
1A.1

Aggressive Tetrahedral Mesh Improvement

Bryan Matthew Klingner and Jonathan Richard Shewchuk

University of California at Berkeley

Summary. We present a tetrahedral mesh improvement schedule that usually cre-
ates meshes whose worst tetrahedra have a level of quality substantially better than
those produced by any previous method for tetrahedral mesh generation or “mesh
clean-up.” Our goal is to aggressively optimize the worst tetrahedra, with speed a
secondary consideration. Mesh optimization methods often get stuck in bad local op-
tima (poor-quality meshes) because their repertoire of mesh transformations is weak.
We employ a broader palette of operations than any previous mesh improvement
software. Alongside the best traditional topological and smoothing operations, we
introduce a topological transformation that inserts a new vertex (sometimes deleting
others at the same time). We describe a schedule for applying and composing these
operations that rarely gets stuck in a bad optimum. We demonstrate that all three
techniques—smoothing, vertex insertion, and traditional transformations—are sub-
stantially more effective than any two alone. Our implementation usually improves
meshes so that all dihedral angles are between 31◦ and 149◦, or (with a different
objective function) between 23◦ and 136◦.

1 Introduction

Industrial applications of finite element and finite volume methods using un-
structured tetrahedral meshes typically begin with a geometric model, from
which a mesh is created using advancing front, Delaunay, or octree meth-
ods. Often, the next step is to use heuristic mesh improvement methods (also
known as mesh clean-up) that take an existing mesh and try to improve the
quality of its elements (tetrahedra). The “quality” of an element is usually
expressed as a number that estimates its good or bad effects on interpolation
error, discretization error, and stiffness matrix conditioning. The quality of a
mesh is largely dictated by its worst elements. Mesh improvement software
can turn a good mesh into an even better one, but existing tools are incon-
sistent in their ability to rescue meshes handicapped by bad elements. In this
paper, we demonstrate that tetrahedral mesh improvement methods can push
the worst elements in a mesh to levels of quality not attained by any previous
technique, and can do so consistently.

There are two popular mesh improvement methods. Smoothing is the act
of moving one or more mesh vertices to improve the quality of the elements

4 Bryan Matthew Klingner and Jonathan Richard Shewchuk

a

b

a a a

b b

a a

b b

edge removal

multi−face removal

R

I J

T

b

2−3 flip

3−2 flip

4−4 flip

2−2 flip

Fig. 1. Examples of topological transformations.

adjoining them. Smoothing does not change the topology (connectivity) of
the mesh. Topological transformations are operations that remove elements
from a mesh and replace them with a different set of elements occupying the
same space, changing the topological structure of the mesh in the process.
Smoothing lies largely in the domain of numerical optimization, and topolog-
ical transformations in the domain of combinatorial optimization. The two
techniques are most effective when used in concert.

Topological transformations are usually local, meaning that only a small
number of elements are changed, removed, or introduced by a single operation.
Figure 1 illustrates several examples, including 2-3 flips, 3-2 flips, 4-4 flips, and
2-2 flips. The numbers denote the number of tetrahedra removed and created,
respectively. 2-2 flips occur only on mesh boundaries, and cause an edge flip
on the surface.

Smoothing and topological transformations are usually used as operations
in a hill-climbing method for optimizing the quality of a mesh. An objec-
tive function maps each possible mesh to a numerical value (or sequence of
values) that describes the “quality” of the mesh. A hill-climbing method con-
siders applying an operation to a specific site in the mesh. If the quality of
the changed mesh will be greater than that of the original mesh, the opera-
tion is applied; then the hill-climbing method searches for another operation
that will improve the new mesh. Operations that do not improve the value of
the objective function are not applied. Thus, the final mesh cannot be worse
than the input mesh. Hill climbing stops when no operation can achieve fur-
ther improvement (the mesh is locally optimal), or when further optimization
promises too little gain for too much expenditure of time.

In our opinion, the best research to date on tetrahedral mesh improvement
is the work of Freitag and Ollivier-Gooch [11], who combine optimization-
based smoothing with several topological transformations, including 2-3 flips,
3-2 flips, and an operation sometimes called edge removal. They report the

1A.1 Aggressive Tetrahedral Mesh Improvement 5

performance on a variety of meshes of several schedules for applying these op-
erations, show that their best schedule eliminates most poorly shaped tetrahe-
dra, and offer empirical recommendations about what makes some schedules
better than others.

Although we have long felt that the paper by Freitag and Ollivier-Gooch
is a model of excellent meshing research, we also suspected that yet better
results were possible through a more aggressive set of operations. Delaunay
mesh generation algorithms achieve good results by inserting new vertices [12],
often boosting the smallest dihedral angle to 19◦ or more [22]. But no “mesh
clean-up” paper we know of uses transformations that add new vertices to
the mesh—a strange omission. No doubt this oversight stems partly from the
desire not to increase the size (number of elements) of a mesh.

We show here that vertex-creating transformations make it possible to
achieve levels of mesh quality that, to the best of our knowledge, are unprece-
dented. Given meshes whose vertices are somewhat regularly spaced (as every
competent tetrahedral mesh generator produces), our implementation usually
improves them so that no dihedral angle is smaller than 31◦ or larger than
149◦. It sometimes achieves extreme angles better than 40◦ or (with a differ-
ent objective function) 120◦. No previous software we know of for tetrahedral
mesh generation or mesh improvement achieves angles of even 22◦ or 155◦

with much consistency.
As a combinatorial optimization problem, mesh improvement is not well

behaved. The search space is the set of all possible meshes of a fixed geometric
domain. A transformation (including smoothing) is an operation that trans-
forms one mesh of the domain to another. These operations give the search
space structure, by dictating what meshes are immediately reachable from
another mesh. The objective function, which maps the search space to quality
scores, has many local optima (meshes whose scores cannot be improved by
any single transformation at hand), and it is unlikely that any mesh improve-
ment algorithm will ever find the global optimum—the best possible mesh of
the domain—or even come close.

However, our goal is merely to find a local optimum whose tetrahedra are
all excellent. Intuitively, a powerful enough repertoire of operations ought to
“smooth out” the objective function, thereby ensuring that few poor local
optima exist. The question is, what is a powerful enough repertoire?

In this paper, we take the operations explored by Freitag and Ollivier-
Gooch and enrich them considerably, adding the following.
• A topological transformation that inserts a new vertex (usually into a bad

tetrahedron). This operation is not unlike Delaunay vertex insertion, but
it is designed to optimize the worst new tetrahedron instead of enforcing
the Delaunay property. Sometimes it deletes vertices as well.

• Smoothing of vertices constrained to lie on the boundary of the mesh.
• Edge removal for edges on the boundary of the mesh.
• The multi-face removal operation of de Cougny and Shephard [7].

6 Bryan Matthew Klingner and Jonathan Richard Shewchuk

• Compound operations that combine several other operations in the hope
of getting over a valley in the objective function and finding a better peak.
If unsuccessful, these operations are rolled back.
These additions are motivated by two observations: to repair a tetrahe-

dralization it is often necessary to repair the boundary triangulation; and
inserting a new vertex often breaks resistance that cannot be broken by topo-
logical operations that do not change the set of vertices in a mesh. We have
implemented and tested schedules that use these operations, and we investi-
gate the consequences of turning different operations on or off.

