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1 Introduction

Generation of meshes adapted to a given function u requires a specially de-
signed metric. For metric derived from the Hessian of u, optimal error es-
timates for the interpolation error on simplicial meshes have been proved
in [2, 5, 8, 10, 11]. The Hessian-based metric has been successfully applied
to adaptive solution of PDEs [4, 7, 9]. However, theoretical estimates have
required to make an additional assumption that the discrete Hessian approx-
imates the continuous one in the maximum norm. Despite the fact that this
assumption is frequently violated in many Hessian recovery methods, the gen-
erated adaptive meshes still result in optimal error reduction.

In this article we continue the rigorous analysis [1, 3] of an alternative way
for generating a space tensor metric using the error estimates prescribed to
mesh edges. The new methodology produces meshes resulting in the optimal
reduction of the P1-interpolation error or its gradient. We define a tensor
metric M such that the volume and the perimeter of a simplex measured
in this metric control the norm of error or its gradient. The equidistribution
principle, which can be traced back to D’Azevedo [6], suggests to balance M-
volumes and M-perimeters. This leads to meshes that are quasi-uniform in
the metric M.

The paper outline is as follows. In Section 2, we derive appropriate metrics
from analysis of the interpolation errors. In Section 3, we present the algorithm
for generating adaptive meshes and its application to a model problem.
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2 Metric derivation from local error analysis

Let Ω ⊂ ℜd be a bounded polyhedral domain and Ωh be a conformal simplicial
mesh with Nh simplexes. Let M be a piecewise constant tensor metric on Ωh.
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The volume of simplex ∆ and the total length of its edges in this metric are
denoted by |∆|M and |∂∆|M, respectively [2].

Let I1u be the piecewise linear interpolant of u, and I1,∆u be its restriction
to ∆. Our goal is to generate meshes that minimize the Lp-norm, p ∈ (0,∞],
of the interpolation error e = u − I1u or its gradient ∇e.

Let us consider a particular d-simplex ∆ with vertices vi, i = 1, . . . , d + 1,
edge vectors ek = vi − vj , 1 ≤ i < j ≤ d + 1, and mid-edge points ck,
k = 1, . . . , nd, where nd = d(d + 1)/2. Let λi, i = 1, . . . , d + 1, be the linear
functions on ∆ such that λi(vj) = δij where δij is the Kronecker symbol. For
every edge ek, we define the quadratic bubble function bk = λiλj .

Step 1. We begin with the derivation of a tensor metric from edge data.

Lemma 1 (Metric existence [1]). Let αk, k = 1, . . . , nd, be values pre-

scribed to edges of a d-simplex ∆ such that αk ≥ 0 and
∑nd

k=1 αk > 0. Then,

there exists a constant tensor metric M∆ such that

(
d!

(d + 1)(d + 2)

)1/d

|∆|2/d
M∆

≤
nd∑

k=1

αk ≤ |∂∆|2M∆
. (1)

Step 2. Let u2 be a continuous piecewise quadratic function and e2 =
u2 − I1,∆u2 be the linear interpolation error. We have

e2 = 4

nd∑

k=1

(u2(ck) − I1,∆u2(ck)) bk =

nd∑

k=1

γk bk,

where γk = 4(u2(ck) − I1u2(ck)). The L2-norm of the error e2 is given by

‖e2‖2
L2(∆) = |∆| (B γ, γ), (2)

where γ is a vector with nd components γk and B is the nd × nd symmetric
positive definite Gramm matrix with positive entries

Bk,l =
1

|∆|

∫

∆

bkbl dV.

Note that B is spectrally equivalent to the identity matrix. Thus,

c1 |∆|
(

nd∑

k=1

|γk|
)2

≤ ‖e2‖2
L2(∆) ≤ c2 |∆|

(
nd∑

k=1

|γk|
)2

, (3)

where the constants c2 ≥ c1 > 0 depend only on the space dimension d.
Analysis of the L2-norm of ∇e2 in [1] uses the Cholesky decomposition of

B̃ = LL
T , the Gramm matrix for vector-functions ∇bk, to get:

‖∇e2‖2
L2(∆) = |∆|

nd∑

k=1

β2
k, (4)
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where β = L
T γ. Thus, the L2-norms of e2 and ∇e2 are controlled by a sum

of non-negative numbers associated with the edges of simplex ∆ times |∆|.
Using Lemma 1 we build the metric M∆ for e2 by setting αk = |γk|.

Similarly, to build the metric M̃∆ for ∇e2, we set αk = β2
k. In the next step

we convert these metrics to optimal metrics for the Lp-norm.

Step 3. The extension of error estimates to general Lp-norms follows the
path described in [1]. With a slight modification of the argument used there,
we may show that the optimal metrics for the Lp-norm of e2 and ∇e2 are:

M∆,p = (det(M∆))
−1/(d+2p)

M∆ and M̃∆,p = (det(M̃∆))−1/(d+p)
M̃∆.

