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Summary. In fluid-structure interactions and fluid simulations, like incompressible
two-phase flows involving high viscosity and density ratios, interface capturing and
tracking is considered as a very challenging problem and has a strong impact on indus-
trial applications. Usually, an adaptive grid is used to resolve the problem as well as to
track the interface. In this paper, we describe an adaptive scheme based on the defini-
tion of an anisotropic metric tensor to control the generation of highly streched elements
near an interface described with a level set function. In our approach, quasi-uniform
anisotropic meshes are created with the objective of minimizing the interpolation errors
by capturing the interface features using curvature-adapted anisotropic elements. The
accuracy of the method is verified and numerical experiments are presented to show
its efficiency.

1 Introduction

In this paper, we consider the very challenging problem that consists in captur-
ing and tracking moving fronts and interfaces. This situation arises typically in
bi-fluid flow simulations, free surface flows, non linear processes like dendritic
growth, for example. Such numerical simulations are considered difficult to carry
on because the quality of the numerical solution strongly depends on the accu-
racy of the interface approximation, which is in principle related to the minimal
size of the discretisation. Hence, it seems often tedious to find a right compro-
mise between the desired level of accuracy and the overall computationnal cost
(memory and time ressources) of the simulation.

Since the pionnering works of Dervieux [11] and Osher [28], level set methods
have been successfully used in numerous scientific computing applications where
time-dependent equations and moving interfaces were involved. Until recently,
most applications of level sets involved structured grids on which high-order
schemes can be implemented and computed easily. On such grids and on related
spatial decompositions (e.g., octree), the differential operators and the solutions
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of time-dependent Hamilton-Jacobi equations can be efficiently computed [15].
The simplicity of Cartesian grids associated with the simplicity of level set for-
mulations compared to Lagrangian or ALE methods seemed to have frozen the
situation. For dealing with complex geometries (i.e., domain boundaries and
interfaces) however, geometry-adapted unstructured meshes have proved more
versatile and accurate in finite element simulations, notably because the num-
ber of vertices for a given accuracy is lower than with (graded) Cartesian grids.
Moreover, high-order non-oscillatory schemes have been efficiently introduced
on triangulations[1]. The next step would be to generate anisotropic curvature-
adapted meshes to represent the interface manifold. Then, the numerical schemes
may be more expensive to solve, but the substantial reduction of the number
of elements will largely compensate this drawback and favorably impacting the
overall computational cost of the simulation.

Over the last decade, several anisotropic mesh adaptation techniques have
been developed and efficient adaptive algorithms are now available, at least for
steady-state problems. For time-dependent problems however, and especially
dynamically evolving interfaces, the principal difficulty is to follow the arbitrary
evolution of the phenomenon in space and time, including the possible topology
modification. Indeed, in these simulations, the geometry is intrinsically a part of
the solution of the simulation. Usually, the triangulation is adapted frequently,
to maintain a valid representation of the interface with minimal approximation
errors. This issue has been partially addressed by using a fixed point algorithm
and a metric-based refinement procedure to locally adapt a triangulation within
each time step with respect to the solution variations (first and second-order
derivatives) [4]. In [25], the triangulation of the interface is directly adapted to
the interface curvatures using local mesh modifications thus making it difficult
to handle topology changes during the simulation. To overcome this problem, we
suggest to use the level set formulation of a time-dependent problem that offers
the advantage of embedding the manifold in a higher dimensional space and does
not require to discretize it explicitly, and anisotropic mesh adaptation techniques
to refine the triangulation in the vicinity of the manifold for approximation error
control purposes.