The main goal of this paper is to answer the question, “How high can
we drive the quality of a tetrahedral mesh, assuming that speed is not the
highest priority?” Questions like “How quickly can we consistently fix a mesh
so all its dihedral angles are between, say, 20◦ and 160◦?” are important too.
But we think it is hard to do justice to both questions in one short paper,
and studying the former question first will make it easier to answer the latter
question in future work.

2 Mesh Quality

The success of the finite element method depends on the shapes of the tetra-
hedra. Large dihedral angles (near 180◦) cause large interpolation errors and
rob the numerical simulation of its accuracy [14, 17, 24], and small dihedral
angles render the stiffness matrices associated with the finite element method
fatally ill-conditioned [2, 24]. Although anisotropic tetrahedra with extreme
angles are desirable and necessary in some contexts, such as aerodynamics, we
restrict our attention here to isotropic simulations, which are the norm in me-
chanics, heat transfer, and electromagnetics. Often, a single bad tetrahedron
can spoil a simulation. For example, a large dihedral angle can engender a huge
spurious strain in the discretized solution of a mechanical system. Therefore,
our top priority is to produce a mesh in which the worst tetrahedra are as
good as possible.

Most mesh improvement programs encapsulate the quality of a tetrahedron
t as a single numerical quality measure q(t). Many such quality measures
are available [9, 24]. All the mesh operations we use are flexible enough to
accommodate almost every measure in the literature. We assume each measure
is “normalized” so that a larger value of q(t) indicates a better tetrahedron,
and q(t) is positive if t has the correct topological orientation, zero if t is
degenerate, and negative if t is “inverted” (meaning that there is a wrinkle in
the fabric of the mesh). We assume no input mesh has inverted tetrahedra;
all our operations will keep it that way.

We tried four quality measures in our implementation.
• The minimum sine of a tetrahedron’s six dihedral angles, or the minimum

sine measure for short. This measure penalizes both small and large di-
hedral angles, and Freitag and Ollivier-Gooch [11] find it to be the most

1A.1 Aggressive Tetrahedral Mesh Improvement 7

effective measure they considered. It also has the advantage that dihedral
angles are intuitive.

• The biased minimum sine measure, which is like the minimum sine mea-
sure, but if a dihedral angle is obtuse, we multiply its sine by 0.7 (before
choosing the minimum). This allows us to attack large angles much more
aggressively without much sacrifice in improving the small angles.

• The volume-length measure, suggested by Parthasarathy, Graichen, and
Hathaway [19] and denoted V/�3rms, is the signed volume of a tetrahedron
divided by the cube of its root-mean-squared edge length. We multiply it
by 6

√
2 so that the highest quality is one, the measure of an equilateral

tetrahedron.
• The radius ratio, suggested by Cavendish, Field, and Frey [5], is the ra-

dius of a tetrahedron’s inscribed sphere divided by the radius of its cir-
cumscribing sphere. We multiply it by 3 so that the highest quality is
one, the measure of an equilateral tetrahedron. We experimented with
this measure because of its popularity, but we found that it is inferior to
the volume-length measure in mesh optimization, even when the goal is
to optimize the radius ratio. So we will revisit it only once—in Section 5
where we demonstrate this fact.

The first two measures do not penalize some tetrahedra that are considered
bad by the last two measures. For example, an extremely skinny, needle-
shaped tetrahedron can have excellent dihedral angles, whereas its skinniness
is recognized by the volume-length measure and the radius ratio. There is
evidence that a skinny tetrahedron with good dihedral angles is harmless,
hurting neither discretization error nor conditioning [24]; its worst crime is to
waste vertices, because its accuracy is inversely proportional to the length of
its longest edge, not its shortest. Moreover, such a tetrahedron is indispensable
at the tip of a needle-shaped domain. Readers not convinced by this argument
will find the volume-length measure invaluable.

We need to extend quality measures from individual tetrahedra to whole
meshes. The worst tetrahedra in a mesh have far more influence than the av-
erage tetrahedra, so the objective function we optimize is the quality vector: a
vector listing the quality of each tetrahedron, ordered from worst to best. Two
meshes’ quality vectors are compared lexicographically (akin to alphabetical
order) so that, for instance, an improvement in the second-worst tetrahedron
improves the overall objective function even if the worst tetrahedron is not
changed. A nice property of the quality vector is that if an operation replaces
a small subset of tetrahedra in a mesh with new ones, we only need to com-
pare the quality vectors of the submeshes constituting the changed tetrahedra
(before and after the operation). If the submesh improves, the quality vector
of the whole mesh improves. Our software never needs to compute the quality
vector of an entire mesh.

8 Bryan Matthew Klingner and Jonathan Richard Shewchuk

3 The Fundamental Tools: Mesh Operations

Here we describe the mesh transformation operations that form the core of
our mesh improvement program. Simultaneously, we survey the previous work
in mesh improvement.

3.1 Smoothing

The most famous smoothing technique is Laplacian smoothing, in which a
vertex is moved to the centroid of the vertices to which it is connected [13].
Typically, Laplacian smoothing is applied to each mesh vertex in sequence, and
several passes of smoothing are done, where each “pass” moves every vertex
once. Laplacian smoothing is popular and somewhat effective for triangular
meshes, but for tetrahedral meshes it is much less reliable, and often produces
poor tetrahedra.

Better smoothing algorithms are based on numerical optimization [20, 4].
Early algorithms define a smooth objective function that summarizes the qual-
ity of a group of elements (e.g. the sum of squares of the qualities of all the
tetrahedra adjoining a vertex), and use a numerical optimization algorithm
such as steepest descent or Newton’s method to move a vertex to the optimal
location. Freitag, Jones, and Plassman [10] propose a more sophisticated non-
smooth optimization algorithm, which makes it possible to optimize the worst
tetrahedron in a group—for instance, to maximize the minimum angle among
the tetrahedra that share a specified vertex. A nonsmooth optimization algo-
rithm is needed because the objective function—the minimum quality among
several tetrahedra—is not a smooth function of the vertex coordinates; the
gradient of this function is discontinuous wherever the identity of the worst
tetrahedron in the group changes. Freitag and Ollivier-Gooch [11] had great
success with this algorithm, and we use it essentially unchanged (though we
have our own implementation).

Whereas Freitag and Ollivier-Gooch only smooth vertices in the interior
of a mesh, we also implemented constrained smoothing of boundary vertices.
If the boundary triangles adjoining a vertex appear (within some tolerance)
to lie on a common plane, our smoother assumes that the vertex can be
smoothed within that plane. Similarly, we identify vertices that can be moved
along an edge of the domain without changing its shape. However, we did not
implement constrained smoothing for curved domain boundaries, so some of
our meshes do not benefit from boundary smoothing.

We always use what Freitag and Ollivier-Gooch call smart smoothing: if
a smoothing operation does not improve the minimum quality among the
tetrahedra changed by the operation, then the operation is not done. Thus,
the quality vector of the mesh never gets worse.

