Φ(x, y). (An approximate form of
the MA equation was used for grid generation in Ref. [5].) There are two sources
of nonlinearity: the Hessian and the dependence of the right side on x′ = x+∇Φ.
The above boundary condition n̂ · (x′ − x) = 0 leads to

n̂ · ∇Φ = 0 (6)

on ∂X . It is known that a solution to the MA equation with these boundary
conditions exists and is unique, and that the MA equation is elliptic [6].

2.2 Relation with Minimum Distortion

It is plausible that the variational principle using the Lagrangian L(x, y, x′, y′) of
Eq. (3) should be helpful in preventing grid tangling. In a time-stepping context
(for grid adaptation), if the cells are reasonably rectangular at one time, and theL2

norm of the displacement is minimized, the cells at the next time step are expected
to be reasonably rectangular for ∆t small, i. e. ρ(x, y)/ρ′(x′, y′) close to unity.

Based on these thoughts, consider a variational principle minimizing the cell
distortion. We define L2(x, y, x′, y′) by

L2(x, y, x′, y′) = ρ(x, y) (g11 + g22) /2
−µ(x, y) [ρ′(x′, y′) (∂xx

′∂yy
′ − ∂xy

′∂yx
′)− ρ(x, y)] , (7)

where T = g11 + g22 = (∂xix
′
j)(∂xix

′
j) (summation implied) is the trace of

the covariant metric tensor T = trace(JTJ). This quantity measures the dis-
tortion of the x′ cells relative to the x cells. Again, µ(x, y) is a local Lagrange
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multiplier, guaranteeing that Eq. (2) holds locally. In Ref. [3] we showed that
for ρ(x, y) = 1 + O(ε), ρ′(x′, y′) = 1 + O(ε) with ε � 1, solutions of the MA
equation are solutions of the variational equations obtained from Eq. (7), i.e.
are also minimum distortion solutions. This conclusion is further indication that
MA solutions should be robust to tangling. We discuss numerical results related
to tangling in Sec. 4.1.

3 Numerical Methods

We solve the MA equation by Jacobian-free Newton-Krylov methods [7, 8]. The
particular solver is GMRES [9], preconditioned by multigrid. The fact that the
MA equation is elliptic means that multigrid can be used effectively. The function
Φ is defined at cell centers and the boundary conditions (6) are implemented
using ghost cells in the logical domain Ξ. The efficiency and accuracy of these
methods for solving the MA equation have been documented in Ref. [3]. Some
of this material is reviewed in the next section.

4 Examples in a Square

Here, we consider X to be the unit square and ρ(x, y) = 1. For this case, we will
describe the problem as grid adaptation.

4.1 Isotropic Example

The first case we show, from Ref. [3], has density

ρ′(x′, y′) =
C

2 + cos (8πr′)
(8)

Table 1. Performance study for the Monge-Kantorovich approach with ρ′(x′, y′) given
by Eq. (8). Shown are the equidistribution error ∼ 1/N2

x , for grids with Nx = Ny ; the
CPU time; the grid quality measures ||p||MK

2 and ||g11 + g22||MK
1 ; and the number of

linear and nonlinear iterations as functions of N = Nx × Ny .

Number of Cells Error CPU time [s] ||p||MK
2 ||g11 + g22||MK

1

Newton/
GMRES

its.

16 × 16 9.64 × 10−2 0.1 0.0173 1.449 3/3
32 × 32 2.28 × 10−2 0.4 0.0173 1.466 4/4
64 × 64 5.78 × 10−3 1.3 0.0173 1.470 4/4

128 × 128 1.46 × 10−3 4.9 0.0174 1.470 4/4
256 × 256 3.67 × 10−4 19 0.0174 1.471 4/4
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Fig. 2. The grid for Eq. (8) by MK (solid) and by deformation method (dashed)

Table 2. Performance study for the deformation method with time step ∆t = 0.01 for
Eq. (8). The grid quality measures ||p||2 and ||g11 + g22||1 are expressed in terms of
variation with respect to the values in Table 1.

