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Summary. This paper presents an algorithm that utilizes a quadtree to construct a strictly convex
quadrilateral mesh for a simple polygonal region in which no newly created angle is smaller
than 18.43◦(= arctan( 1

3 )). This is the first known result, to the best of our knowledge, on
quadrilateral mesh generation with a provable guarantee on the minimum angle.

1 Introduction

The generation of quadrilateral meshes with provable guarantees on mesh quality poses
several interesting open questions. While theoretical properties of triangle meshes are
well understood [4, 8, 9, 7, 11, 12, 15, 14], much less is known about algorithms for
provably good quadrilateral meshes. Analysts, however, prefer quadrilateral and hex-
ahedral meshes for better solution quality in numerous applications [1, 2, 6, 10, 16].
This is because they have better convergence properties, and hence lower approxima-
tion errors, in finite element methods for solutions to systems of partial differential
equations. Quadrilateral meshes also offer lower mesh complexity, and better direction-
ality control for anisotropic meshing. For stable analytical results, however, it is critical
to construct meshes with certain quality guarantees. Specifically, algorithms that con-
struct well-shaped elements by providing bounds on minimum and maximum angles
have much practical value. Techniques such as paving [5] work well in practice, but do
not give provable angle guarantees. Circle-packing techniques have been used to con-
struct quadrangulations with no angles larger than 120◦ for polygon interiors [3], but
with no bound on smallest angle. An algorithm to construct linear-sized strictly convex
quadrilateral meshes for arbitrary planar straight line graphs is given in [13].

Our contribution. In this paper, we present a new algorithm to generate quadrilateral
meshes for simple polygonal regions, possibly with holes, with a provable guarantee
on the minimum angle. We use quadtrees to show that no newly created angle in the
quadrilateral mesh is smaller than 18.43◦. The quadrilaterals are strictly convex, i.e.,
the maximum angle is strictly less than 180◦. This is the first known quadrilateral mesh
generation algorithm with a provable bound on the minimum angle. (Quadtrees have
been used to give triangular meshes without small angles for point sets and polygons

� Research partially supported by NSF Grant 0204293.
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in 2D [4], and octrees have been utilized to construct tetrahedral meshes with bounded
aspect-ratio elements for polyhedra [12].)

In Section 2, we use quadtrees to construct a quadrilateral mesh for a point set in
which the minimum angle is bounded below by 45◦ − arctan(1

3 ) = 26.57◦. We then
describe in Section 3 an algorithm that adapts the guaranteed-quality mesh of polygon
vertices to polygon edges to construct a quadrilateral mesh for the interior of a simple
polygon (possibly with holes) in which new angles (angles other than those determined
by the input) are bounded below by arctan(1

3 ) = 18.43◦.
Throughout this paper, we use the shorter terms “quadrangulate” and “quadrangu-

lation” instead of “quadrilateralize” and “quadrilateralization”. We also sometimes use
the word “quad” for quadrilateral. Steiner points are additional points, other than those
provided by the input, inserted during the mesh generation process.

2 Point Set Mesh with Bounded Minimum Angle

We first describe an algorithm to construct a quadrilateral mesh with a minimum angle
bound of 26.57◦ for a given point set X .

2.1 Construction of the Quadtree

Given a point set X , we construct a quadtree for X with the following separation and
balancing conditions. These conditions are similar to those in [4], but adapted to partic-
ular requirements for quadrilateral (rather than triangle) meshing.

A. Split a cell C (with side length l) containing at least one point if it is crowded. A
cell is crowded if one or more of the following conditions hold:
1. it contains more than one point from X .
2. one of the extended neighbors is split (an extended neighbor is a cell of same

size sharing either a side or corner of C).
3. it contains a point with a nearest neighbor less than 2

√
2l units away.

B. When a crowded cell C is split, split those extended neighbors of C that share an
edge or corner with a child of C containing an original point in X .

C. The final quadtree is balanced so that the edge lengths of two adjacent cells differ at
most by a factor of 2 (neighbors of C with side length l have length l/2 or 2l).

Observe that in a quadtree with the above separation and bal-
ancing conditions, a cell containing a point from X is guaranteed
to be surrounded by 8 empty cells of the same size. We refine the
quadtree decomposition further to do the following: Split each of
these eight empty quadtree cells into 2 × 2 cells and rebalance the
quadtree. This converts the original 3 × 3 grid around every point
p ∈ X into a 6 × 6 grid. Furthermore, now p lies at the center of a 5 × 5 equal-sized
grid (outlined in bold in figure), and is surrounded by twenty-four empty quadtree cells
of the same size. There are two reasons for this refinement step:

1. The final step of our algorithm to construct a quadrilateral mesh for X consists of
warping a Steiner point in the mesh to an original point p ∈ X (Section 2.4). This
step is simplified considerably due to the refinement.
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2. The algorithm to construct a quadrilateral mesh for non-acute polygons (Sec-
tion 3.1) uses the 5× 5 grid to mesh the region around polygon vertices.

We construct a quadrilateral mesh with bounded minimum angle for X by placing
Steiner points in the interior of the quadtree cells. The placement of the Steiner points
is determined by identifying and applying templates to the quadtree decomposition. A
leaf of the quadtree is an unsplit cell and we refer to these as 1-cells in our discussion.
A template is applied to each internal node of the quadtree.

2.2 The Templates

A template is labeled by the number of children of a quadtree node that are 1-cells.
Hence we have 6 template configurations, for nodes with zero (T (0)), one (T (1)), two,
three (T (3)) or four (T (4)) 1-cell children. Nodes with two 1-cell children have two
layouts, T (2a) and T (2b).