1A.1 Aggressive Tetrahedral Mesh Improvement 9

3.2 Edge Removal

Edge removal, proposed by Brière de l’Isle and George [3], is a topological
transformation that removes a single edge from the mesh, along with all the
tetrahedra that include it. (The name is slightly misleading, because edge re-
moval can create new edges while removing the old one. Freitag and Ollivier-
Gooch refer to edge removal as “edge swapping,” but we prefer the earlier
name.) It includes the 3-2 and 4-4 flips, but also includes other transforma-
tions that remove edges shared by any number of tetrahedra. In general, edge
removal replaces m tetrahedra with 2m − 4; Figure 1 (right) illustrates re-
placing seven tetrahedra with ten. De Cougny and Shephard [7] and Freitag
and Ollivier-Gooch [11] have shown dramatic evidence for its effectiveness,
especially in combination with other mesh improvement operations.

Let ab be an edge in the interior of the mesh with vertices a and b. Let I
be the set of tetrahedra that include ab. Each tetrahedron in I has an edge
opposite ab. Let R be the set of these edges. (R is known as the link of ab.) R
forms a (non-planar) polygon in three-dimensional space, as illustrated. An
edge removal transformation constructs a triangulation T of R, and creates a
set of new tetrahedra J =

⋃
t∈T {conv({a} ∪ t), conv({b} ∪ t)}, as illustrated,

which replace the tetrahedra in I.
The chief algorithmic problem is to find the triangulation T of R that

maximizes the quality of the worst tetrahedron in J . We solve this problem
with a dynamic programming algorithm of Klincsek [16], which was invented
long before anyone studied edge removal. (Klincsek’s algorithm solves a gen-
eral class of problems in optimal triangulation. Neither Brière de l’Isle and
George nor Freitag and Ollivier-Gooch appear to have been aware of it.) The
algorithm runs in O(m3) time, but m is never large enough for its speed to
be an impairment.

3.3 Multi-Face Removal

Multi-face removal is the inverse of edge removal, and includes the 2-3 and
4-4 flips. An m-face removal replaces 2m tetrahedra with m + 2. It has been
neglected in the literature; so far as we know, it has appeared only in an
unpublished manuscript of de Cougny and Shephard [7], who present evidence
that multi-face removal is effective for mesh improvement.

Multi-face removal, like edge removal, revolves around two chosen vertices
a and b. Given a mesh, say that a triangular face f is sandwiched between a
and b if the two tetrahedra that include f are conv({a}∪f) and conv({b}∪f).
For example, in Figure 1, the faces of T are sandwiched between a and b in
the mesh J . An m-face removal operation singles out m of those sandwiched
faces, and replaces the tetrahedra that adjoin them, as illustrated. (An m-face
removal actually removes 3m − 2 faces, but only m of them are sandwiched
between a and b.)

Our software uses multi-face removal by singling out a particular inter-
nal face f it would like to remove. Let a and b be the apex vertices of the

10 Bryan Matthew Klingner and Jonathan Richard Shewchuk

p
Gr

l

2

11 1

1

1

1
3

1
2
1

2

8
8

7

8

6

6

3
2

1

8

9
35

2

4

8

2

28

8

9

8
8

7

8

6

6

99

2
7

9

76
2

6

3
2 9 2

7

9

6

8

7

3

2p

G

Fig. 2. Vertex insertion as graph cut optimization. In this example, the smallest
cut has weight 6. The weights of the cut edges are the qualities of the new elements.

two tetrahedra adjoining f . The optimal multi-face removal operation does
not necessarily remove all the faces sandwiched between a and b. We use the
algorithm of Shewchuk [23] to find the optimal multi-face removal operation
for f (and to determine whether any multi-face removal operation can re-
move f without creating inverted tetrahedra), in time linear in the number of
sandwiched faces.

3.4 Vertex Insertion

Our main innovation in this paper is to show that mesh improvement is far
more effective with the inclusion of transformations that introduce new ver-
tices. We use an algorithm similar to Delaunay vertex insertion: we choose a
location p to insert a new vertex and a set I of tetrahedra to delete, such that
p lies in, and can “see” all of, the star-shaped polyhedral cavity C =

⋃
t∈I t.

We fill the cavity with a set of new tetrahedra J = {conv({p}∪f) : f is a face
of C}. Choosing the position of p is a black art; see Section 4.2 for how we
choose it. To choose I, we solve this combinatorial problem: given a point p,
which tetrahedra should we delete to maximize the quality of the worst new
tetrahedron?

Our algorithm views the mesh as a graph M with one node for each tetra-
hedron, as depicted in Figure 2. For simplicity, we identify nodes of the graph
with the tetrahedra they represent. M contains a directed edge (v, w) if the
tetrahedron v shares a triangular face with the tetrahedron w, and v occludes
w from p’s point of view. The edge (v, w) reflects the geometric constraint that
w can only be included in the set I (i.e., in the cavity C) if v is included—
that is, the cavity must be star-shaped from p’s perspective. (If p is coplanar
with the triangular face that v and w share, we direct the edge arbitrarily.)
Although M can have cycles, they are rare, so we adopt some nomenclature
from trees: if (v, w) ∈ M then w is a child of v and v is a parent of w. Any
tetrahedron that contains p is a root of M . Usually there is just one root
tetrahedron, but sometimes we insert a new vertex on a boundary edge of
the domain, in which case all the tetrahedra sharing that edge are roots. If a
vertex is inserted at p, all the roots must be deleted.

1A.1 Aggressive Tetrahedral Mesh Improvement 11

Our algorithm for finding an optimal cavity computes a cut in M that
induces a cavity in the mesh. It begins by constructing the subgraph G of M
whose nodes are the roots of M and all the tetrahedra that are reachable in
M from the roots by a directed path of length six or less. We select G this
way because we do not want to search the entire graph M for a cut, and we
find that in practice, tetrahedra further away from the root rarely participate
in the optimal cavity. We find that G typically has 5–100 tetrahedra. For each
triangular face that belongs to only one tetrahedron in G, we add a “ghost
node” to G to act as a neighboring tetrahedron. Then, every leaf of G is a
ghost node, as Figure 2 shows.

The tetrahedra in G, except the leaves, are candidates for deletion. For
each edge (v, w) ∈ G, let f be the triangular face shared by the tetrahedra
v and w. Our algorithm labels (v, w) with the quality of the tetrahedron
conv(p∪f)—the tetrahedron that will be created if v is deleted but w survives.

The problem is to partition G into two subgraphs, Gr and Gl, such that
Gr contains the root tetrahedra and Gl contains the leaves, as illustrated in
Figure 2. The deleted tetrahedra I will be the nodes of Gr, and the surviving
tetrahedra will be the nodes of Gl. Because the cavity C =

⋃
t∈I t must be star-

shaped from p’s perspective (to prevent the creation of inverted tetrahedra),
no tetrahedron in Gl may be a parent of any tetrahedron in Gr. Our goal is
to find the partition that satisfies this constraint and maximizes the smallest
edge cut (because that edge determines the worst new tetrahedron).