For simplicity, we confine ourselves to the case p = ∞. In this case, the metrics

generated by Lemma 1 are optimal, i.e. M∆,∞ = M∆ and M̃∆,∞ = M̃∆.

Step 4. For a given continuous function u, we define a computable error
e2 which will be used to estimate the true error e∆:

e2 = I2,∆u − I1,∆u and e∆ = u − I1,∆u,

where I2,∆u be the piecewise quadratic Lagrange interpolant of u on ∆.
Let F be the space of symmetric d × d matrices and |H| be the spectral

module of H ∈ F . We introduce the following notations:

|‖ek|‖2
|H| = max

x∈∆
(|H(x)|ek, ek) and |‖∂∆|‖2

|H| =

nd∑

k=1

|‖ek|‖2
|H|.

Lemma 2 (L2 error). Let u ∈ C2(∆̄). Then

d + 1

2d
‖e2‖L∞

≤ ‖e∆‖L∞
≤ ‖e2‖L∞

+
1

4
inf
F∈F

|‖∂∆|‖2
|H−F|.

Lemma 3 (Gradient error [1]). Let u ∈ C2(∆̄). Then, there exist positive

constants cs, Cs, and c4 = c4(d) such that

cs‖∇e2‖L∞
− osc(H,∆) ≤ ‖∇e∆‖L∞

≤ Cs‖∇e2‖L∞
+ osc(H,∆), (5)

where the oscillation term is

osc(H,∆) = c4
|∂∆|d−1

|∆| inf
F∈F

|‖∂∆|‖2
|H−F|

The oscillation terms are conventional in contemporary error analysis.
Their value depend on the simplex and particular features of the function.
For instance, if u ∈ C2(∆̄), and ∆ is shape regular, then osc(H,∆) ∼ |∂∆|2.

3 Metric-based mesh adaptation

We use the Algorithm 1 to build an adaptive mesh minimizing the Lp-norm
of error or its gradient. The algorithm is more robust for continuous tensor
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Algorithm 1 Adaptive mesh generation

1: Generate an initial mesh Ωh and compute the metric Mp.
2: loop

3: Generate a Mp-quasi-uniform mesh Ωh.
4: Recompute the metric Mp.
5: If Ωh is Mp-quasi-uniform, then exit the loop .
6: end loop

metrics that provide faster convergence and result in smoother meshes. We
suggest two methods for recovering of a continuous nodal-based metric from
the discontinuous piecewise-constant metric Mp.

For every node ai in Ωh, we define the superelement σi as the union of all
d-simplices sharing ai. The first method is based on simple shifting: to every
node ai, we assign the metric with the largest determinant from all metrics
available in superelement σi. The second method is generalization of the ZZ-
recovery method [12]. On every superelement σi, we search for a polynomial
u3 containing only cubic and quadratic terms. Let H3 be the Hessian of u3.
The free parameters are chosen to minimize the functional

∑

1≤j≤k≤d

∑

∆∈σi

(H3,jk(b∆) − (M∆)jk)
2
,

where b∆ is the barycenter of simplex ∆. We set M(ai) = H3(ai). To generate
a M-quasi-uniform mesh, we use local mesh modifications described in [2, 4,
10] and implemented in package Ani2D (sourceforge.net/projects/ani2D).

In Ω = [0, 1]2 we consider the analytical function proposed in [6]:

u(x, y) =
(x − 0.5)2 − (

√
10y + 0.2)2

((x − 0.5)2 + (
√

10y + 0.2)2)2
.

The function has an anisotropic singularity at point (0.5, −0.2/
√

10) located
outside the computational domain but close to its boundary. Table 1 shows
that the L∞-norm of the interpolation error is proportional to N−1

h , while
the L∞-norm of its gradient is proportional to N−0.5

h . Note that the meshes
minimizing the interpolation error and its gradient are different (see Fig. 1).
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Fig. 1. The adaptive meshes with 2000 triangles minimizing the maximum norm of
the interpolation error (left) and its gradient (right).

Method of shifts ZZ-type method

Nh ‖e‖L∞(Ω) ‖∇e‖L∞(Ω) ‖e‖L∞(Ω) ‖∇e‖L∞(Ω)

1000 1.55e-1 6.55e+1 3.74e-1 9.49e+1

4000 4.64e-2 3.16e+1 6.83e-2 4.91e+1

16000 1.14e-2 1.71e+1 2.00e-2 2.79e+1

64000 3.33e-3 8.39e+0 8.14e-3 1.34e+1

rate 0.93 0.49 0.92 0.47

Table 1. Convergence of the interpolation error and its gradient.
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