Templates at the deepest level of subdivision. The templates at the deepest level of
subdivision are shown in Fig. 1. Note that, all other possible configurations are sym-
metric to the depicted ones. In order to quadrangulate a template, first, a Steiner point is
placed at the center of each quadtree cell. These points are denoted with full circles. We
then place extra Steiner points, which are denoted by empty circles in the figure, for one
of two reasons: (i) In T (1), the top-left extra point and in T (2b) the middle extra point
are added to be able to quadrangulate properly within the template. (ii) The remaining
extra points are added in the 1-cells, halfway on the diagonal between the center Steiner
point and the outer cell corner. The reason for adding the second type of Steiner points
is that after an internal node is quadrangulated, it will provide a polygonal chain with an
even number of points (we will call them even-connector chains) to which its neighbors
can connect.

T
(0)

T
(1)

T
(2a)

T
(2b)

T
(3)

T
(4)

Fig. 1. Templates at the deepest level of the subdivision

General Templates. Our recursive algorithm applies templates to all internal nodes
starting with the deepest ones. We generalize the templates to apply to an arbitrar-
ily deep internal node as shown in Fig. 2. In general, when a template is applied to
an internal node, its children which are not 1-cells have already had templates ap-
plied to them. Each such child has been quadrangulated internally and provides even-
connector chains on all four sides. The corresponding endpoints of two neighboring
chains are then connected to construct a polygon with guaranteed even number of
vertices which can therefore be quadrangulated. We name this process “stitching”,
illustrated by the cross-hatched regions in Fig. 2. The processed internal nodes are
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even−connector
2−connector

quadrangulated cell

stitched region
deleted vertex

(a) T (0)

(b) T (1) (c) T (2a) (d) T (2b)

(e) T (3)

(f) T (4)

Fig. 2. General templates at arbitrary level of subdivision

depicted as blackboxes with even-connector chains at each side. Note that the place-
ment of a chain’s endpoint does not necessarily correspond to the exact location of
the endpoint within the actual cell, due to the existence of type (ii) Steiner points.

C0C1

C2 C3

Ci
ri

ti

li

bi

Labeling the chains. Children quadrants of a cell are labeled C0,
C1, C2, and C3 in counterclockwise order starting from the north-
east quadrant. The four chains surrounding a processed quadrantCi

are labeled li, ri, ti and bi (see figure).

2.3 The Algorithm

The recursive procedure applyTemplate that applies a template to an internal node is
presented in the code block given in Fig. 3. It is initially called with the root node of
the quadtree. Note that the algorithm is presented only with respect to the depicted
configurations of the templates. Symmetric configurations are handled similarly.

Stitching Chains. Procedure stitchChains connects the four endpoints of two neigh-
boring even-connector chains and quadrangulates the resulting polygon. Note that such
a polygon is guaranteed to have an even number of vertices on the boundary. The algo-
rithm is illustrated in Fig 4. Procedure stitchChains is only called if the current template
is of type T (0), T (1) or T (2a). The action of this procedure is also illustrated by the
crosshatched areas in Fig. 2(a), (b) and (c).

The quadrangulation process divides the chains into half chains, each of which spans
the corresponding edge of a child quadrant. These half chains are then recursively
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applyTemplate(QuadtreeNode N)
templateType ← whichTemplate(N)
for Ci ∈ children(N)

if Ci is not a 1-cell
(li, ri, ti, bi) ← applyTemplate(Ci)

else
construct (li, ri, ti, bi) for Ci.

switch (templateType)
case T (0):

stitchChains(l0, r1), stitchChains(b1, t2)
stitchChains(r2, l3), stitchChains(t3, b0)

case T (1):
stitchChains(l0, r1), stitchChains(b1, t2)
Place Steiner points and quadrangulate per Fig. 2(b).

case T (2a):
stitchChains(r2, l3)
Place Steiner points and quadrangulate per Fig. 2(c).

case T (2b):
Place Steiner points and quadrangulate per Fig. 2(d).

case T (3):
Place Steiner points and quadrangulate per Fig. 2(e).

case T (4):
Place Steiner points and quadrangulate per Fig. 2(f).

return (l1 + l2, r0 + r3, t1 + t0, b2 + b3)

Fig. 3. applyTemplate quadrangulates node N

stitchChains(Chain ch1, Chain ch2)
switch (length(ch1), length(ch2))

case (2 − 2), (2 − 4), (4 − 2):
Apply appropriate base case from Fig. 5.
case (2 − 6), (2 − 8)):
Apply appropriate base case from Fig. 6.
default:

(f1, s1) ← getHalfChains(ch1)
(f2, s2) ← getHalfChains(ch2)
stitchChains(f1, f2)
stitchChains(s1, s2)

Fig. 4. stitchChains stitches two even-
connector chains, one from each of the two
neighbor cells sharing an edge

(7)(1) (3)(2) (4) (5) (6)

Fig. 5. Stitching 2-2 and 2-4 or 4-2 connector chains

(3)(2)(1)

Fig. 6. Stitching 2-6 and 2-8 connector chains

stitched. Although the even-connector chains can be arbitrarily long, at the base case
there are only four types of chains: chains with 2, 4, 6 or 8 connectors. Figs. 5-6 illus-
trate how the base-case chains are stitched (the stitching edges are dotted). Symmetric
cases are not listed in the illustrations.
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2.4 Angle Bounds

Minimum Angle. We analyze the minimum angle bound in each of applyTemplate,
the base case of stitchChains, and the recursive step of stitchChains.