The algorithm in Figure 3 computes this optimal cut. (We omit the proof.)
The algorithm iterates through the edges of G, from worst quality to best,
and greedily ensures that each edge will not be cut, if that assurance does
not contradict previous assurances. Upon termination, the tetrahedra labeled
“cavity” become the set I of tetrahedra to be deleted, and the set J of tetra-
hedra to be created are determined by the triangular faces of the cavity C,
which are recorded by the ninth line of pseudocode. In practice, I typically
comprises 5–15 tetrahedra. After an initial O(|G| log |G|)-time sorting step,
the rest of the algorithm runs in O(|G|) time.

Sometimes, a vertex insertion operation deletes one or more of the other
vertices, as in Figure 2. When a tetrahedron with three parents is deleted,
the vertex it shares with all three parents is deleted too. Thus, our vertex
insertion operation sometimes reduces the number of vertices in the mesh.

3.5 Composite Operations

Mesh improvement methods often get stuck in local optima that are far from
the global optimum. Joe [15] suggests that this problem can be ameliorated by
composing multiple basic operations to form new operations. These composite
operations sometimes get a hill-climbing optimizer across what was formerly
a valley in the objective function, thereby leading the way to a better local
optimum.

We have found that vertex insertion, as described in Section 3.4, rarely im-
proves the quality vector of the mesh immediately, but it is frequently effective

12 Bryan Matthew Klingner and Jonathan Richard Shewchuk

Sort edges of G from smallest to largest quality.
H ⇐ a graph with the same vertices as G but

no edges (yet). (H need not be stored as a
separate graph; let each edge of G have a bit
that indicates whether it is in H too.)

All vertices of G are initially unlabeled.
Label every root of G “cavity.”
Label every leaf of G “anti-cavity.”
for each directed edge (v, w) of G (in sorted order)

if v is labeled “cavity”
if w is labeled “anti-cavity”

Record (v, w), which determines a new
tetrahedron in J.

else if w is unlabeled
Cavity(w)

else if v is unlabeled
if w is labeled “anti-cavity”

AntiCavity(v)
else { w is unlabeled }

Add (v, w) to H.

Cavity(w)
Label w “cavity.”
for each unlabeled parent p of w in G

Cavity(p)
for each unlabeled child c of w in H

Cavity(c)

AntiCavity(v)
Label v “anti-cavity.”
for each unlabeled child c of v in G

AntiCavity(c)
for each unlabeled parent p of v in H

AntiCavity(p)

Fig. 3. Algorithm for computing the cavity that optimizes the new tetrahedra
when a new vertex is inserted. Upon completion, the tetrahedra to be deleted are
labeled “cavity.”

if traditional smoothing and transformations follow. To create an operation
that composes vertex insertion with subsequent operations, we implemented a
rollback mechanism that allows us to attempt a sequence of transformations,
then reverse all the changes if the final mesh is not better than the initial one.

The AttemptInsert pseudocode in Figure 4 shows how we follow ver-
tex insertion with smoothing and topological transformations, then decide
whether to roll back the insertion. Immediately after inserting the new ver-
tex (as described in Section 3.4), we smooth it (by optimization), then we
run passes of topological transformations and smoothing on the tetrahedra
adjoining it in an attempt to improve them. (See the pseudocode for details.)
Finally, we compare the quality vector of all the new and changed (smoothed)
tetrahedra with the quality vector of the deleted tetrahedra (the set I). If the
mesh has not improved, we roll it back to the instant before we inserted the
new vertex.

Even though the algorithm in Figure 3 is technically optimal, we have
learned by experiment that composite vertex insertion is more effective if we
bias the algorithm to prefer larger cavities than it would normally choose.
To encode this bias, our implementation multiplies edge weights by 1.0, 1.4,
1.8, or 2.1 if they are a distance of zero, one, two, or greater than two from
the nearest root, respectively. These weights sometimes cause worse-than-
optimal tetrahedra to be created, but these are often improved by subsequent
operations. In the end, the vertex insertion operation is only accepted (not
rolled back) if the unbiased quality vector improves.

1A.1 Aggressive Tetrahedral Mesh Improvement 13

4 Scheduling the Operations

4.1 Examples from Previous Work

Joe’s algorithm [15] checks each face of the mesh to see if any of his transforma-
tions (including composite transformations) will improve the local tetrahedra.
It performs passes over the entire mesh (checking each face), and terminates
when a pass makes no changes. His experiments show that he can eliminate
most, but not all, tetrahedra with radius ratios below 0.3. (In our experiments,
we eliminated all tetrahedra with radius ratios below 0.51 by optimizing the
objective V/�3rms.)

Freitag and Ollivier-Gooch’s schedule [11] begins with a pass of 2-3 flips
that enforce the Delaunay in-sphere criterion (testing each interior face of the
mesh once), then a pass of 2-3 flips that optimize the minimum sine measure,
then a pass of edge removal operations that optimize the minimum sine, then
two passes of optimization-based smoothing. Next, a procedure that targets
only the worst tetrahedra in the mesh attempts to remove them with 2-3
flips and edge removal operations. Two more passes of smoothing complete
the schedule. For many of their meshes, they obtain dihedral angles bounded
between about 12◦ and 160◦, but these results are not consistent across all
their test meshes. Dihedral angles less than 1◦ occasionally survive, and in
more examples dihedral angles under 10◦ survive.

Edelsbrunner and Guoy [8] demonstrate that that a theoretically moti-
vated technique called sliver exudation [6], which uses sequences of 2-3 and
3-2 flips to remove poor tetrahedra from meshes, usually removes most of the
bad tetrahedra from a mesh, but rarely all. Again, dihedral angles less than
1◦ sometimes survive, and in most of their examples a few dihedral angles less
than 5◦ remain.

Alliez, Cohen-Steiner, Yvinec, and Desbrun [1] propose a variational mesh-
ing algorithm that alternates between optimization-based smoothing (using
a smooth objective function) and computing a new Delaunay triangulation
from scratch. This algorithm generates meshes that have only a small number
of tetrahedra under 10◦ or over 160◦, but it does not eliminate all mediocre
tetrahedra, especially on the boundary. (See the StGallen and StayPuft
input meshes in Section 5.) Note that variational meshing is a standalone mesh
generation algorithm, and cannot be used as a mesh improvement algorithm,
because the mesh it generates does not conform to a specified triangulated
boundary.

4.2 Our Mesh Improvement Schedule

Pseudocode for our mesh improvement implementation appears in Figure 4.
Like all such schedules, ours is heuristic and evolved through trial and error.

We find that prescribing a fixed number of improvement passes, as Freitag
and Ollivier-Gooch do, is too inflexible, and we get better results by adapting
our schedule to the mesh at hand. We begin with a pass of optimization-based

14 Bryan Matthew Klingner and Jonathan Richard Shewchuk

MeshAggression(M) { M is a mesh }
Smooth each vertex of M .
TopologicalPass(M)
failed ⇐ 0
while failed < 3

Q ⇐ list of quality indicators for M .
Smooth each vertex of M .
if M is sufficiently better than Q

failed ⇐ 0
else

TopologicalPass(M)
if M is sufficiently better than Q

failed ⇐ 0
else

if failed = 1 { desperation pass }
L ⇐ list of tets with a dihedral

< 40◦ or > 140◦.
else L ⇐ list of the worst 3.5% of

tets in M .
InsertionPass(M, L)
if M is sufficiently better than Q

failed ⇐ 0
else failed ⇐ failed +1

InsertionPass(M, L) { L is a list of tets }
for each tetrahedron t ∈ L that still exists

for each face f of t on the mesh
boundary (if any)

p ⇐ point at barycenter of f
if AttemptInsert(M, p)

Restart outer loop on next tet.
p ⇐ point at barycenter of t
if AttemptInsert(M, p)

Restart outer loop on next tet.
for each edge e of t on the mesh

boundary (if any)
p ⇐ point at midpoint of e
if AttemptInsert(M, p)

Restart outer loop on next tet.