The aim of this paper is to present an anisotropic mesh adaptation method,
based on a geometric error estimate, for capturing an interface described by a
level set function, with a high level of accuracy. This result is obtained by defining
a Riemannian metric tensor based on the differential properties of the manifold
of codimension one corresponding to the interface [14]. Mesh adaptation consists
then in creating a quasi-uniform mesh with respect to the metric tensor field,
using local mesh modifications: edge split, edge collapse, edge flip and vertex
relocation. As the interface evolves in time, we rely on a fixed point algorithm to
correctly locate the interface positions at the beginning and at the end of each
time step (before and after each advection step of the level set function). By
intersecting the metric tensors corresponding to these relative positions, we will
show that it is possible to substantially reduce the diffusion problem. Moreover,
we solve this advection step by a second order scheme based on the method
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of characteristics. This approach can be used with any implicitly-defined, scalar
valued function. This allows us to envisage other categories of applications, for in-
stance: in computational solid geometry modeling (where objects are commonly
defined by an implicit function) and in scientific visualization for representing
isovalue curves or surfaces of a numerical finite element solution accurately.

The remainder of this paper is organized as follows. In Section 2, we briefly
review the level set formulation of the interface tracking problem and we outline
the related numerical issues we have specifically addressed. In Section 3, we in-
troduce the main notions of anisotropic mesh adaptation based on Riemannian
metric tensor. A complete description of this method can be found in the gen-
eral purpose book [18] and the references therein. In particular, we outline the
definition and construction of a metric tensor and the fixed point algorithm for
time dependent problems. In Section 4, we explain how to control and bound
the geometric approximation of an interface and we introduce an anisotropic
error estimate for this problem. Numerical examples of simulations are given in
Section 5 to show the efficiency of this approach.

2 The Level Set Context

2.1 Level Set Formulation

We consider a level set formulation of an time dependent problem in a computa-
tional domain Ω ⊂ R

d (d = 2, 3) which is subdivided in two subdomains Ω+ and
Ω− sharing a common interface Γ , such that Ω+ ∪Ω− = Ω and Ω+ ∩ Ω− = ∅
and Γ = ∂Ω+ ∩ ∂Ω−, where ∂Ω∗ denotes the boundary of the domain Ω∗.
Typically, we introduce a Lipschitz-continuous function u : R

+ × R
d → R and

the interface Γ is chosen to coincide with the level set where u(t, x) = 0. As
suggested by Osher [28], the level set function u is initialized with the distance
function to the initial interface u(0, x) = ±d(x), the sign ± is negative in Ω−

and positive in Ω+.
Usually, the motion of the interface is driven by a velocity field v(t, x) related

to the differential properties of the manifold. This leads to a first-order advection
equation posed in R

d, for all x ∈ Ω, t ∈ [0, T ]:

∂tu(t, x) + vn(t, x)|∇u(t, x)| = 0 (1)

where vn denotes the normal component of the velocity to each level set. It is
well known that singularities are often encountered in solving this equation and
thus appropriate techniques must be developed to select the unique viscosity
solution [10].

2.2 Numerical Issues

The computational domain Ω is covered by an anisotropic unstructured trian-
gulation Th and the distance value to the interface is associated with its vertices,
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thus defining the level set function u in a discrete manner. The numerical resolu-
tion of Equation (1) raises several issues that we emphasize in the next sections.

Level set advection. We use a finite element technique to solve the level set
advection problem on anisotropic unstructured meshes. Suppose the vector field
v(t, x) is sufficiently smooth, we recall that a trajectory associated to the field v
is a solution of the differential problem :

dX

dt
(t, x0) = v(t,X(t, x0)) , X(0, x0) = x0

where the point X(t, x0) represents the position at time t ∈ [0,∞] of a particule
initially in x0 at time t = 0. Such a trajectory is a parametrized curve X(t, x).
The method of characteristics solves this problem by converting the PDE into
a system of ODE. Using a finite element scheme to find an interpolation of the
desired solution u using piecewise affine continuous functions, the variational
problems reads, with the basis functions ϕi:∫∫

Ω

un+1(x, y)ϕi(x, y)dxdy =
∫∫

Ω

un ◦Xn(x, y)ϕi(x, y)dxdy . (2)

The linear system Aun+1 = f is solved using a second-order scheme thanks to a
prediction-correction loop [26]. The main advantage of this formulation is that
it accounts for large time stepping as compared with other explicit method.