General templates: By construction, the minimum angle appears in templates T (1) and
T (2b) and equals 45◦ − arctan(1

3 ) = 26.57◦ (illustrated in Fig. 7).

45◦ − arctan(1
3) = 26.57◦

arctan(1
3) = 18.43◦

arctan(1
4) = 14.036◦

28.072◦

Fig. 7. Minimum angle bounds

Stitching base case: The base cases of stitch-
ing generate the same minimum angle of 45◦ −
arctan(1

3 ) = 26.57◦ which can be found in in
Fig. 5-(5).

Stitching merging step: After the corresponding
half-chains are stitched in the recursive step of
stitchChains, a middle quad is formed by the four
end points of the stitched half-chains. This middle
quad gives a minimum angle of 2× arctan(1

4 ) =
28.07◦. See Fig. 7. Recall that these four points
are by construction on the two diagonals that cross
at the center of four quadtree quadrants. Furthermore, they are either at the center of the
quadtree quadrant, or halfway down the diagonal from the center. The worst-case con-
figuration is illustrated in Fig. 7. This results from connecting any Fig. 5-(5) connector
chain with an inverted version of itself.

Degenerate quads. In the stitching cases illustrated by Fig. 5-(7), Fig. 6-(1), Fig. 6-
(2) as well as template T (2a) (Fig. 1), there are degenerate quads with two edges on
a straight line. In all cases, the 180◦ vertex is connected to a third vertex on the other
side of the degenerate quad, by construction. This allows perturbation of the degenerate
vertex along the third edge, which reduces the 180◦ angle and increases the other two,
thus eliminating the degenerate quad.

Maximum Angle. The quadrilaterals generated by our algorithms (including the one
in Section 3) are strictly convex; i.e., the maximum angle is bounded away from 180◦.
The perturbation used to handle degenerate quads (above) implies the maximum angle
is less than (180− ε) for some ε > 0. We conjecture the value of ε can be bounded from
below, but do not explicitly address that question in this paper.

Warp

p

≥ 53.14◦

Warping to Original Points. After the con-
struction of the quadrilateral mesh using quadtree
cell centers and extra points as Steiner points,
we warp certain mesh vertices to the original
points from the input point set X . Recall that the
quadtree splitting rules of Section 2.1 ensure that
the quadtree cell containing an original point p ∈ X is surrounded by twenty-four
empty quadtree cells of the same size. Moreover, the eight empty cells immediately
surrounding p do not contain any extra points. Therefore, the warping step simply con-
sists of translating the Steiner point in p’s cell to p, along with all the incident edges.
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The worst-case minimum angle arising from these nine cells after the warping step is
2× 26.57 = 53.14◦. In summary, we have shown the following result:

Theorem 1. Given a quadtree decomposition with N quadtree cells satisfying the point
set separation conditions for a point set X , applyTemplate constructs a mesh for X
with at most 3N quadrilaterals in which every angle is at least 26.57 degrees.

Observe that the value of N in the above theorem depends on the geometry of the point
set as well as the size of the point set. Due to the point set separation conditions, which
are derived from [4] and as was shown there, the size of the quadtree decomposition
increases as the distance between the closest pair of points decreases.

3 Polygon Mesh with Bounded Minimum Angle

Given a simple polygon P , possibly with holes, with vertex set X , we give an algorithm
to construct a quadrilateral mesh for P and its interior in which no new angle is larger
than 18.43◦. The basic idea behind the algorithm is to first construct a guaranteed-
quality mesh for X as described in the previous section, and then adapt this mesh to
incorporate the edges of P . We use δP to refer to the polygon boundary, and P to refer
to the union of the boundary as well as interior.

We describe in Section 3.1 a provably good algorithm to construct a quadrilateral
mesh with bounded minimum angle for a simple polygon P in which all interior angles
are non-acute (i.e., greater than or equal to 90◦). In Section 3.2, we describe how to
handle acute angles.

3.1 Non-acute Simple Polygons

Let P be a non-acute polygon with vertex set X and edges oriented counter-clockwise
about the boundary. Let QT be a quadtree decomposition of X satisfying the point set
separation conditions of Section 2.1. Let Q be a quadrilateral mesh for X with mini-
mum angle 26.57◦, as guaranteed by Theorem 1. In this section, we describe a method
to adapt Q to δP to create a constrained quadrilateral mesh for P . In a constrained
quadrilateral mesh, we allow Steiner points to be inserted on δP as well, so that the
union of the finite elements of the mesh is equal to P .

We start by describing an algorithm to adapt Q to include a single edge of P . In
order to use this algorithm on all edges of P , QT must satisfy certain polygon edge
separation conditions, which are discussed towards the end of the section. We conclude
the section by describing how to construct the final constrained mesh for P by adapting
to the regions around the vertices.

Inserting an edge into Q

Consider an edge �e = (a, b) of P oriented from a to b, where a, b ∈ X . Assume that �e
makes an angle between−45◦ and 45◦ with the positive x axis (if not, orient the x axis
so that this is the case). We say that a point lies “above” �e if it lies in the open halfspace
to the left of the oriented line through �e . We use �e to define two chains of edges from
Q and QT , as described below:
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(i) �e intersects quadrilaterals of Q. Edges of these quadrilaterals are used to define a
chain of edges called the quadrangulation chain α associated with �e .

(ii) �e intersects quadtree cells of QT . The centers of these cells are used to define a
chain of edges called the quadtree chain β associated with �e .