TopologicalPass(L) { L is a list of tets }
for each tetrahedron t ∈ L that still exists

for each edge e of t (if t still exists)
Attempt to remove edge e.

for each face f of t (if t still exists)
Attempt to remove face f (multi-face

or 2-3 or 2-2 flip).
return the surviving tetrahedra of L and

all the new tetrahedra
created by this call.

AttemptInsert(M, p) { New vertex at p }
I ⇐ deleted tetrahedra, computed as

discussed in Section 3.4
q ⇐ quality of the worst tetrahedron in I
Replace I with the new tetrahedra J (see

Section 3.4 and Figure 3).
attempts ⇐ 8
repeat

Smooth p.
{ In next line, the cavity may expand }
J ⇐ TopologicalPass(J)
attempts ⇐ attempts −1

while attempts > 0 and some topological
change occurred

K ⇐ J∪ the tetrahedra in M that share
a vertex with J

repeat
q′ ⇐ quality of the worst tet in J
Smooth each vertex of J.
q′′ ⇐ quality of the worst tet in K
attempts ⇐ attempts −1

while attempts > 0 and q′′ > q′

if q′′ > q
return true.

Roll back all changes since the beginning
of this procedure call.

return false.

Fig. 4. Our mesh improvement schedule.

smoothing (smoothing each vertex once) and a pass of topological transfor-
mations (leaving out vertex insertion), because these are always fruitful. Our
topological pass visits each tetrahedron once, and searches for a transfor-
mation that will eliminate it and improve the quality vector of the changed
tetrahedra (and therefore of the entire mesh). If no edge removal operation
succeeds in removing a particular tetrahedron, we try multi-face removal on
each face of that tetrahedron that lies in the mesh interior. However, in Sec-
tion 5 we test the effect of disabling multi-face removal but still allowing faces
to be removed by 2-3 flips (which are easier to implement). If an interior face
has an edge on the mesh boundary, we also test the possibility that a 2-2 flip
on that edge might improve the mesh.

Our implementation then performs passes over the mesh until three sub-
sequent passes fail to make sufficient progress. We gauge progress using a
small list of quality indicators: the quality of the worst tetrahedron in the
entire mesh, and seven thresholded means. A mean with threshold d is com-
puted by calculating the quality of each tetrahedron in the mesh, reducing
to d any quality greater than d, then taking the average. The purpose of

1A.1 Aggressive Tetrahedral Mesh Improvement 15

a thresholded mean is to measure progress in the lowest-quality tetrahedra
while ignoring changes in the high-quality tetrahedra. For the minimum sine
measure, we compute thresholded means with thresholds sin 1◦, sin 5◦, sin 10◦,
sin 15◦, sin 25◦, sin 35◦, and sin 45◦. (Each tetrahedron is scored according to
its worst dihedral angle; we do not compute thresholded means of all dihedral
angles.) A mesh is deemed to be sufficiently improved (to justify more passes)
if at least one of the thresholded means increases by at least 0.0001, or if the
quality of the worst tetrahedron increases at all.

Each pass begins with smoothing. If smoothing does not make adequate
progress, a topological pass follows. If progress is still insufficient, we resort
to vertex insertion, which is less desirable than the other operations both
because it often increases the size of the mesh and because our compound
vertex insertion operation is slow. Vertex insertion is usually aimed at the
worst 3.5% of tetrahedra in the mesh, but our implementation never gives
up without trying at least one “desperation pass” that attempts to insert a
vertex in every tetrahedron that has an angle less than 40◦ or greater than
140◦.

Most mesh generation algorithms create their worst tetrahedra on the
boundary of the mesh, and boundary tetrahedra are the hardest to repair.
Thus, when our vertex insertion pass targets a tetrahedron on the boundary
of the mesh, it always tries to insert a vertex at the barycenter of the bound-
ary face(s) first. For tetrahedra where that fails, and tetrahedra not on the
boundary, we try the tetrahedron barycenter next. We also try the midpoints
of tetrahedron edges that lie on the boundary, but we try them last, because
(for reasons we don’t understand) we obtain better meshes that way.

5 Results and Discussion

We tested our schedule on a dozen meshes.
• Cube1K and Cube10K are high-quality meshes of a cube generated by

NETGEN [21].
• TFire is a high-quality mesh of a tangentially-fired boiler, created by

Carl Ollivier-Gooch’s GRUMMP software.
• Tire, Rand1 and Rand2 come courtesy of Freitag and Ollivier-Gooch,

who used them to evaluate their mesh improvement algorithms. Tire is a
tire incinerator. Rand1 and Rand2 are lazy triangulations, generated by
inserting randomly located vertices into a cube, one by one. Each vertex
was inserted by splitting one or more tetrahedra into multiple tetrahedra.
(Unlike in Delaunay insertion, no flips took place.) The random meshes
have horrible quality.

• Dragon and Cow are medium-quality meshes with curved boundaries,
generated by isosurface stuffing [18]. The curvature prevents us from
smoothing the original boundary vertices.

16 Bryan Matthew Klingner and Jonathan Richard Shewchuk

• StGallen and StayPuft are medium- to low-quality meshes with
curved boundaries, generated by two different implementations of vari-
ational tetrahedral meshing [1], courtesy of Pierre Alliez and Adam
Bargteil, respectively.

• House and P are Delaunay meshes generated by Pyramid [22] configured
so the vertices are nicely spaced, but no effort is made to eliminate sliver
tetrahedra.
Tables 1 and 2 show these meshes before and after improvement with

the MeshAggression schedule in Figure 4. We tested the minimum sine
measure (upper right corner of each box), the biased minimum sine measure
(lower right), and the volume-length measure V/�3rms (lower left) as objectives.
(We omit meshes optimized for the radius ratio objective, which was not
competitive with the volume-length measure, even as measured by the radius
ratios of the tetrahedra.)

Our main observation is that the dihedral angles improved to between
31◦ and 149◦ for the minimum sine objective, between 25◦ and 142◦ for the
biased minimum sine objective, and between 23◦ and 136◦ for the volume-
length measure. Even the pathological meshes Rand1 and Rand2 end with
excellent quality. These numbers put our implementation far ahead of any
other tetrahedral mesh algorithm we have seen reported. Freitag and Ollivier-
Gooch reported angle bounds as good as 13.67◦ and 156.14◦ for Tire, versus
our 28.13◦ and 125.45◦; as good as 15.01◦ and 159.96◦ for Rand1, versus our
36.95◦ and 119.89◦; and as good as 10.58◦ and 164.09◦ for Rand2, versus our
34.05◦ and 126.61◦.