Reinitialization procedure. An interesting property of the signed distance
function is that we have |∇u| = 1, which greatly simplifies the calculation of
the normal n, the mean curvature H and the Gaussian curvature K. Hence, we
have: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

n(x) =
∇u(x)
|∇u(x)| = ∇u(x) ,

H(x) = div(n(x)) = ∆u(x)

K(x) = det(Πt(x)D2u(x)Π(x)) ,

(3)

where Π is the matrix of the projection on the tangent plane at x. Unfortunatly,
almost all motion fields, but a constant velocity field v, do not preserve this prop-
erty. Therefore, in order to recover it and the simple formulas, a reinitialization
stage is introduced.

Two different approaches have been proposed in the literature. On the first
hand, one can solve the non-linear equation at steady state [33]:

∂tψ − S(ψ)(1− |∇ψ|) = 0 , (4)

where S(ψ) is a sign function taken as 1 in Ω+, −1 on Ω− and 0 on the inter-
face Γ , and ψ(0, x) is taken as the current value of u(t, x). At convergence, the
function ψ is substituted back to the function u. A drawback of this methods
is related to the regularity of the function ψ that may cause the interface Γ
to move incorrectly from its starting position, if ψ is not smooth. Moreover, in
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the numerical schemes, the time step is usually bounded by a stability condition
related to the minimal size hmin of the triangulation Th. Since we are concerned
with anisotropic triangulations with high aspect ratio elements and a minimal
size at least three orders of magnitude smaller than the domain size to resolve
small features, such technique would lead to a prohibitive computational cost.

On the other hand, a Fast-Marching method is used to evolve a front at
constant speed initiated from the interface Γ [34, 31, 13]. It consists in solving
the following equation in each element:

d+1∑
i=1

|∇ϕiui|2 = 1 (5)

where the ϕi are the shape functions in the element and ui is the value of the level
set function at the vertices of the element. The problem is usually solved using a
first-order scheme. However, this approach could be improved when considering
that the function u is a signed distance function to an interface Γ . Since the
sign is not modified by the reinitialization stage, it is sufficient to compute the
Euclidian distance to Γ in order to determine function ϕ. Furthermore, we have a
bound ε on the distance between the approximation Γh and the manifold Γ on Th

using the Riemannian metric tensor field. Hence, function ϕ can be determined
with an accuracy of order ε by computing the distance of the mesh vertices to Γh.
This can be achieved in a efficient by a parallel algorithm for computing point
distance to polyline [21]. The complexity of our approach is then in (m+n) logm,
where m represents the number of entities in the reconstructed interface and n
denotes the number of mesh vertices, n� m, in general.

3 Anisotropic Mesh Adaptation

In order to resolve the velocity field accurately, it is mandatory to have a suf-
ficient number of grid points in the vicinity of the interface. For this reason,
unstructured triangulations offer a better alternative to Cartesian grids in solv-
ing this equation [1]. The approximation error is then strongly related to the
quality of the triangulation and to the mesh density. To this end, the definition
of a Riemaniann metric tensor helps to control the generation of anisotropic
elements close to the interface.

In this section, we briefly present some basic notions and definitions on compu-
tational triangulations, metric tensor fields and mesh adaptation. We introduce
the following notations: Ω denotes a simply connected open bounded domain in
R

d, Ω is a closure of Ω and |Ω| is the d-dimensional measure or the volume of Ω.

3.1 Uniform Triangulations

Suppose given a family of triangulations Th on the domain Ω, h representing
the characteristic element size. Each element K ∈ Th is a closed subdomain of Ω
and we assume that Ω ⊂

⋃
K∈Th

K and that the usual finite element requirements



164 V. Ducrot and P. Frey

are verified (i.e. elements do not overlap). Then, a uniform mesh Th of Ω is a
mesh in which all element are equally sized and regular. In such case, if |Th|
represents the number of mesh elements and hK = diam(K) the diameter of K,
the size h = max

K∈Th

hK is given by the relation:

hK ≈
(
|Ω|
|Th|

)1/d

∀K ∈ Th .