Quadrangulation Chain. Let q1, q2, . . . , qk be the quadrilaterals of Q intersected
by �e in left to right order as traversed from a to b (since the quadrilaterals are con-
vex, each qi is unique). Let Ei be the edges of qi that lie entirely above �e . Ei may
have 0, 1, or 2 edges. If Ei has two edges, they are listed in clockwise order about
qi. Then the quadrangulation chain α is defined as α = E1 · E2 . . . · Ek, where ·
represents edge concatenation. See Fig. 8 for an example of a quadrangulation chain, in

a
q1

q2
q3

q4
q5

q6

α q8

q7

q9 q11

q10

b

Fig. 8. Quadrangulation chain α

which E1 has 1 edge, E2 has 2 edges, and E3

has 0 edges. Note that the same edge may repeat
twice in α (the repetitions always appear consec-
utively) and such an edge is incident to qi that has
|Ei| = 0. For example, the quadrangulation chain
in Fig. 8 has three repeating edges, which are in-
cident to the quadrilaterals q3, q5 and q10. If we
drop the repetitions from α, then α is a weakly
simple polygonal chain.

A vertex belongs to an edge if it is one of the
endpoints of the edge. We say that v ∈ α if v is a vertex of Q and belongs to one of
the edges of α. If we quadrangulate the region bounded by α and �e by adding Steiner
points either in the interior of the region or on �e itself, the resulting quadrangulation
is compatible with Q (since edges of α are edges in Q). However, in order to quad-
rangulate the region with the desired angle bounds, we need to know more about the
geometry of α. The quadtree chain, described below, allows us to establish the required
geometric properties for α.

Quadtree Chain. In the remainder of the paper, we use the same symbol to refer to
a quadtree cell as well as its center whenever the meaning is clear from the context.
Given a cell c, N(c),W (c), and E(c) denote, respectively, the set of north, west, and
east neighbor cells of c (note that each set has at most two elements in it because of the
balancing conditions for QT ).

Let C be the set of cell centers of quadtree cells in QT that are intersected by �e .
C does not include the starting or ending cells (i.e., the cells containing a and b, re-
spectively). Let θ be the angle (in degrees) that �e makes with the positive x axis. The
quadtree chain β is defined as follows:

1. If c ∈ C and c lies above �e , then c belongs to β.
2. If c ∈ C and c lies below �e , then N(c) ⊂ β. Note that the centers of cells in N(c)

must lie above �e under our assumption that −45 ≤ θ ≤ 45.
3. If c ∈ C, c lies below �e , and 0 ≤ θ ≤ 45 (resp., −45 ≤ θ < 0), then a cell center

in W (c) (resp., E(c)) belongs to β if it lies above �e .

Let {c1, c2, . . . , cm} be the cell centers in β in lexicographically sorted (by x, then
y) order. Recall that Q is constructed from the quadtree decomposition QT of X . The
overall approach to incorporating edge �e into Q is summarized below:
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(A) We first show that quadtree chain β is a subset of quadrangulation chain α.
(B) This fact allows us, in turn, to exploit the structure provided by QT and our al-

gorithm from Section 2 to identify a small number of possible ways in which two
consecutive points ci and ci+1 of β can be connected along the chain α. We use αi,
1 ≤ i ≤ m − 1, to refer to the subchain of α starting at ci and ending at ci+1. αi

may lie under −−−→cici+1. In this case, we choose instead a chain of edges in Q lying
above−−−→cici+1 in order to simplify the final quadrangulation step in part (C) below.

(C) Finally, we quadrangulate the region bounded by �e and α by breaking it into
smaller sub-regions defined by perpendicular projections from ci and ci+1 onto �e .
The case analysis form part (B) is then used to prove a minimum angle guarantee
of 18.43◦ for the quadrangulation of each subregion.

Lemmas 1-3 are required for steps (A)-(C) and stated here without proof.

Lemma 1. For 1 ≤ i ≤ m, ci ∈ α. That is, every cell center in the quadtree chain
belongs to the quadrangulation chain.

Lemma 2. For 1 ≤ i ≤ m− 1, ci and ci+1 are edge or corner neighbors in QT .

Lemma 3. Let vi be the vertical projection of ci on �e . For 1 ≤ i ≤ m, the segment civi

does not intersect α.

Lemmas 1 and 3 imply that the edge sequence (vi, ci) · αi · (ci+1, vi+1) · (vi+1, vi)
defines a simple polygon for all 1 ≤ i ≤ m − 1. Call this polygon Ai. We now use
Lemma 2 to prove that αi is composed of at most four edges. This is done via a case
analysis on the ways in which ci and ci+1 are connected in Q.

Lemma 4. The number of edges in αi is at most four.

Proof: We know from Lemma 2 that ci and ci+1 are either edge or corner neighbors in
QT . We consider each case separately. Our case analysis only depicts αi with two or
more edges (i.e., when ci and ci+1 are not directly connected). Let si, 1 ≤ i ≤ m refer
to the size of ci’s cell (by “size”, we mean “side length”).

Case 1: ci and ci+1 are edge neighbors. In this case, the connectivity between ci and
ci+1 in Q may come from either the application of a template (applyTemplate) at some
level of recursion, or the application of the stitching step (stitchChains) at some level
of recursion. We consider different possibilities based on the ratio si : si+1, which may
be 1 : 1, 1 : 2, or 2 : 1. Configurations for these cases are shown in Figs. 9, 10, and 11,
respectively. Each of these figures indicates the minimum internal angle in Ai along αi.
Note that each of them is well above 18.43◦. We depict only distinct αi that differ in
either the number of edges, or the angles at the vertices (that is, we do not show other,
symmetric configurations that lead to the same αi).