Number of Cells Error CPU time [s] ||p||2
||p||MK

2
− 1 ||g11+g22||1

||g11+g22||MK
1

− 1

16 × 16 1.16 × 10−1 0.2 +24% +1%
32 × 32 3.53 × 10−2 0.9 +28% +2%
64 × 64 9.64 × 10−3 3.4 +30% +3%

128 × 128 2.46 × 10−3 13.6 +30% +3%
256 × 256 6.21 × 10−4 55 +30% +3%

with r′ =
√

(x′ − 1/2)2 + (y′ − 1/2)2. The constant C is determined by nor-
malization as in Eq. (1). The grid is shown in Fig. 2 (solid lines) for 32 × 32
cells. This isotropic example has O(1) variations in density (ρmax/ρmin = 3)
over scales l ∼ 0.1 right up to the boundary. The performance data for this
example are shown in Table 1. Note that the computational time required for
convergence scales as the total number of grid points Nx×Ny, i. e. it is optimal.
This is traced to the fact that the number of Newton and GMRES iterations is
nearly independent of the grid refinement.

In Fig. 2 (dashed lines) we have superimposed the grid determined by the
deformation method using the proposed symmetric flow of Ref. [2]. It is clear
that this grid is not as smooth as the MK grid. Table 2 shows performance for



Grid Generation and Adaptation by Monge-Kantorovich Optimization 557

the deformation method for this example. In particular, note that the L2 norm
of p = x′ − x is much larger for the deformation method.

4.2 Anisotropic Example

A second example has

ρ′(x′, y′) = C

[
1 +

9
1 + 100r′2 cos2(θ′ − 20r′2)

]
. (9)

Here, r′ =
√

(x′ − 0.7)2 + (y′ − 0.5)2 and θ′ = tan−1 [(x′ − 0.7)/(y′ − 0.5)]. The
64×64 grid obtained by MK optimization is shown in Fig. 3. This example mimics
the spiral pattern that develops in the nonlinear Kelvin-Helmholtz instability.
This example has ρ′max/ρ

′
min ≈ 9 and very fine scales below l = 0.02. This

is a very challenging example: the corresponding 64 × 64 grid obtained by the
deformation method tangles [3], but the MK grid is quite smooth.
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Fig. 3. 64 × 64 MK grid according to the anisotropic spiral density (9)

4.3 An Example with Fine Structures and Large Jumps in Density

To demonstrate the power of the MK method, we show an example of adapting
to challenging images. This is the ubiquitous Lena image [10], commonly used
as a standard image for testing image processing methods. We take as density
ρ′(x′, y′) the brightness of the monochrome Lena image. For 200×200 grid points
as in Fig. 4, it shows much of the detail in the original image.
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Fig. 4. The Lena image by the MK method, with a 200 × 200 grid

5 Formulation in More General 2D Domains; Examples

We present a formulation for more general physical domains, with examples.

5.1 Map from Logical to Physical Domains; Boundary Formulation

An important issue involves dealing with more general physical domains in 2D.
Two questions arise. The first is: How are boundary conditions on an arbitrary
shaped domain applied? The second is: Do the terms obtained by integrating by
parts as in the variation of

∫
dxdyL in Eq. (3) again vanish in this more general

setting?
To address the first issue, let us start by considering grid generation, i. e. the

map ψ0 : Ξ → X , for a physical domain X whose boundary ∂X consists of
four sides mapped from the four sides of the unit square in the logical space.
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See Fig. 1. We shall specialize here to the case in which the four sides of the
boundary are given respectively by

L − left side : x = x1(y),
R − right side : x = x2(y),
B − bottom : y = y1(x),
T − top : y = y2(x).

(10)

These boundary conditions on Φ(ξ, η) take the form

L (ξ = 0) :
∂Φ

∂ξ
= x1

(
η +

∂Φ

∂η

)
,

R (ξ = 1) : 1 +
∂Φ

∂ξ
= x2

(
η +

∂Φ

∂η

)
, (11)

B (η = 0) :
∂Φ

∂η
= y1

(
ξ +

∂Φ

∂ξ

)
,

T (η = 1) : 1 +
∂Φ

∂η
= y2

(
ξ +

∂Φ

∂ξ

)
.