A quasi-uniform mesh is a mesh for which (i) there exists a constant τ such that

hK

ρK
≤ τ ∀K ∈

⋃
h

Th ,

where, for any open ball Bi ⊂ K, ρK = supi{diam(Bi)} is the in-diameter of
K and (ii) the variation of h is bounded by a constant. This does not mean a
constant mesh size over the domain.

3.2 Anisotropic Mesh Adaptation Scheme

Nowadays, mesh adaptation is widely used to improve the efficiency of the nu-
merical schemes as well as the accuracy of numerical solutions in computational
simulations. It consists in concentrating a maximum number of nodes in regions
of large solution variations and a minimal number of nodes in other regions of
the computational domain. Consequently, the overall number of nodes required
to achieved a desired accuracy can be reduced by a substantial amount, thus
impacting favorably the computational cost of the simulation. In many applica-
tions, solutions exhibit a large gradient variation in some regions, often combined
with highly anisotropic features (shock waves or boundary layers in fluid dynam-
ics, for instance), and elements with high aspect ratio are needed. In this case,
isotropic triangulations would contain too many elements. It is thus desirable to
adjust the element size as well as the element shape and orientation to better
match the solution variations. In the past decade, the theory of error estimates
as been largely investigated by various research groups [5, 8, 12, 16, 19] and
has provided the concept of optimal triangles with respect to a so-called metric
tensor field based on the gradient and Hessian of the solution [7].

3.3 Metric Tensor Field

From the geometric viewpoint, the metric defining the element size, shape and
orientation is represented by an ellipsoid. Hence these notions are related to its
volume, the lengths of its semi-axes and its principal axes vectors, respectively.
The metric tensor denoted as M(x) is used to generate a quasi-uniform mesh in
the metric related to M . More precisely, the volume of an element K ∈ Th is
unitary: ∫

K

√
det(M(x)) dx = 1 , ∀K ∈ Th

which corresponds to the discrete formulation



Anisotropic Level Set Adaptation for Accurate Interface Capturing 165

|K|
√

det(MK) = 1 , ∀K ∈ Th

where MK is an average of M(x) on K. By extension, the length of a curve γ in
a metric given by M(x) for any x ∈ Ω is defined as:

|γ|M =
∫ 1

0

√
〈γ′(t),M(γ(t))γ′(t)〉dt ,

where γ(t) : [0, 1] → R
d is a parametrization of γ. Since the metric tensor M(x) is

a symmetric positive definite matrix, the spectral decomposition theorem allows
to decompose M as:

M = P ΛP t =
d∑

i=1

λieiei
t ,

where the normalized eigenvectors of M are the columns of matrix P =
[e1, . . . , ed] such that P P t = Id and Λ is the diagonal matrix of the eigen-
values λi. Notice that the matrix P prescribes the orientation and the matrix Λ
prescribes the size and shape of any element K.

3.4 Mesh Quality

As we have numerical simulations in mind, it is important to introduce quality
measures in order to evaluate how close the metric prescriptions are satisfied
at any x in the domain. Mesh quality assessement has been an active area of
research for isotropic meshes (see [6] for a survey). For practical reasons, we will
consider a single measure to evaluate the quality of an element K:

Qani(K) = αd

(
k∑

i=1

〈ei,MKei〉
)d

|K|
√

det(MK)
,

where ei represents here any of the k egdes of K and αd is a normalisation
constant such that Qani(K) = 1 for a regular element. Notice that Qani ≥ 1 for
all K ∈ Th and thus the larger max

K
Qani(K) is, the more the triangulation Th

deviates from the metric prescriptions.