Case 2: ci and ci+1 are corner neighbors. In this case, the connectivity between ci

and ci+1 in Q may come from the application of applyTemplate, the application of
stitchChains, or through a center quad. The center quad is the quadrilateral formed at
the center, i.e. the meeting point of the four quadrants, after a general template (ref.
Fig. 3) is applied during the recursive step. Since ci and ci+1 are corner neighbors, the
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(i)

ci ci+1

75.96◦

ci ci+1

(ii)

ci

(iii)

ci+1

Fig. 9. Configurations for αi when si : si+1

is 1 : 1. (i) and (ii) come from stitching base
cases, and (iii) from stitching merge steps.

ci

(i)

ci+1 ci+1

ci

(ii) (iii)

ci

ci+1

45◦

Fig. 10. Configs. for αi when si : si+1

is 1 : 2. (i) and (ii) from applyTemplate
and stitching base cases. (iii) from stitch-
ing merge steps.

(iv)(iii)

(ii)

ci

ci+1ci+1

ci

(i)

63.43◦

Fig. 11. Configurations for αi when si : si+1 is 2 : 1. (i) and (ii) come from applyTemplate and
stitching base cases. (iii) and (iv) occur only in the stitching base cases.

ratio si : si+1 can be 1 : 1, 1 : 2, 2 : 1, 1 : 4, or 4 : 1. We consider the case of center
quads first, and then consider templates and stitchings.

Case 2.1: αi contains center quad edges. Let s be the size of the cell adjacent to ci as
well as ci+1 and lying above −−−→cici+1. Possible configurations for αi when si : s :
si+1 ≡ 1 : 1 : 1 are shown in Fig. 12. In 12(i), 12(iv), and 12(vi), the point in
the cell adjacent to ci and ci+1 may be either a cell center or an extra point of a
larger cell. When si : s : si+1 ≡ 1 : 2 : 1 or si : s : si+1 ≡ 1 : 1

2 : 1, possible
configurations of αi are shown in Figs. 13 and 14, respectively.

(i)

ci

ci+1

ci

(ii)

ci+1

ci

(iv)
ci

(iii)

ci+1ci+1

(vi)

ci

ci+1ci+1

(v)
ci 53.14◦

Fig. 12. si : s : si+1 ≡ 1 : 1 : 1

When si : s : si+1 ≡ 1 : 1 : 2, possible configurations of αi are shown in Fig. 15.
For the case when si : s : si+1 ≡ 2 : 1 : 1, the αi are obtained by reflections about
the line y = x of those in Case 2.1.4. Hence the minimum internal angle shown in
Fig. 15 holds here as well. Similarly, Fig. 16 depicts αi when si : s : si+1 ≡ 1 :
2 : 2 and the chains in this figure are reflections about the line y = x of possible αi

when si : s : si+1 ≡ 2 : 2 : 1
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ci

ci+1 ci+1

ci

ci+1

ci
28.08◦

Fig. 13. si : s : si+1 ≡ 1 : 2 : 1

ci

ci+1 ci+1

ci ci

ci+1

126.86◦

Fig. 14. si : s : si+1 ≡ 1 : 1
2 : 1

ci

ci+1 ci+1

ci ci

ci+1 ci+1

ci

ci+1

ci ci

ci+1

ci

ci+1

ci

ci+1

71.57◦

Fig. 15. si : s : si+1 ≡ 1 : 1 : 2

ci

ci+1 ci+1

ci

ci+1

ci

ci+1

ci
40.61◦

Fig. 16. si : s : si+1 ≡ 1 : 2 : 2

Finally, Fig. 17 shows possible configurations of αi when si : s : si+1 ≡ 1 : 2 :
4. For the case when si : s : si+1 ≡ 4 : 2 : 1, the αi are obtained by 180◦ rotations
of those in Fig. 17.

ci

ci+1 ci+1

ci

ci+1

ci

ci+1

ci

ci+1

ci ci

ci+1

ci

ci+1

ci

ci+1

59.04◦

Fig. 17. si : s : si+1 ≡ 1 : 2 : 4

Case 2.2: αi constructed by application of applyTemplate or stitchChains. All new con-
figurations of αi that occur by a template application, or a stitching step at some
level of recursion are listed. By “new”, we mean configurations that do not appear
in Figs. 12-17. Note that when ci and ci+1 are connected via templates or stitch-
ings, si : si+1 is 1 : 1 (see Fig. 18), 1 : 2, (see Fig. 19) or 2 : 1 (reflections about
the line of y = x of the αi in Fig. 19), but not 1 : 4 or 4 : 1.

While Figs. 12-19 all depict ci and ci+1 in the southwest and northeast quadrants
respectively, note that each of the αi in these figures has a 90◦ rotational symmetry
corresponding to ci and ci+1 in the northwest and southeast quadrants, which does not
change the minimum internal angles indicated in those figures.