As in Sec. 2, these boundary conditions require that each side of the square map
to the corresponding side of the physical domain, but allow an arbitrary (but
one-to-one) motion of points along each of the sides. These nonlinear conditions
are applied by solving for the value of Φ in each ghost cell.

For grid adaptation, we deal with the map x → ψ(x) = x′ from X to X , and
the corresponding boundary conditions, e. g. x′ = x1(y′), in terms of Φ(x, y),
are: are

L (x = x1(y)) : x1(y) + ∂xΦ(x1(y), y) = x1 (y + ∂yΦ(x1(y), y)) ,
R (x = x2(y)) : x2(y) + ∂xΦ (x2(y), y) = x2 (y + ∂yΦ(x2(y), y)) ,
B (y = y1(x)) : y1(x) + ∂yΦ(x, y1(x)) = y1 (x + ∂xΦ(x, y1(x))) ,
T (y = y2(x)) : y2(x) + ∂yΦ(x, y2(x)) = y2 (x + ∂xΦ(x, y2(x))) .

(12)

Numerically, these conditions are implemented using ghost cells on the logical
domain, by using [J0 ≡ ∂(x, y)/∂(ξ, η)]

∂Φ

∂x
=

∂ξΦ∂ηy − ∂ηΦ∂ξy

J0
, (13)

∂Φ

∂y
=
−∂ξΦ∂ηx + ∂ηΦ∂ξx

J0
.

The second issue relates to the terms obtained by integration by parts when
taking the Euler-Lagrange equations from the variational principle in Eq. (3).
Indeed, we find that the variation of

∫
dxdyL contains a term

−
∫

dxdyλ(x, y)ρ′(x′, y′) (∂xδx
′ ∂yy

′ − ∂yδx
′ ∂xy

′ (14)

+∂xx
′ ∂yδy

′ − ∂yx
′ ∂xδy

′)
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in addition to terms proportional to δx′ and δy′. Integrating by parts, this ex-
pression becomes∫

dxdy [δx′ (∂x(ρ′λ∂yy
′)− ∂y(ρ′λ∂xy

′)) + δy′ (∂y(ρ′λ∂xx
′)− ∂x(ρ′λ∂yx

′))]

+
∫

dyλ(x, y)ρ′(x′, y′) [∂yx
′ δy′ − ∂yy

′ δx′] |x=x2(y)
x=x1(y)

+
∫

dxλ(x, y)ρ′(x′, y′) [∂xy
′ δx′ − ∂xx

′ δy′] |y=y2(x)
y=y1(x).

The analysis involving the first terms (and the other terms proportional to δx′

and δy′) proceeds as in Ref. [3] and the Appendix. The terms in the bracket for
x = x1(y), with x′ = x1(y′), are

dx1(y′)
dy′

∂y′

∂y
δy′ − ∂y′

∂y

dx1(y′)
dy′

δy′,

which equals zero because x′ = x1(y′) implies δx′ = (dx1(y′)/dy′)δy′. The same
is true for the boundary terms at x = x2(y), y = y1(x), and y = y2(x). Therefore
the boundary terms obtained by the integration by parts vanish and the analysis
proceeds as in Sec. 2.1, the Appendix, and Ref. [3]. In particular, we again
conclude that ψ is a gradient map, and that the Monge-Ampère (MA) equation
(5) applies.

5.2 Examples with Non-square Physical Domains

The first example, involving grid generation, has a physical domain X consisting
of a parallelogram obtained by mapping the sides of the square according to

x = aξ + bη, y = bξ + cη, (15)

with a = 1, b = 0.2, and c = (1 + b2)/a. The latter condition ensures that the
area of the parallelogram equals unity. The symmetry of this linear map implies
that it is a gradient map x = ∇ξΩ with Ω(ξ, η) = aξ2/2 + bξη + cη2/2. This
map is therefore of the form x = ξ +∇ξΦ(ξ, η) with

Φ = (a− 1)ξ2/2 + bξη + (c− 1)η2/2. (16)

Clearly, Φ(ξ, η) is a solution of the MA equation∇2
ξΦ+Hξ[Φ] = ρ0(ξ, η)/ρ(x, y)−

1 with ρ0(ξ, η) = ρ(x, y) = 1. [The determinant condition c = (1 + b2/a) is not
essential: for determinant equal to J0 (such that c = (J0 + b2)/a), the MA
equation is satisfied with ρ0(ξ, η) = 1 and ρ(x, y) = 1/J0.]