3.5 Anisotropic Mesh Adaptation

Traditionally, mesh adaptation algorithm are based on either r-methods or h-
methods. In the first approach, the number of mesh vertices is kept constant,
only the vertex locations are changed throughout the simulation. Algorithms in
the second category proceed by local mesh modifications like edge flipping, edge
contraction, vertex addition and vertex relocation. In our approach, anisotropic
meshes are created using a Delaunay-based method in which a metric tensor
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Fig. 1. Anisotropic mesh for the transient fixed-point problem. Adapted to the solu-
tions un and un+1, and the corresponding velocity field at time tn.

prescribing the size, stretching and orientation of the element is associated with
the mesh vertices [18]. Moreover for unsteady physical problems, several metric
tensor fields must be combined to overcome the numerical diffusion associated
with the numerical scheme [4, 20].

Solution prediction. To deal with unsteady phenomena, we use a fixed-point
mesh adaptation algorithm to predict the solution evolution in the domain Ω.
This algorithm solves a transient fixed-point problem for the couple (mesh, so-
lution) at each iteration of the classical adaptation scheme. Suppose that the
triangulation Th is adapted to the behavior of the solution un = u(tn, x), for
all x in Ω, at the beginning of a time period [tn, tn+1], the aim of this scheme
is to predict the solution behavior at tn+1 and to refine the mesh accordingly.
Therefore, within this time period at least two anisotropic metric tensors must
combined together, producing a mesh that is refined in regions of large gradient
variations of both un and un+1. This procedure can be seen as an internal loop
within a classical adaptation scheme. In each internal iteration j, the solution
uj

n+1 converges toward the solution un+1. This can be checked numerically using
the L1-norm of the difference between the solutions uj

n+1 and uj−1
n+1.

When two solutions are considered their relative metric tensors must be re-
duced to a single one for mesh generation purpose. To this end, a metric inter-
section procedure is used, based on the simultaneous reduction of the quadratic
forms associated with the tensors [20]. Figure 1 shows the anisotropic mesh used
to resolve the internal fixed-point loop.
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Local mesh adaptation. In our approach, we rely on local topological and
geometrical mesh modifications (edge split, edge collapse, vertex relocation,
edge flip). At each step, the current triangulation is modified to generate quasi-
uniform triangulations with respect to the metric tensor field M . The method
is based on the analysis of the mesh edges: all edges must belong to the interval
[lmin, lmax] and the mesh elements quality must be close to the optimal unit
value. Long edges lM (e) > lmax are splitted into unit subsegments with respect
to M and the new vertices are introduced using a modification of the Deau-
nay kernel to account for anisotropic elements. Short edges lM (e) < lmin are
collapsed by merging their two endpoints at one of the extremity. A mesh opti-
mization stage involving vertex relocation procedure is then applied to improve
the overall mesh quality [18].

4 Geometric Approximation

In the kind of problem we consider, an interface is defined as a manifold of codi-
mension one embedded in R

d. We introduce an implicit level set interface repre-
sentation, where the interface Γ is the zero isocontour of a Lipschitz-continuous
function u. We choose to have a Vh = P1(Th) Lagrange approximation space,
and we denote uh the projection of u on Vh.

4.1 Error Bound

We aim at controlling the approximation error between the exact (unknown) curve
Γ and an approximate curve Γh defined as a zero isocontour of the function uh:

Γh = {x ∈ Ω , uh(x) = 0} .

This control can be obtained by introducing a bound on the Hausdorff distance
between Γ and Γh, i.e., by prescribing a value of ε sufficiently small such that:

max(max
x∈Γ

min
y∈Γh

|x− y|,max
y∈Γh

min
x∈Γ

|x− y|) < ε .