It follows from the above case analysis that αi has at most four edges.
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(i) (ii) (iii) (iv) (vi)

ci+1 ci+1 ci+1 ci+1 ci+1

ci+1

cicicici ci ci
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63.43◦

Fig. 18. si : si+1 ≡ 1 : 1
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ci 63.43◦

Fig. 19. si : si+1 ≡ 1 : 2

We now describe how to quadrangulate each polygonal region Ai = (vi, ci) · αi ·
(ci+1, vi+1) · (vi+1, vi) independently for 1 ≤ i ≤ m. Before doing this, we first
show that rather than using the vertical projections vi and vi+1, we may instead use
perpendicular projections of ci and ci+1 onto edge �e (Lemma 6). This allows us to
prove angle bounds for quadrangulating Ai that are independent of the angle that �e
makes with the horizontal (recall that this is between −45◦ and 45◦).

Lemma 5. Let δi be the signed angle (in degrees) between −−−→cici+1 and the positive x-
axis. Then abs(δi) ∈ {0, 18.43, 45, 71.57, 90}.

Proof: Since ci and ci+1 are both cell centers in QT , and we know from Lemma 2
that they are edge or corner neighbors, it follows that there are a constant number of
possibilities for δi: If ci and ci+1 are edge neighbors with si = si+1, then δi is either
0 or 90◦. If ci and ci+1 are edge neighbors with si �= si+1, then tan(δi) = 1

3 , i.e.,
abs(δi) = 18.43◦, or tan(δi) = 3, i.e., abs(δi) = 71.57◦. If ci and ci+1 are corner
neighbors, then abs(δi) = 45◦.

Let θ be the signed angle made by �e with the positive x-axis. The value of θ determines
the range of possibilities for δi. This is because of our definition of the quadtree chain,
which specifies that either cell ci (resp. ci+1) has center above �e and is intersected by
�e , or it is the north/west neighbor of a cell intersected by �e whose center lies below
�e . Table 1 summarizes the possible values of δi for given ranges of θ. This relationship
also allows us to prove Lemma 6, stated here without proof.

Lemma 6. Let pi be the perpendicular projection of ci on �e , and vi the vertical pro-
jection of ci on �e . Assume �e makes an angle between −45◦ and 45◦ with the positive
x axis. Then for all 1 ≤ i < m, ci+1 lies outside the triangle ∆(picivi).

We know from Lemma 3 that for all 1 ≤ i ≤ m, αi does not intersect civi or ci+1vi+1.
Furthermore, we know from the proof of Lemma 4 that αi lies above −−−→cici+1 (that is, it
does not intersect the region bounded by civivi+1ci+1). Therefore, Lemma 6 implies
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Table 1. Range of values for θ and δi

Range of θ Values of δi

18.43◦ ≤ θ < 45◦ −18.43◦ ≤ δi ≤ 90◦

0 < θ < 18.43◦ −45◦ ≤ δi < 90◦

−18.43◦ < θ ≤ 0 −71.57◦ ≤ δi ≤ 45◦

−45◦ < θ ≤ −18.43◦ −71.57◦ ≤ δi ≤ 18.43◦

(c) (d) (e)

ci+1

ci

�e

φ1

φ2

κ1
pi

pi+1

v

κ2

(b)

ci

ci+1
ci+1

ci

φ1

κ1

θ

θ
pi

pi+1

�e

(a)

δi

ci

ci+1

ci

ci+1

Fig. 20. (a) min{φ1, κ1} ≥ 18.43◦. (b) min{φ1 +φ2, κ1 +κ2} ≥ 2×18.43◦. (c) Shaded angle
is 12.54◦. (d)-(e) Shaded angle is 14.04◦.

that αi does not intersect cipi or ci+1pi+1 either. We redefine polygon Ai to be (pi, ci) ·
αi · (ci+1, pi+1) · (pi+1, pi) (that is, it is defined by the perpendicular projections rather
than the vertical ones). Lemmas 7 and 8 establish bounds on some angles in Ai when
αi has one and two edges, respectively.

Lemma 7. Let φ1 = ∠picici+1 and κ1 = ∠cici+1pi+1. Then min{φ1, κ1} ≥ 18.43◦.

Proof: Refer to Fig. 20(a). Since φ1 = 90− θ + δi and κ1 = 90 + θ − δi (recall θ and
δi are signed angles), and the fact −71.57◦ ≤ (θ − δi) ≤ 71.57◦ (refer to Table 1), it
follows that φ1 ≥ 18.43◦ and κ1 ≥ 18.43◦.

Lemma 8. Suppose αi has two edges, civ and vci+1. Let φ1 = ∠picici+1, κ1 =
∠cici+1pi+1, φ2 = ∠ci+1civ, and κ2 = ∠cici+1v. Then (i) min{φ1, κ1} > 18.43◦

and (ii) min{φ1 + φ2, κ1 + κ2} ≥ 2× 18.43◦.

Proof: (i) From Lemma 7 we know that min{φ1, κ1} ≥ 18.43◦. To see that it must be
strictly greater, note that if min{φ1, κ1} = 18.43◦ then abs(θ − δi) = 71.57◦. From
Lemma 5 and Table 1, it can be seen that abs(θ − δi) = 71.57◦ when (a) θ = 18.43◦

and δi = 90◦, which is impossible because ci and ci+1 are directly connected whenever
δi = 90◦, or (b) θ = 0 and δi = 71.57◦, which is also impossible because θ must be
strictly greater than 0 whenever δi = 71.57◦.

(ii) Refer to Fig. 20. First observe that if min{φ2, κ2} ≥ 18.43◦, then part (i) implies
the claim. Hence assume that min{φ2, κ2} < 18.43◦. The only configurations of αi for
which min{φ2, κ2} < 18.43◦ are shown in Fig. 20(c)-(e). We use the angle dependency
in Table 1 to prove that these configurations imply min{φ1+φ2, κ1+κ2} ≥ 2×18.43◦.
Further details are omitted here.