From Eq. (15) we conclude that the boundary conditions on the four sides,
according to the format of Eq. (10), are

L(ξ = 0) : x = x1(y) = by/c,
R(ξ = 1) : x = x2(y) = a + b(y − b)/c,

B(η = 0) : y = y1(x) = bx/a,
T(η = 1) : y = y2(x) = c + b(x− b)/a.

(17)
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We now formulate the problem for grid adaptation, using the MA equation to
find the map ψ : x → x′ with ρ(x, y) = 1 and ρ′(x′, y′) specified. The boundary
conditions are of the form (17) but with x → x′, y → y′. For example, the
boundary condition on the left is x′ = by′/c or x+∂xΦ(x, y) = b[y+∂yΦ(x, y)]/c.
From Eq. (17) we conclude ∂xΦ(by/c, y) = b∂yΦ(by/c, y)/c. Summarizing for the
four sides, we obtain

L : ∂xΦ(by/c, y) = b∂yΦ(by/c, y)/c,
R : ∂xΦ(a + b(y − b)/c, y) = b∂yΦ(a + b(y − b)/c, y)/c,

B : ∂yΦ(x, bx/a) = b∂xΦ(x, bx/a)/a,
T : ∂yΦ(x, c + b(x− b)/a) = b∂xΦ(x, c + b(x− b)/a)/a.

(18)
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Fig. 5. (a) The linear map x(ξ) [Eq. (15)] from the unit square Ξ to a parallelogram
X, with ρ = 1; (b) the composite map x′(ξ) = x′(x(ξ)) with ρ′(x′, y′) given by Eq. (8)
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Again, these boundary conditions are implemented by means of ghost cells on
the logical grid, using Eq. (13).

Results obtained with these boundary conditions for the isotropic case of
Eq. (8) are shown in Fig. 5(a) for the (x, y) grid given by Eqs. (15), (16) and
in Fig. 5(b) for the (x′, y′) grid solved numerically. Because the density ρ′ is
specified as a function of x′, the density of grid lines in Fig. 5(b) is according
to Eq. (8), without distortion. In this case, the (x, y) grid (i. e. ψ0), is formed
by a gradient map with ρ = 1. (For grid adaptation, it is not necessary that the
initial map ψ0 be a gradient map, i. e. be obtained by MK grid generation.)
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Fig. 6. (a) Sinusoidal map (19) with ρ = 1; (b) map obtained by MK grid adaptation
with ρ′(x′, y′) as in Eq. (8)
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As a second example, consider X to be the set bounded by x = 0; x = 1; y =
0; y = 1 − ε sin(2πx) for ε = 0.1. We choose the ’sinusoidal’ map ψ0 from Ξ to
X given by

x = ξ,
y = η[1 − ε sin(2πξ)] (19)

and shown in Fig. 6(a). The Jacobian is J0 = ∂(x, y)/∂(ξ, η) = 1 − ε sin(2πξ) =
1 − ε sin(2πx). Since ρ0(ξ, η) = 1, this implies ρ(x, y) = [1− ε sin(2πx)]−1. The
map given by Eq. (19) is not a solution of the MA equation (and is in fact not
even a gradient map). However, as we discussed above, this is not an essential
requirement for the map ψ0. For the map ψ : X → X we specify again ρ′(x′, y′)
according to Eq. (8), and solve the MA equation, Eq. (5). The boundary condi-
tions are of the form (10), (12) with

L : x1(y) = 0,
R : x2(y) = 1,
B : y1(x) = 0,

T : y2(x) = 1− ε sin(2πx).

(20)

The results, showing the undistorted density of Eq. (8), are in Fig. 6(b).

6 Three Dimensions

In 3D we show that a similar minimization of the L2 norm of x′ − x leads
to a gradient map and to the 3D generalization of the MA equation. We also
show a numerical example obtained by solving the 3D MA equation by methods
discussed in Sec. 3.