Actually, we established the following result that provides an indirect yet prac-
tical control on the Hausdorff distance [14]. Suppose u is an implicit real-valued
function defined on a domain Ω such that ∇u exists (|∇u| = n, n > 0) and such
that its derivatives are k-lipschitz (k ≥ 1) on an open set. Then, we have the
theoretical bounds:

Theorem 1. Under the previous hypothesis, if we denote the set of elements
intersected by Γ as E = {x ∈ K,K ∈ Th and K ∩ Γ �= ∅}, then for all x ∈ Γh:

d(x, Γ ) ≤ 1
min
p∈E

|∇u(p)|

∣∣∣∣∣∣
d+1∑
j=1

λj

(
t(x − xj)(D2u(xj)−D2u(x))(x − xj)

)∣∣∣∣∣∣ ,
and conversely, for all x ∈ Γ ,
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d(x, Γh) ≤ 1
|∇uh(K)|

∣∣∣∣∣∣
d+1∑
j=1

λj

(
t(x− xj)(D2u(xj)−D2u(x))(x − xj)

)∣∣∣∣∣∣ .
where λj denotes here the barycentric coordinate of a point x associated with the
vertex xj of K and D2u represents the Hessian of the function u (the gradient
of uh is piecewise constant per element).

The complete proof of this result can be found in [14] and relies on the analysis
of a Taylor expansion with integral rest in any simplex intersected by the desired
level set. In the next section, we will show how this result can be used to define a
metric tensor field to prescribe appropriate element sizes and shapes to minimize
the approximation error in a triangulation.

4.2 A Geometric Metric Tensor

Let us consider the set E of mesh simplices intersected by the zero level set man-
ifold Γ , i.e. such that the sign of the function u is not constant on the element.
The following results relate the size of the elements of the set E to the local
curvature(s) of the manifold in two and three dimensions and provide a bound
on the distance between the manifold and its piecewise affine approximation.

Corollary 1. In two dimensions, we have:

d(Γh, Γ ) ≤ max
K∈E

l2κ

1− hκ− h2κ2

where h (resp. l) represents the size of the element K in the normal (resp.
tangential) direction to the curve Γ , κ is the maximum of the absolute value of
the local curvature to Γ in K.

Corollary 2. Similarly, in three dimensions, we have:

d(Γh, Γ ) ≤ max
K∈E

l21κ1

1− hκ1 − h2κ2
1

+
l22κ2

1− hκ2 − h2κ2
2

where h (resp. l1, l2) represents the size of the element K in the direction normal
(resp. of the principal curvatures) to the manifold and κ1, κ2 are the minumum
and maximum values of the two local principal curvatures of Γ in K.

Again, the full proof of these results has been given in [14]. These bounds on the
approximation error can be conveniently used to define a suitable discrete metric
tensor field at each mesh vertex of every element in the set E . Indeed, setting
the level of accuracy of the piecewise affine approximation to an arbitrary value
ε is equivalent to imposing d(Γh, Γ ) < ε. Hence, we propose to define the metric
tensor at each vertex as follows:

M =
∇u∇ut

h2
min

+
(D2u)

ε
(6)
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where hmin represents the smallest (user-defined) element size in Th. With this
definition, the elements will be aligned with the principal directions of curvatures
and with the normal to Γ and their relative sizes will be related to the local
curvatures by setting:

li =
√

ε

κi
.

4.3 Numerical Issues

The geometric metric tensor definition involves the Hessian matrix of the level
set function u. Practically, the solution uh is piecewise affine and only known
at the vertices of triangulation Th. In order to compute the gradient and the
Hessian matrices, we propose to reconstruct a high-order solution ũ ∈ C2(Ω)
from uh in order to write:

|u− uh|X ≈ |ũ− uh|X

where | · |X is the norm related to the approximation space. Notice that in our
approach, the solution ũ does not need to be known, as only the Hessian matrix
is required to define the metric tensor.

We propose a least-squares approximation of the second derivative of ũ based
on a Taylor expansion of the solution ũ at vertex x, following [3]:

ũ(xi) = ũ(x) + xxi · ∇ũ(x) +
1
2
〈xxi,M(x)xxi〉

where ũ(xi) is the solution associated with the vertex xi connected to the vertex
x. This leads to a usually overdetermined linear system Ay = b, that is solved
using a least square approximation AtAy = Atb, where y is a d(d+1)

2 vector of the
Hessian coefficients. Solving it directly allows us to avoid all problems related
with ill-conditioned matrices.