Of course, to obtain such high quality takes time. Meshes that begin with
high quality take a modest amount of time to improve. Rand1 and Rand2
take disproportionately longer—both because our implementation tries to
hold back vertex insertions until they prove to be necessary, and because
the composite vertex insertion operation is slow, often accounting for about
90% of the running time. Of that 90%, about one third is spent in the basic
vertex insertion operation, one third in smoothing the cavity, and one third
in topological transformations in the cavity. It seems impossible to predict
which quality measure will run faster on a given mesh, and the differences in
running times are erratic.

No mesh increased in size by more than 41%, and some meshes shrank
(because the vertex insertion operation can also delete vertices).

Table 3 shows the effects of turning features on or off. The top half of
the page explores the question of which features are most important to have
if the programmer’s time is limited. We try all combinations of three opera-
tions: optimization-based vertex smoothing in the interior of the mesh (but
not on mesh boundaries); vertex insertion in the interior of the mesh (but not
on boundaries); and edge removal (but no other topological transformations).
Smoothing proves to be the most indispensable; substantial progress is almost
impossible without it. Vertex insertion is the second-most powerful operation.
We were surprised to see that it alone can substantially improve some meshes,
even though most vertex insertion operations fail when neither smoothing nor

1A.1 Aggressive Tetrahedral Mesh Improvement 17

Table 1. Twelve meshes before and after improvement (continued in Table 2). In
each box, the upper left mesh is the input, the upper right mesh is optimized for the
minimum sine measure, the lower right mesh is optimized for the biased minimum
sine measure, and the lower left mesh is optimized for V/�3rms. Running times are
given for a Mac Pro with a 2.66 GHz Intel Xeon processor. Red tetrahedra have
dihedral angles under 5◦ or over 175◦, orange have angles under 15◦ or over 165◦,
yellow have angles under 30◦ or over 150◦, green have angles under 40◦ or over
140◦, and better tetrahedra do not appear. Histograms show the distributions of
dihedral angles, and the minimum and maximum angles, in each mesh. Histograms
are normalized so the tallest bar always has the same height; absolute numbers of
tetrahedra cannot be compared between histograms.

Cube1k 14 sec Cube10K 119 sec TFire 40 sec

1,185 tets 1,223 tets 11,661 tets 11,313 tets 1,105 tets 1,300 tets

16020 40 60 80 100 120 140

127.631.8

16020 40 60 80 100 120 140

130.442.2

16020 40 60 80 100 120 140

142.025.2

16020 40 60 80 100 120 140

135.541.0

20 40 60 80 100 120 140 160

144.519.4

16020 40 60 80 100 120 140

137.838.8

20 40 60 80 100 120 140 160

35.9 119.3

20 40 60 80 100 120 140 160

39.0 113.5

20 40 60 80 100 120 140 160

35.0 117.7

20 40 60 80 100 120 140 160

39.6 113.5

16020 40 60 80 100 120 140

124.230.9

20 40 60 80 100 120 140 160

37.6 117.9

1,173 tets 1,212 tets 11,528 tets 11,700 tets 1,374 tets 1,551 tets

5 sec 7 sec 57 sec 121 sec 103 sec 84 sec
Tire 447 sec Rand1 177 sec Rand2 3,378 sec

11,099 tets 12,495 tets 5,105 tets 3,677 tets 25,705 tets 18,050 tets

20 40 60 80 100 120 140 160

0.6 178.9

16020 40 60 80 100 120 140

143.336.0

20 40 60 80 100 120 140 160

0.3 179.0

16020 40 60 80 100 120 140

141.738.8

20 40 60 80 100 120 140 160

0.1 179.9

16020 40 60 80 100 120 140

142.936.7

16020 40 60 80 100 120 140

125.528.1

16020 40 60 80 100 120 140

130.431.8

16020 40 60 80 100 120 140

120.931.5

20 40 60 80 100 120 140 160

36.9 119.9

16020 40 60 80 100 120 140

122.532.1

16020 40 60 80 100 120 140

126.734.0

12,369 tets 13,845 tets 4,540 tets 3,681 tets 22,584 tets 14,735 tets

748 sec 940 sec 274 sec 457 sec 1,430 sec 4,658 sec

18 Bryan Matthew Klingner and Jonathan Richard Shewchuk

Table 2. Continuation of Table 1. Red histogram bars should have their heights
multiplied by 20 to account for the fact that in the semi-regular meshes Dragon
and Cow, angles of 45◦, 60◦, and 90◦ occur with high frequency.

Dragon 155 sec Cow 950 sec StGallen 509 sec

32,960 tets 36,034 tets 42,054 tets 46,380 tets 50,392 tets 50,262 tets

80 100 120 140 160604020

156.815.5

16020 40 60 80 100 120 140

141.531.0

80 100 120 140 160604020

158.014.5

16020 40 60 80 100 120 140

148.331.9

20 40 60 80 100 120 140 160

161.811.4

16020 40 60 80 100 120 140

140.032.0

16020 40 60 80 100 120 140

127.224.3

16020 40 60 80 100 120 140

126.331.0

16020 40 60 80 100 120 140

128.523.7

16020 40 60 80 100 120 140

142.025.6

16020 40 60 80 100 120 140

129.033.3

16020 40 60 80 100 120 140

121.231.9

39,148 tets 36,364 tets 50,718 tets 47,648 tets 49,941 tets 50,317 tets

1,349 sec 169 sec 5,823 sec 2,398 sec 197 sec 576 sec
P 23 sec House 26 sec StayPuft 5,376 sec

927 tets 1,261 tets 1,390 tets 1,705 tets 102,393 tets 116,867 tets

40 60 80 100 120 140 16020

1.3 178.0

16020 40 60 80 100 120 140

137.538.2

20 40 60 80 100 120 140 160

177.31.8

16020 40 60 80 100 120 140

134.038.5

20 40 60 80 100 120 140 160

177.31.1

16020 40 60 80 100 120 140

146.434.1

16020 40 60 80 100 120 140

121.932.9

20 40 60 80 100 120 140 160

38.4 116.9

16020 40 60 80 100 120 140

122.231.2

20 40 60 80 100 120 140 160

37.4 118.5

16020 40 60 80 100 120 140

135.123.4

16020 40 60 80 100 120 140

128.133.3

1,113 tets 1,249 tets 1,730 tets 1,883 tets 130,736 tets 125,221 tets

34 sec 24 sec 80 sec 60 sec 14,214 sec 8,944 sec

other topological transformations are available to create a compound opera-
tion (as described in Section 3.5). Edge removal ranks last. Any combination
of two of these operations gives a substantial advantage over one, and having
all three gives another substantial advantage.

Implementing all the features discussed in this paper (“maximum ag-
gression”) gives another substantial advantage, but these additional features

1A.1 Aggressive Tetrahedral Mesh Improvement 19

Table 3. Histograms showing the dihedral angle distribution, and minimum and
maximum dihedral angles, for several meshes optimized with selected features turned
on (upper half of page) or off (lower half). The objective was to maximize the
biased minimum sine measure. Multiply the heights of the red histogram bars by
20. “Maximum aggression” has all features turned on.

