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Summary. We address the problem of generating 2D quality triangle meshes from a set of
constraints provided as a planar straight line graph. The algorithm first computes a constrained
Delaunay triangulation of the input set of constraints, then interleaves Delaunay refinement
and optimization. The refinement stage inserts a subset of the Voronoi vertices and midpoints
of constrained edges as Steiner points. The optimization stage optimizes the shape of the
triangles through the Lloyd iteration applied to Steiner points both in 1D along constrained
edges and in 2D after computing the bounded Voronoi diagram. Our experiments show that the
proposed algorithm inserts fewer Steiner points than Delaunay refinement alone, and improves
over the mesh quality.
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1 Introduction

We consider the problem of generating 2D triangle meshes from a bounded domain
and a set of geometric and sizing constraints provided respectively as a planar straight
line graph (PSLG) and a sizing function. This problem is mainly motivated by several
practical applications, such as numerical simulation of physical phenomena. The lat-
ter applications require quality meshes, ideally of smallest size. Quality herein refers
to the shape and size of the elements: A triangle is said to be good if its angles are
bounded from below, and if the length of its longest edge does not exceed the sizing
function. The smallest size triangulation, conforming the sizing function, is sought
after for efficiency reasons as the number of elements governs the computation time.

Quality triangulation is a well-studied problem, and many meshing strategies
have been proposed and studied. Existing algorithms could be roughly classified as
being greedy, variational, or pliant. Greedy algorithms commonly perform one local
change at a time, such as vertex insertion, until the initial stated goal is satisfied.
Variational techniques cast the initial problem into the one of minimizing an energy
functional such that low levels of this energy correspond to good solutions for this
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problem (reaching a global optimum is in general elusive). A minimizer for this
energy may perform global relaxation, i.e., vertex relocations and re-triangulation
until convergence. Finally, an algorithm is pliant when it combines both refinement
and decimation, possibly interleaved with a relaxation procedure [1, 2].

Although satisfactory bounds have been obtained for the triangle angles using
Delaunay refinement algorithms [3], one recurrent question is to try lowering the
number of points (so-called Steiner points) added by the meshing algorithm. Re-
call that the Steiner points are inserted either on the constrained edges or inside the
domain, to satisfy sizing and quality constraints, as well as to preserve the input con-
strained edges. At the intuitive level, inserting “just enough” Steiner points requires
generating triangles which are everywhere as big as possible, while preserving the
sizing constraints. Luckily enough, the triangle which covers the biggest area for a
given maximum edge length is the equilateral triangle. In other words, and by using
a simple domain covering argument, trying to generate large and well-shaped trian-
gles simultaneously serves the goal of lowering the number of Steiner points. Our
approach builds upon this observation.

1.1 Contributions

This paper proposes to mesh a 2D domain into large and well-shaped triangles by
alternating Delaunay refinement and optimization. We pursue the goal of generating
large triangles by performing refinement in a multilevel manner, i.e., by inserting a
subset of the Voronoi vertices batch-wise at each refinement stage. Each refinement
stage is parameterized with a decreasing size, which is computed from the current
mesh. Each mesh optimization stage is performed by applying the Lloyd iteration
both in 1D along constrained edges, and in 2D inside the domain. To ensure that
the constraints are preserved during mesh optimization, the bounded Voronoi dia-
gram (Voronoi diagram with constraints) is computed using a novel robust and ef-
fective algorithm. For the sake of efficiency, the optimization stages are applied with
increasing accuracy. Our experiments show that, for the required sizing, our algo-
rithm generates in general meshes with fewer Steiner points and better quality than
Delaunay refinement alone. We now briefly review Delaunay refinement and mesh
optimization techniques.

1.2 Delaunay Refinement

A mesh refinement algorithm iteratively inserts well chosen points, so-called Steiner
points in a given coarse mesh until all constraints are satisfied. One trend in refine-
ment algorithms is to insert as few Steiner points as possible. One popular approach
is to take as initial coarse mesh the constrained Delaunay triangulation of the in-
put PSLG, and to refine it. Refinement algorithms of this kind are called Delaunay
Refinement algorithms. They were pioneered by Chew [4], and later extended by
many authors [5, 6]. Delaunay refinement algorithms proceed as follows: During re-
finement, an edge is said to be encroached if a point of the triangulation (not its
endpoints) is on or inside its diametral circle. As long as the current mesh contains



encroached edges, the algorithm inserts their midpoints. It then iteratively inserts
the circumcenter of the “worst” triangle of the triangulation (according to size and
shape criteria), unless it encroaches an edge. These steps are performed until all
triangles are good, i.e., until each triangle has the size and shape criteria satisfied.
Shewchuk [6] shows that this algorithm terminates with a finite number of Steiner
points and with bounds on the triangles angles (provided the input PSLG does not
contain any small angle). Several studies have been made on the insertion order of
the Steiner points, and a satisfactory choice is to insert the circumcenter of the worst
triangle first.