6.1 Variational Principle and Gradient Map in 3D

In 3D, we will derive the variational principle corresponding to Eq. (3) for general
ρ(x, y, z) but for the special case ρ′ = 1. We have derived the more general
case [3], which is tedious and not particularly enlightening. Following the 2D
derivation in the Appendix, we have

L =
ρ

2
(x′

i − xi) (x′
i − xi)

−λ(x, y, z)
[
εijk

∂x′
i

∂x

∂x′
j

∂y

∂x′
k

∂z
− ρ(x, y, z)

]
,

where εijk are the components of the usual antisymmetric 3D Levi-Civita tensor,
and repeated indices indicate summation. The Euler-Lagrange equations are

ρ (x′
i − xi) + εijk

∂

∂x

[
λ
∂x′

j

∂y

∂x′
k

∂z

]
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+εkij
∂

∂y

[
λ
∂x′

k

∂x

∂x′
j

∂z

]
+ εjki

∂

∂z

[
λ
∂x′

j

∂x

∂x′
k

∂y

]
= 0;

the boundary terms and the terms proportional to λ vanish as in the 2D case
discussed in the Appendix. We find

ρ (x′
i − xi) = −1

2
εijk

[
λ, x′

j , x
′
k

]
x
,

where
[f, g, h]x = εpqr

∂f

∂xp

∂g

∂xq

∂h

∂xr
= ∇f · ∇g ×∇h.

In the next step we show that

[f, g, h]x = J [f, g, h]x′ . (21)

We have

[f, g, h]x = εpqr
∂x′

s

∂xp

∂x′
t

∂xq

∂x′
u

∂xr

∂f

∂x′
s

∂g

∂x′
t

∂h

∂x′
u

.

Now, since

εpqr
∂x′

s

∂xp

∂x′
t

∂xq

∂x′
u

∂xr
= εstuJ,

we obtain Eq. (21). Finally, using ρ = J (for ρ′ = 1), this leads to

(x′
i − xi) = −1

2
εijk

[
λ, x′

j , x
′
k

]
x′ = − ∂λ

∂x′
i

.

By following the reasoning at the end of the Appendix, we conclude that Monge-
Kantorovich optimization in 3D also leads to a gradient map. This result also
holds for general ρ′(x′, y′, z′).

6.2 3D Monge-Ampère Equation

Substituting x′ = x +∇Φ(x) into the Jacobian equation

∂(x′, y′, z′)
∂(x, y, z)

=
ρ(x, y, z)

ρ′(x′, y′, z′)
,

we find

det

⎡⎣ 1 + ∂xxΦ ∂xyΦ ∂xzΦ
∂yxΦ 1 + ∂yyΦ ∂yzΦ
∂zxΦ ∂zyΦ 1 + ∂zzΦ

⎤⎦ =
ρ(x, y, z)

ρ′(x + ∂xΦ, y + ∂yΦ, z + ∂zΦ)
.

This is the 3D Monge-Ampère equation (generalizing to arbitrary ρ′(x′, y′, z′) �=
1). When the determinant is expanded out, it has ∇2Φ plus quadratic and cu-
bic terms. The nonlinearities consist of the last two types of terms plus the
denominator on the right.
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Fig. 7. Grid obtained by the 3D MA equation for the density ρ′(x′, y′, z′) prescribed
according to Eq. (22): slices for x′ ≈ 0, 0.25, 0.5, 0.75, 1.0
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Fig. 8. Grid obtained by 3D MA equation for the density ρ′(x′, y′, z′) prescribed
according to Eq. (22): a projection of the grid for x′ ≈ 0.25
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6.3 Example in 3D

We treat a case with X the unit cube having ρ(x, y, z) = 1 and

ρ′(x′, y′, z′) =
C

2 + cos (8πr′)
, (22)

now with r′ =
√

(x′ − 1/2)2 + (y′ − 1/2)2 + (z′ − 1/2)2. We show the mesh in
(x′, y′, z′) in Fig. 7, and Fig. 8 shows a projection of the mesh for x′ ≈ 0.25.