Lemma 9. For 1 ≤ i ≤ m − 1, the simple polygon Ai = (pi, ci) · αi · (ci+1, pi+1) ·
(pi+1, pi) can be quadrangulated with at most five quadrilaterals with a minimum angle
of 18.43◦.
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Proof: Since αi has at most four edges (Lemma 4), we have four cases.

Case 1: αi has one edge. In this case, Ai is already a quadrilateral. The fact that all
angles of Ai are at least 18.43◦ follows from Lemma 7.

Case 2: αi has two edges. Let civ and vci+1 be the two edges of αi. Let φ1, κ1, φ2, and
κ2 be as in Fig. 20(b). Let γ = ∠civci+1. Observe that γ ≥ 26.57◦ because the
edges of αi come fromQ. We quadrangulate Ai according to the angles φ2 and κ2.
• If min{φ2, κ2} ≥ 18.43◦, place a Steiner point s on cici+1 and at the per-

pendicular projection p of s onto �e . Connect s to ci, ci+1, and p to obtain a
quadrangulation of Ai. Perturb s towards p to obtain strictly convex quadrilat-
erals. We know from Lemma 8(i) that there is always a small perturbation of
s that maintains all angles in the resulting quadrangulation at or above 18.43◦.
See Fig. 21(a).

�epi+1

ci+1
pi

(c)

v

κ2

p

ci

�epi+1

v
ci+1

κ2

p
(b)

pi
s

s

ci

�epi+1

ci+1
pi

(d) s

κ2

ci

κ2

ci+1

�epi+1

pi p
(a)

v

ci

s
v

φ2 φ2 φ2
φ2

Fig. 21. αi has two edges. (a) min{φ2, κ2} ≥ 18.43◦. (b) φ2 < 18.43◦ and κ2 ≥ 18.43◦. (c)
φ2 ≥ 18.43◦ and κ2 < 18.43◦. (d) φ2 < 18.43◦ and κ2 < 18.43◦.

• If min{φ2, κ2} < 18.43◦, the placement of Steiner points depends on which
of φ2 and κ2 are smaller than 18.43◦ (assume wlog that φ1 + φ2 ≤ κ1 + κ2).
If exactly one of φ2 or κ2 is less than 18.43◦, then Lemma 8 guarantees a
quadrangulation of Ai with the required angle bounds. We omit details and
refer to Fig. 21(b)-(c). If both φ2 and κ2 are less than 18.43◦, the only possible
configuration for αi is shown in Fig. 20(e). Observe that in this case, v can see
�e . Let s be the perpendicular projection of v onto �e , unless 0 < θ < −18.43◦,
in which case let s be the vertical projection of v onto �e . Connect v to s to
obtain a quadrangulation of Ai in which all angles satisfy the lower bound .

Case 3: αi has three edges. The method used to quadrangulateAi depends on the num-
ber of reflex internal vertices of αi, which is zero or one (note that since αi lies
above −−−→cici+1, it is not possible for both internal angles to be reflex):
• If the two internal angles along αi are both convex, draw an edge between ci

and ci+1, which quadrangulates Ai with two quadrilaterals. Some examples of
such αi can be seen in Fig. 10(iii) and 19(ii). In all such cases, Lemma 7
guarantees that all angles in the quad below −−−→cici+1 is at least 18.43◦. The quad
above−−−→cici+1 has a minimum angle of 26.57◦. See Fig. 22(a).

• If one of the internal angles along αi is reflex, ci and ci+1 must be corner neigh-
bors. Let r be the reflex vertex. r either lies on the segment cici+1 (Fig. 22(b)),
or belongs to the quadtree cell N(ci) adjacent to ci and ci+1 and lying above
−−−→cici+1 (Fig. 22(c)). Several examples of the former appear in Figs. 12-17. For
the latter, see Fig. 18(v)-(vi) and Fig. 19(iv). We can show that in both cases,
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Fig. 22. αi has three edges
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ci+1

�e
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ci

Fig. 23. αi has four edges

Ai can be decomposed into a quadrilateral and a pentagon that is further de-
composed into three quads with the required minimum angle bounds. Details
are omitted here.

Case 4: αi has four edges. αi is classified according to the three internal vertices:
• If the three internal vertices consist of two reflex vertices separated by a convex

vertex (e.g., Fig. 18(i)), the reflex vertices always lie on cici+1. Insert edges
from each reflex vertex to its perpendicular projection onto �e . This decom-
poses Ai into two quads and a pentagon. Lemmas 7 and 8 provide the required
minimum angle bounds. See Fig. 23(a).

• If the three internal vertices consist of two convex vertices separated by a reflex
vertex (Fig. 18(ii)), decompose Ai into four quads as shown in Fig. 23(b). Note
that this decomposition has the required minimum angle bounds regardless of
the value of θ.

This completes the proof that Ai can be quadrangulated with at most five quadrilaterals
with a minimum angle of 18.43◦.

Edge separation conditions for quadtree

Every edge �e of the polygon P defines a chain of edges given by ∪1≤i≤mαi. From this
chain, we obtain the polygons Ai, each of which is then quadrangulated as described
above. In order to conduct this process independently for every edge of the polygon, we
impose an edge separation condition on QT . The edge separation condition requires
that all quadrangulation chains ∪1≤i≤mαi defined by the edges of the polygon be dis-
joint from each other. Recall that these chains do not start in the cell containing the
segment endpoint, but rather in one adjacent to it. This allows quadrangulation chains
to be separated completely, except in the 5 × 5 grid of cells around each polygon ver-
tex. In the worst case, the edge separation condition requires that every cell intersected
by a polygon edge be surrounded by a 3 × 3 grid of empty cells, but in practice, this
requirement does not apply uniformly across the entire segment.