Another way to grasp the problem of minimizing the number of Steiner points is
to define another type of Steiner points than circumcircle centers. The main idea is
that if a triangle contains a large angle, Ruppert’s algorithm inserts a Steiner point
far away from it, in a place which may be irrelevant. Üngör [7] defines a so-called
off-center as follows. The off-center offc of a triangle �(p, q, r) of shortest edge
pq is defined as the circumcenter of �(p, q, r) if the radius-edge ratio of �(p, q, r)
is lower or equal to β, the angle quality bound. Otherwise, offc is the point v on
the bisector of pq, and inside its circumcircle, such that the radius-edge ratio of
�(p, q, offc) equals β. This technique is shown to insert fewer Steiner points than
Ruppert’s algorithm.

Chernikov and Chrisochoides generalize and improve over Üngör’s off-centers
solution [8]. They show that, more generally, any point in the selection disk of a bad
triangle � can be chosen as a Steiner point. It is shown that, choosing any point
inside the selection disk as Steiner point eliminates �, and that the algorithm ter-
minates. They propose an example of new Steiner point inside the selection disk
and show that the corresponding refinement algorithm in general inserts fewer points
than when using off-centers.

Some other methods combine both insertion and removal of mesh elements (in-
cluding Steiner points) to obtain higher quality meshes. Such combination was used
by Bossen and Heckbert [1] as well as by Coll et al. [2], to cite a few. Finally, Erten
and Üngör [9] have recently introduced a new method which first tries relocating
the vertices of bad triangles. If the relocations would not improve the mesh, they are
canceled and a Steiner point is inserted inside �.

1.3 Optimization

Many different triangulations covering a given domain and satisfying a set of con-
straints may exist, each of them of different quality. When high quality meshes are
sought after, it is therefore desirable to resort to an optimization procedure so as to
optimize a specific quality measure (see [10] for a comprehensive study of quality
measures). Two questions now arise: Which criterion should we optimized? By ex-
ploiting which degrees of freedom? The optimized criterion can be directly related to
the shape and size of the triangles [11], but other criteria have been proposed as well.
We refer the reader to [12] for a comprehensive survey of mesh optimization tech-
niques. As the number of degrees of freedom are both continuous and discrete (ver-
tex positions and mesh connectivity), there is often a need for narrowing the space
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of possible triangulations. For example, Chen proposes to cast the isotropic mesh-
ing problem as an (isotropic) function approximation problem, optimizing within the
space of Delaunay triangulations [13].

Eppstein [12] highlights the fact that, in 2D, evenly distributed points lead to
well-shaped triangles, assuming an isotropic triangulation such as the Delaunay tri-
angulation. Isotropic meshing can therefore be casted into the problem of isotropic
point sampling, which amounts to distribute a set of points on the input domain in
as even a manner as possible. One way to distribute a set of points isotropically and
in accordance with a sizing function is to apply the Lloyd iteration procedure (de-
scribed in Section 2.2) over an initial Voronoi diagram. Du et al. [14] have shown
how the Lloyd iteration transforms an initial ordinary Voronoi diagram into a cen-
troidal Voronoi diagram, where each generator happens to coincide with the center
of mass of its Voronoi cell. Another interesting feature of the Lloyd iteration in our
context is that it can be applied to any dimension, i.e., in 1D for the Steiner points
inserted on the constrained edges, and in 2D for the Steiner points inserted inside
the domain. One drawback of the Lloyd iteration is its slow convergence. Moreover,
it only converges to a local minimum of a certain energy functional [15]. Conver-
gence accelerations are possible either by using Newton-Lloyd iterations or by using
specific types of multilevel refinements [16, 17].

2 Algorithm

We introduce an algorithm which interleaves Delaunay refinement and optimization,
in order to generate a triangle mesh satisfying both shape and size properties for each
triangle. We sketch our algorithm in pseudo-code as follows:

Algorithm 1 Meshing algorithm
Input: A PSLG domain Ω ⊂ R2.

Let T be the constrained Delaunay triangulation of Ω.
repeat

Batch refinement of the triangulation T (Section 2.1).
repeat

Optimization of T by the Lloyd algorithm (Section 2.2),
until Stopping criterion S.

until Refinement does not insert any new Steiner point in T .
repeat

Optimization of T by the Lloyd algorithm,
until Stopping criterion S′ stronger than S.

Output: The final triangle mesh.

The complete algorithm sequence is illustrated by Figure 1. Figure 2 compares
the output of our algorithm with a mesh obtained by Delaunay refinement alone. Our
method improves over the number of Steiner points as well as on the shape of the
elements.



Fig. 1. Interleaved Delaunay refinement and optimization with a uniform sizing parameter.
In the reading order: The constrained Delaunay triangulation (CDT) of the initial PSLG (13
vertices), then refinement (Ri) and smoothing (Si) in alternation. The last step (S∞) is the
final optimization until the stronger stopping criterion. The final mesh contains 645 vertices.