Tire Rand2 Cow P All 12 meshes

Initial state

20 40 60 80 100 120 140 160

0.6 178.9

20 40 60 80 100 120 140 160

0.1 179.9

80 100 120 140 160604020

158.014.5

40 60 80 100 120 140 16020

1.3 178.0

20 40 60 80 100 120 140 160

0.1 179.9

Smoothing
(interior)
only

140 16012020 40 60 80 100

174.34.3

40 60 80 100 120 140 16020

2.8 174.5

140 16020 40 60 80 100 120

157.216.1

20 40 60 80 100 120 140 160

6.9 168.1

40 60 80 100 120 140 16020

2.8 174.6

Edge
removal
only

60 80 100 120 140 1604020

172.43.0

20 40 60 80 100 120 140 160

0.1 179.9

16014020 40 60 80 100 120

149.517.3

16014020 40 60 80 100 120

148.415.4

20 40 60 80 100 120 140 160

0.1 179.9

Vertex
insertion
(interior)
only

20 40 60 80 100 120 140 160

178.90.6

20 40 60 80 100 120 140 160

0.9 178.1

80 100 120 140 160604020

158.014.5

120 140 1601008020 40 60

157.014.7

20 40 60 80 100 120 140 160

0.6 178.9

Smoothing
+ edge
removal

120 140 1601008020 40 60

150.89.5

16014020 40 60 80 100 120

165.98.7

16020 40 60 80 100 120 140

145.822.6

20 40 60 80 100 120 140 160

144.119.1

16014020 40 60 80 100 120

165.98.7

Smoothing
+ vertex
insertion

16020 40 60 80 100 120 140

139.722.9

16014020 40 60 80 100 120

153.518.3

16020 40 60 80 100 120 140

141.925.7

16020 40 60 80 100 120 140

134.123.6

16014020 40 60 80 100 120

153.518.3

Edge
removal +
vertex
insertion

120 140 1601008020 40 60

172.14.6

60 80 100 120 140 1604020

174.13.0

140 16020 40 60 80 100 120

147.517.3

20 40 60 80 100 120 140 160

21.8 144.9

40 60 80 100 120 140 16020

3.0 174.1

All three

40 60 80 100 120 140 16020

23.3 142.5

20 40 60 80 100 120 140 160

148.421.6

16020 40 60 80 100 120 140

141.925.6

16020 40 60 80 100 120 140

132.524.0

20 40 60 80 100 120 140 160

148.421.6

Maximum
aggression

16020 40 60 80 100 120 140

130.431.8

16020 40 60 80 100 120 140

126.734.0

16020 40 60 80 100 120 140

142.025.6

20 40 60 80 100 120 140 160

38.4 116.9

16020 40 60 80 100 120 140

142.025.6

TFire Maximum aggression No smoothing No boundary smooth No edge removal No 2-2 flips

20 40 60 80 100 120 140 160

37.6 117.9

16020 40 60 80 100 120 140

138.026.3

16020 40 60 80 100 120 140

123.033.5

16020 40 60 80 100 120 140

123.734.6

20 40 60 80 100 120 140 160

36.1 120.7

16020 40 60 80 100 120 140

147.121.3

20 40 60 80 100 120 140 160

37.0 120.5

16020 40 60 80 100 120 140

129.231.8

20 40 60 80 100 120 140 160

36.5 121.7

20 40 60 80 100 120 140 160

36.5 121.7

No vertex insert No boundary insert No boundary change No multi-face rem. No face removal

Rand2 Maximum aggression No smoothing No boundary smooth No edge removal No 2-2 flips

16020 40 60 80 100 120 140

126.734.0

80 100 120 140 160604020

158.015.7

40 60 80 100 120 140 16020

24.1 144.6

16020 40 60 80 100 120 140

132.830.8

16020 40 60 80 100 120 140

132.630.5

20 40 60 80 100 120 140 160

160.313.3

16020 40 60 80 100 120 140

129.533.2

140 16020 40 60 80 100 120

151.420.8

16020 40 60 80 100 120 140

137.728.4

16020 40 60 80 100 120 140

125.834.5

No vertex insert No boundary insert No boundary change No multi-face rem. No face removal

All 12 Maximum aggression No smoothing No boundary smooth No edge removal No 2-2 flips

16020 40 60 80 100 120 140

142.025.6

80 100 120 140 160604020

158.015.7

40 60 80 100 120 140 16020

24.1 144.6

16020 40 60 80 100 120 140

138.028.7

16020 40 60 80 100 120 140

134.130.0

40 60 80 100 120 140 16020

13.3 160.3

16020 40 60 80 100 120 140

142.324.4

140 16020 40 60 80 100 120

151.920.8

16020 40 60 80 100 120 140

142.025.6

16020 40 60 80 100 120 140

142.125.6

No vertex insert No boundary insert No boundary change No multi-face rem. No face removal

20 Bryan Matthew Klingner and Jonathan Richard Shewchuk

Table 4. A stretched input mesh and four output meshes optimized with differ-
ent quality measures as objective functions. The histograms tabulate, from top to
bottom, dihedral angles, radius ratios (times 3), and 6

√
2V/�3rms.

Stretch5 minimum sine biased min sine radius ratio V/�3rms

1,339 tets 1,802 tets 1,816 tets 1,059 tets 1,291 tets
104 seconds 113 seconds 45 seconds 77 seconds

20 40 60 80 100 120 140 160

177.41.0

16020 40 60 80 100 120 140

140.737.8

16020 40 60 80 100 120 140

135.332.2

40 60 80 100 120 140 16020

16.3 137.8

16020 40 60 80 100 120 140

121.233.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.16

0.4 0.5 0.6 0.7 0.8 0.90.30.1 0.2

0.13

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.45

0.30.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9

0.59

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

0.02

0.90.80.1 0.2 0.3 0.4 0.5 0.6 0.7

0.13

0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6

0.06

0.5 0.6 0.7 0.8 0.90.40.1 0.2 0.3

0.31

0.30.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9

0.65

(multi-face removal, boundary smoothing, boundary insertion) are individu-
ally responsible for only small increments. The bottom half of Table 3 shows
the effects of turning just a single feature off. Some of the switches listed there
are inclusive of other switches. “No smoothing” turns off all smoothing—in
the interior and on the boundary. Likewise, “no vertex insert” turns off all in-
sertion. “No face removal” turns off multi-face removal and 2-3 flips, whereas
“no multi-face removal” turns off only the former.

Smoothing and vertex insertion are clearly the most disastrous operations
to lose. The effort to extend smoothing and vertex insertion so that they can
operate on the boundary of the mesh was also well rewarded. Besides vertex
insertion, no single topological operation is crucial if the others are present.

The papers by Freitag and Ollivier-Gooch and by de Cougny and Shep-
hard both concluded that edge removal is rarely successful for an edge that
adjoins more than seven tetrahedra; but our experience contradicts this. We
see many successful removals of edges adjoining eight tetrahedra, and even
the occasional removal of eleven tetrahedra. (Klincsek’s algorithm makes this
easy to implement.) However, we observe that edge removal is most likely to
be successful for edges that adjoin four tetrahedra, and multi-face removals
that remove two faces predominate, so the most common beneficial topological
change is a 4-4 flip.