7 Conclusions

We have given a brief review of the main results of Ref. [3] in a square in 2D, show-
ing how minimization of the L2 norm of the grid displacement leads to equidis-
tribution via the Monge-Ampère (MA) equation, a major element in Monge-
Kantorovich (MK) optimization. (Detailed algorithmic issues were discussed in
Ref. [3]). We have also shown the relation with minimum distortion and grid tan-
gling. We have exhibited several examples showing how this method works, and
comparing it with the deformation method of Ref. [2]. Table 1 and the performance
tests in Ref. [3] show that the MK method uses a small amount of computer time
and scales optimally with respect to grid size. The results of Ref. [3] also show that
the method is robust in two important senses: (1) the increase in computational
requirements with the complexity of the error measure ρ′(x′, y′) is modest and (2)
in very challenging densities ρ′(x′, y′) the grid was not observed to fold.

We have shown new results in 2D on the formulation and application of the
MK method in a more general class of physical domains X . The examples of
applications include a parallelogram and an area with a sinusoidal boundary
segment. These results suggest strongly that the method extends readily to more
general physically realistic domains in 2D for grid generation and adaptation.
Further work is underway to assess the difficulties involved with multiple block
structured grids and unstructured grids.

We have shown a derivation of the Monge-Ampère equation in 3D. We have
obtained results using this 3D Monge-Ampère equation in the unit cube.

Acknowledgements. We wish to thank P. Knupp, D. Knoll, G. Hansen, and
X. Z. Tang for useful discussions.
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Appendix

In this appendix we show some technical details relating to minimization of∫
dxdyL in 2D. This is a more compact version of the derivation in Ref. [3], and

for our purposes here is a template for the 3D derivations in Sec. 6.
In 2D for the special case ρ′ = 1, take (with summation notation)

L(x,x′) =
1
2
ρ(x, y)(x′

i − xi)(x′
i − xi) (23)

−λ(x)
[
εij

∂x′
i

∂x

∂x′
j

∂y
− ρ(x)

]
,

where ε11 = ε22 = 0; ε12 = −ε21 = 1. [The Jacobian J(x) = ∂(x′, y′)/∂(x, y)
can be written in any of the alternate forms: J = [x′, y′]x, where [·, ·] is the
Poisson bracket; J = εij(∂x′

i/∂x)(∂x′
j/∂y); or J = εij(∂x′/∂xi)(∂x′/∂xj).] The

Euler-Lagrange equations give

∂L
∂x′

i

− ∂

∂xk

∂L
∂(∂x′

i/∂xk)
= (24)

ρ(x)(x′
i − xi) + εij

∂λ

∂x

∂x′
j

∂y
− εij

∂λ

∂y

∂x′
j

∂x
= 0.

The terms proportional to λ cancel. The boundary terms take the form

−
∫

dy

[
λεij

∂x′
j

∂y
δx′

i

]x=1

x=0

−
∫

dx

[
λεij

∂x′
i

∂x
δx′

j

]y=1

y=0

, (25)

each term of which equals zero. Note the Poisson bracket relation [f, g]x =
J [f, g]x′ , which follows from

[f, g]x = εkl
∂f

∂xk

∂g

∂xl
= εkl

∂x′
m

∂xk

∂f

∂x′
m

∂x′
n

∂xl

∂g

∂x′
n

= [x′
m, x′

n]x
∂f

∂x′
m

∂g

∂x′
n

= εmnJ
∂f

∂x′
m

∂g

∂x′
n

= J [f, g]x′ .
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This and the relation ρ = J (for ρ′ = 1) show that Eq. (24) becomes

x′
i − xi = −εij [λ, x′

j ]x′ .

The whole point of writing the Poisson bracket in terms of x′ is that this can be
rewritten as

x′
i − xi = −εijεkl(∂λ/∂x′

k)(∂x′
j/∂x

′
l)

= −εijεkj(∂λ/∂x′
k)

= −∂λ/∂x′
i.

(26)

This equation shows that xi = ∂
(
x′

jx
′
j/2− λ

)
/∂x′

i. That is, the map ψ−1 is a
gradient map (a Legendre transform). This implies that ψ is also a gradient map
and can be written in the form used in Sec. 2,

x′ = ∇Ω(x) = x +∇Φ(x).