We have also investigated the Hessian reconstruction using a dual L2 pro-
jection scheme of the numerical solution u [18]. This robust technique, did not
provide better results for our purposes in the numerical simulations, thus we
have used the least-square approximations in all following examples.

5 Numerical Examples

The authors and colleagues have implemented all the numerical techniques de-
scribed in this paper (the error estimate, the adaptive mesh generation algorithm,
the advection and the Stokes flow solvers) in two and three dimensions.

5.1 Numerical Examples in Two Dimensions

In this section, we investigate the efficiency and the accuracy of our interface
tracking mesh adaptation method on numerical simulations of Zalesak rigid body
rotation and on a viscous flow problem.
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Zalesak rigid body

This test case has been originally proposed by Zalesak [36] and we consider here
a slightly modified version suggested by Rudman [30] and commonly used for
volume integrity checking. The computational domain Ω is here a [−2, 2]×[−2, 2]
square, the circular body of unit radius is centered at position (0, 0.75) and the
width of the slot is 0.12. We consider a steady advection problem where the disk
is rotated with a constant angular velocity of 1 time unit, which constitutes a
good test of how efficiently the interface is advected in case of high curvatures.
The body should return to the initial position after a revolution of 2π, without
any modification of the interface shape and volume (Figure 2). To overcome
numerical dissipation problems when solving the advection equation, we have
used a simple mass-correction procedure. Assuming that the error is constant
over the domain, we use an optimization scheme to determine a constant value
by which the level set is normalized so as to preserve the total mass.

(a) (b) (c)

Fig. 2. Evolution of the rigid body Zalesak disk: (a) four positions of the rotated body,
(b) superposition of the initial and final (after one complete revolution) discretized level
set curves , (c) zoom near a singularity

Figure 2 shows the evolution of the rigid body in the velocity field corre-
sponding to angles of rotation θ = kπ/2, k ∈ {1, . . . , 4}. At each time step,
the solution is computed using a high-resolution adapted mesh, for which the
smallest prescribed edge length is 0.001 and the maximal prescribed element
stretching is given by the ratio between the maximal and the minimal edge
length, 0.2/0.001 = 200. Each anisotropic adapted mesh contains about 6 500
vertices whereas the corresponding isotropic graded mesh (i.e., non uniform)
would contain about 10 times more vertices. The generation of each anisotropic
mesh corresponding to a rotation angle of π/8 is obtained using a fixed point
algorithm involving 5 metric intersections in time and requires about 46 seconds
while the advection time requires 4.3 seconds on a laptop.

The accuracy of the level set approximation can be evaluated by two measures.
First, we evaluated the perimeter of the interface and the area of the domain
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Fig. 3. Zalesak disk test. Advection of the level set corresponding to rotation angles

θ = 0, θ = 2π (top) and θ =
3π

4
with a local enlargement close to the singularities

(bootom).

delineated by of the interface during the simulation without and with the mass
correction scheme. Without mass correction, the perimeter values are ranging
from 4.3275 (initial length) to 4.2985 (final length), corresponding to a shrinkage
of less than one percent of the interface curve. The area of the internal domain is
equal to 0.71316 (initial) and to 0.706 (final), the area (mass) loss is of the order
of one percent. With the mass correction scheme, the final surface is 0.7131677,
less than 0.01 percent difference wih the initial surface,but the final perimeter
value is 4.450584 (Figure 3).