Table 4 illustrates the effect of optimizing our four quality measures on a
mesh called Stretch5, which is Cube1K scaled along one axis by a factor
of five. This mesh highlights the weakness of the minimum sine measure and
its biased counterpart as objective functions—namely, they sometimes permit
skinny tetrahedra to survive. The other two quality measures are better for
improving the distribution of vertices and producing “rounder” tetrahedra.
The minimum sine objective is best for optimizing the smallest dihedral angle,
but the volume-length measure is the best all-around objective of the four. It

1A.1 Aggressive Tetrahedral Mesh Improvement 21

even optimizes the radius ratio better than the radius ratio does! (We suspect
that the radius ratio behaves poorly as an objective function because of the
instability of the circumscribing radius as a function of vertex position.) In
our twelve-mesh test suite, the volume-length objective always improved the
worst radius ratio to at least 0.51, whereas the radius ratio objective left
behind many worse tetrahedra, the worst having a radius ratio of 0.30.

6 Conclusions

We see two important avenues for future work. First, our mesh improvement
implementation assumes that the spacing of the vertices in the input mesh
is already correct. A better code would take as input a spacing function that
dictates how large the tetrahedra should be in different regions of the mesh,
and insert or delete vertices accordingly. Second, algorithms and schedules
that achieve results similar to ours in much less time would be welcome. Our
composite vertex insertion operation accounts for most of the running time,
so a more sophisticated vertex insertion algorithm might improve the speed
dramatically.

Because we can produce meshes that usually have far better quality than
those produced by any previous algorithm for mesh improvement or mesh
generation, even when given pathological inputs, we suggest that algorithms
traditionally considered “mesh improvement” might become standalone mesh
generators. If the barrier of speed can be overcome, the need to write sep-
arate programs for mesh generation and mesh improvement might someday
disappear.

Acknowledgments. We thank Pierre Alliez, Adam Bargteil, Moshe
Mahler, and Carl Ollivier-Gooch for meshes and geometric models. Pixie ren-
dered our meshes. This work was supported by the National Science Foun-
dation under Awards CCF-0430065 and CCF-0635381, and by an Alfred P.
Sloan Research Fellowship.

References

1. Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun.
Variational Tetrahedral Meshing. ACM Transactions on Graphics 24:617–625,
2005. Special issue on Proceedings of SIGGRAPH 2005.

2. Randolph E. Bank and L. Ridgway Scott. On the Conditioning of Finite Element
Equations with Highly Refined Meshes. SIAM Journal on Numerical Analysis
26(6):1383–1394, December 1989.

3. E. Brière de l’Isle and Paul-Louis George. Optimization of Tetrahedral Meshes.
Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Dif-
ferential Equations, IMA Volumes in Mathematics and its Applications, vol-
ume 75, pages 97–128. 1995.

22 Bryan Matthew Klingner and Jonathan Richard Shewchuk

4. Scott A. Canann, Michael Stephenson, and Ted Blacker. Optismoothing: An
Optimization-Driven Approach to Mesh Smoothing. Finite Elements in Analysis
and Design 13:185–190, 1993.

5. James C. Cavendish, David A. Field, and William H. Frey. An Approach to
Automatic Three-Dimensional Finite Element Mesh Generation. International
Journal for Numerical Methods in Engineering 21(2):329–347, February 1985.

6. Siu-Wing Cheng, Tamal Krishna Dey, Herbert Edelsbrunner, Michael A. Facello,
and Shang-Hua Teng. Sliver Exudation. Journal of the ACM 47(5):883–904,
September 2000.

7. Hugues L. de Cougny and Mark S. Shephard. Refinement, Derefinement, and
Optimization of Tetrahedral Geometric Triangulations in Three Dimensions.
Unpublished manuscript, 1995.

8. Herbert Edelsbrunner and Damrong Guoy. An Experimental Study of Sliver Ex-
udation. Tenth International Meshing Roundtable (Newport Beach, California),
pages 307–316, October 2001.

9. David A. Field. Qualitative Measures for Initial Meshes. International Journal
for Numerical Methods in Engineering 47:887–906, 2000.

10. Lori A. Freitag, Mark Jones, and Paul Plassman. An Efficient Parallel Algorithm
for Mesh Smoothing. Fourth International Meshing Roundtable (Albuquerque,
New Mexico), pages 47–58, October 1995.

11. Lori A. Freitag and Carl Ollivier-Gooch. Tetrahedral Mesh Improvement Us-
ing Swapping and Smoothing. International Journal for Numerical Methods in
Engineering 40(21):3979–4002, November 1997.

12. William H. Frey. Selective Refinement: A New Strategy for Automatic Node
Placement in Graded Triangular Meshes. International Journal for Numerical
Methods in Engineering 24(11):2183–2200, November 1987.

13. L. R. Hermann. Laplacian-Isoparametric Grid Generation Scheme. Journal of
the Engineering Mechanics Division of the American Society of Civil Engineers
102:749–756, October 1976.

14. P. Jamet. Estimations d’Erreur pour des Élements Finis Droits Presque
Dégénérés. RAIRO Analyse Numérique 10:43–61, 1976.

15. Barry Joe. Construction of Three-Dimensional Improved-Quality Triangula-
tions Using Local Transformations. SIAM Journal on Scientific Computing
16(6):1292–1307, November 1995.

16. G. T. Klincsek. Minimal Triangulations of Polygonal Domains. Annals of
Discrete Mathematics 9:121–123, 1980.

17. Michal Kř́ıžek. On the Maximum Angle Condition for Linear Tetrahedral Ele-
ments. SIAM Journal on Numerical Analysis 29(2):513–520, April 1992.

18. François Labelle and Jonathan Richard Shewchuk. Isosurface Stuffing: Fast
Tetrahedral Meshes with Good Dihedral Angles. ACM Transactions on Graphics
26(3), August 2007. Special issue on Proceedings of SIGGRAPH 2007.

19. V. N. Parthasarathy, C. M. Graichen, and A. F. Hathaway. A Comparison
of Tetrahedron Quality Measures. Finite Elements in Analysis and Design
15(3):255–261, January 1994.

20. V. N. Parthasarathy and Srinivas Kodiyalam. A Constrained Optimization Ap-
proach to Finite Element Mesh Smoothing. Finite Elements in Analysis and
Design 9:309–320, 1991.

21. Joachim Schöberl. NETGEN: An Advancing Front 2D/3D-Mesh Generator
Based on Abstract Rules. Computing and Visualization in Science 1(1):41–52,
July 2007.

1A.1 Aggressive Tetrahedral Mesh Improvement 23

22. Jonathan Richard Shewchuk. Tetrahedral Mesh Generation by Delaunay Re-
finement. Proceedings of the Fourteenth Annual Symposium on Computational
Geometry (Minneapolis, Minnesota), pages 86–95, June 1998.

23. . Two Discrete Optimization Algorithms for the Topologi-
cal Improvement of Tetrahedral Meshes. Unpublished manuscript at
http://www.cs.cmu.edu/∼jrs/jrspapers.html, 2002.

24. . What Is a Good Linear Element? Interpolation, Conditioning, and
Quality Measures. Eleventh International Meshing Roundtable (Ithaca, New
York), pages 115–126, September 2002.