Connecting quadtree chains around polygon vertices

For every edge of the polygon P , the quadtree chain starts and ends at a cell center
within the 3 × 3 grid of quadtree cells that is guaranteed to exist around each of its
endpoints. Let v be a vertex of P and let e and f be the two oriented edges incident on
v (the interior of P lies to their left). Let u be the last quadtree chain vertex for edge e
and let w be the first quadtree chain vertex for edge f . Note that u and w are both cell
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centers in the 3×3 grid around v. Let ū and w̄ be the perpendicular projections of u and
w onto e and f , respectively. Let E be a sequence of edges connecting u to w in the 3×3
grid. The region around vertex v is meshed by quadrangulating the polygon Pv defined
by the edges vū, ūu, E,ww̄, w̄v. The method used to quadrangulate Pv depends on the
number of edges in E, which is between one and seven (inclusive). Refer to Fig. 24 for
an illustration of some cases. The underlying 3 × 3 grid is used to prove the following
lemma, stated here without proof.

Lemma 10. Pv can be decomposed into at most seven quadrilaterals with a minimum
angle of 18.43◦.

Figure 25 shows quadrangulation chains ∪1≤i≤mαi for some edges of a polygon (the
entire polygon is shown in Fig. 28). Quadtree chain vertices are highlighted.
Summary of algorithm. We summarize in Figure 26 the algorithm to quadrangulate
the interior of a non-acute simple polygon P of n edges e1, e2, . . . , en and vertices
v0, v1, . . . , vn−1, where ei = (vi−1, vi) (where vn = v0). The resulting quadrilaterals
have a minimum angle bound of 18.43◦.

Theorem 2. Given a quadtree decomposition with N quadtree cells satisfying the edge
separation condition for a simple polygon P , Quadrangulate(P, n) constructs a mesh
for P with at most 5N quadrilaterals in which every angle is at least 18.43◦.

v
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e

26.56◦
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f
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w
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(b) (c)
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w

v

x x

u v
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v

w
e

e

f
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e
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Fig. 24. Connecting at corners. Number of edges in E is (a) one, (b) two, (c)-(d) three or more.

Fig. 25. Quadrangulation chains

Quadrangulate(P, n):
QT ← Quadtree decomposition satisfying edge separation conditions

for vertices of P
Q ← Quadrangulation resulting from applyTemplate on QT .
for ei ∈ {e1, e2, . . . , en}

α(ei) ← Quadrangulation chain for ei

Q(ei) ← Quadrangulation of region bounded by ei and α(ei),
as given by Lemma 9.

Q(vi) ← Quadrangulation of corner polygon Pvi ,
as given by Lemma 10.

Q′ ←
S

1≤i≤nQ(ei) ∪
S

1≤i≤nQ(vi)

return Q′ ∪ ( Q ∩(P−Q′))

Fig. 26. Summary of algorithm
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3.2 General Simple Polygons

v

a θ
q

v1
p′ p1

v′

q′

p2
p3

p
v3
v2

γ
γ
2

Fig. 27. Handling acute angles in P

Let P be a general simple polygon containing
acute angles. We first convert P into a polygon
that contains only obtuse angles by “cutting off”
the acute angle vertices. Let a be an acute angle
vertex of P . Let θ, 0 ≤ θ < 90, be the angle at
that vertex. Let v be a point on the angle bisector
of a, and let p and q be the perpendicular projec-
tions of v onto the two edges incident at a. v is
chosen so that the quadrangular region apvq does
not contain any other vertices of the polygon P . Cut all such regions apvq from P . Let
B be the polygon resulting from this procedure. Construct a quadrilateral mesh for B
using the algorithm in Section 3.1. Observe that now there might be Steiner points on
pv (e.g., v1, v2, v3 in Fig. 27) and vq. These are used to quadrangulate the region apvq
with the required angle bounds. We omit details and refer to Fig. 27 for an illustration
of the quadrangulation.

4 Conclusion

Sample meshes generated by our algorithm are shown in Figures 28 and 29. Ob-
serve that in these examples the ratio of the number of quadrilaterals to the number
of quadtree cells is less than one. The image on the right shows a zoomed-in portion of
the mesh on the left.

This paper presents the first known result on the generation of a quadrilateral mesh
for the interior of a simple polygon (possibly with holes) in which every new angle in

Fig. 28. Number of polygon edges: 19. Minimum mesh angle: 24.26◦. Number of quadtree cells:
1399. Number of mesh vertices: 989. Number of mesh faces (quads): 841.
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Fig. 29. Number of polygon edges: 33. Minimum mesh angle: 20.67◦. Number of quadtree cells:
2623. Number of mesh vertices: 2213. Number of mesh faces (quads): 1859.

the mesh is bounded from below. The main open question resulting from this work is
its extension to polygon interior as well as exterior. While our algorithm itself is appli-
cable to the interior or the exterior of the polygon, the difficulty of adapting it to both
lies in resolving mesh compatibility at the boundary without propagating the changes
throughout the mesh. We are currently investigating alternative strategies to mesh the
region bounded by quadtree chains on both sides of each polygon edge.

Acknowledgments. The authors would like to thank anonymous reviewers for helpful
comments that served to improve the presentation in the paper.
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