A viscous flow example

The next example concerns a viscous flow computation. Here, we attempt to
solve the Stokes problem (7) describing an incompressible flow of two immiscible
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fluids with very different viscosities µi on a domain Ω subdivided in two sub-
domains Ωi sharing a common interface:{

−µi∆ui +∇pi = ρi f i

div ui = 0 (7)

where ρi and pi represent the volumic mass and pressure, respectively and with
the continuity condition of the velocity field and the equilibrium of the normal
constraints with the surface tension at the interface Γ :{

u1 − u2 = 0
(σ1 − σ2) · n1 = −K n1 (8)

endowed with Dirichlet or Neumann boundary conditions:

u = uD on ΓD, σ · n = sN on ΓN , ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅ (9)

In the variational formulation, we consider as approximation space of the velocity
u (resp. of the pressure p) the space of Lagrange finite elements P1-bubble (resp.
P1). Uzawa’s method is then used to solve the resulting linear system, in which
several equations of the form AX = G, A being the stiffness matrix, are solved
using a conjugate gradient method. In our approach, the condition number of
A depends only on the mesh size h of the triangulation Th covering the domain
Ω. The Uzawa solution (u, p) of the Stokes problem is now obtained as the limit
of a sequence of solutions (uk, pk) when k →∞ [9]. If this example, the critical
part is related to the anisotropic discretization of the interface.

Here, we present the simulation of a Couette flow in a unit square Ω = [0, 1]×
[0, 1], a disk of radius 0.1 centered inside the domain corresponds to the domain
Ω1. We considered the following parameter values: viscosities µ1 = 1, µ2 = 10−6

Fig. 4. Mesh of the computational domain (notice the anisotropy in the vicinity of
the interface) and streamlines of the velocity field
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(a) (b) (c)

Fig. 5. Example of mesh adaptation of a surface embedded in the unit sphere. (a) the
reconstructed piecewise affine surface, (b) cutting plane through the tetrahedral mesh
and (c) local enlargement of the cutting plane.

and volumic mass ρ1 = ρ2 = 1. Dirichlet boundary conditions have been pre-
scribed on the external boundaries of Ω: ux = 2(y − 0.5), uy = 0. Figure 4
shows the anisotropic mesh used to perform the simulation and the streamlines
of the velocity field.

5.2 A Numerical Example in Three Dimensions

This approach has been implemented in three dimensions for dealing with in-
terface capturing problems. In order to illustrate this feature, Figure 5 shows
an anisotropic mesh adapted to a slightly complex although regular analytical
surface embbeded in a unit sphere defined in spherical coordinates as:

ρ = 0.45 + 0.3 cos(6θ) cos2(3φ) θ ∈ [0, 2π] , φ ∈ [0, 2π] .

Here, the accuracy level is controlled by the parameter ε = 10−3, leading to a
mesh containing 242 887 < 3.105 vertices. Notice that an isotropic mesh corre-
sponding to the same level of accuracy would contain about 109 vertices, 3 to
4 orders of magnitude more vertices than with an anisotropic mesh. The ap-
parent irregularity of the mesh Figure 5 (middle and right-hand side) is due to
the cutting plane through tetrahedral elements. Actually, the piecewise affine
discretization of the manifold is surprisingly smooth (Figure 5).

6 Conclusions and Perspectives

In this paper, we have presented an efficient method for obtaining very accurate
piecewise affine approximations of manifolds of co-dimension one based on the
definition of a metric tensor field used to govern the generation of anisotropic
meshes. The results obtained so far in numerical simulations are more accurate
than similar results obtained using isotropic meshes. The next stage will be to
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Fig. 6. Preliminary results for capturing accurately a dynamically evolving manifold
in three dimensions

handle dynamically evolving interfaces in time-dependent simulations. Figure 6
shows the preliminary results obtained on the deformation of a unit sphere under
a deformation field. This approach seems quite successfull in preserving the vol-
ume of the level set when the interface undergoes large amount of deformation
and stretching induced by an incompressible flow field and can very well com-
pete with methods like particle level sets [15]. By nature, this approach is well
suited to maintain regions of high-curvature and the thin surface that developed
during the deformation. Less than 105 vertices are required to resolve this test
case, a number that can be compared with the 1003 grid generally used in other
approaches.
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