2.1 Refinement

The refinement steps are specifically designed to insert “just enough” Steiner points
to respect the sizing function, and to provide the optimization steps with good ini-
tial solutions. We achieve this goal by inserting batches of Steiner points chosen as
Voronoi vertices. The roles are separated: Each refinement step acts on the size of
the elements, while each optimization step acts on the shape of the elements (see
Section 1.3).

Let us call μ(p) the desired mesh sizing specified at point p. We assume that this
sizing function is provided by the user. During meshing we call sizing ratio the ratio
between the current size of an element and the local desired sizing. An element can
be an edge or a triangle, i.e., the sizing ratio is computed as sr(f) = longest edge(f)

μ(centroid(f))

for a triangle and sr(e) = length(e)
μ(centroid(e)) for an edge. After meshing, the sizing ratios

of all elements must be lower or equal to 1 in order to satisfy the sizing constraints,

1B.1 Interleaving Delaunay Refinement and Optimization 87



88 Jane Tournois, Pierre Alliez, and Olivier Devillers

Fig. 2. Comparison between Delaunay refinement alone and our algorithm. The sizing func-
tion is uniform and equals 0.05. Our method inserts 20% fewer Steiner points than Delaunay
refinement does. The distribution of angles is narrower at the end of our algorithm. The angles
are within [35◦, 96◦] with our method, vs [21◦, 122◦] with Delaunay refinement. The practical
upper bound on aspect ratios is lower with our method: 0.88 vs 1.37.

and a low number of Steiner points is obtained by keeping the sizing ratios as close
to one as possible under these constraints.

Before each refinement step, the algorithm iterates over each triangle and con-
strained edge of the mesh in order to compute the maximum sizing ratio srmax. From
this value we compute the current target sizing ratio as srtarget = max( srmax√

3
, 1),

which is then used as a slowly decreasing sizing criterion for refinement. The refine-
ment factor 1/

√
3 is justified by the fact that inserting all circumcenters in a triangu-

lation made of equilateral triangles operates a
√

3− section of the edges (compared
to a bisection on the constrained edges). In 2D, the refinement corresponding to the
target sizing ratio can therefore not be faster than this value. As we aim at refining the
mesh with sizing ratios as uniform as possible, we parameterize the 1D refinement
with the same target sizing ratio. The target sizing ratio is thresholded to 1 in order
not to insert points that would introduce new triangles or edges with a sizing ratio
lower than 1, i.e. smaller than the desired sizing. Hence, at each refinement iteration,
the target sizing ratio slowly decreases, until it reaches the value of 1, which corre-
sponds to satisfying the input sizing requirement, via the sizing function μ, for each
simplex of the mesh.

Refinement is first performed in 1D along the constraint edges, then in 2D. Call L
the list of Steiner points to be inserted. The algorithm iterates over all triangles and
constrained edges and measure their sizing ratio. If it is larger than the current target



sizing ratio srtarget, we add its midpoint or circumcenter to L, and alter the sizing
ratio of its (unprocessed) incident elements in order to avoid over-refinement.

More specifically, and relying on the fact that a local point insertion involves
neighboring triangles, we inform the neighboring triangles of a split triangle that
they should take upon themselves a part of this refinement. To do so, when a triangle
f is processed and eligible for splitting, the quantity 1/3 ∗ (srf/

√
3 − srtarget) is

added to the sizing ratios of each of its unprocessed neighboring triangles. In this
way, we divide between f ’s neighboring triangles the difference between what we
expect to be the sizing ratio of f after splitting (srf/

√
3) and the target sizing ratio.

Then, these triangle sizing ratios may be increased or decreased, and respectively get
more or less likely to be split during the current refinement step. A similar method
is used in 1D over the edges, with 1/2 as refinement factor. When all elements have
been visited, all points in L are inserted to the constrained Delaunay triangulation.
The next step is mesh optimization.

2.2 Optimization

The mesh optimization step involves the Lloyd iteration applied to the cells of a
bounded Voronoi diagram (the pseudo-dual of the constrained Delaunay triangula-
tion).

Lloyd iteration.

The Lloyd iteration [18] is a minimizer for the following energy functional:

E({zi}N
i=1) =

N∑
i=1

∫
y∈Vi

ρ(y)||y − zi||2dy,

where {zi}N
i=1 are a set of generators and {Vi}N

i=1 the corresponding Voronoi cells.
The Lloyd iteration minimizes this energy by alternately moving the generators to the
centroid of their Voronoi cells, and recomputing the Voronoi diagram. The centroid
z∗ of the cell V is defined as:

z∗ =

∫
V

yρ(y)dy∫
V

ρ(y)dy
,

where ρ is a density function defined on the domain Ω. After convergence, the space
subdivision obtained is a centroidal Voronoi tessellation [14, 15]. As it corresponds
to a critical point of the energy E , it is a necessary condition for optimality, in the
sense of minimizing E .

We choose to stop the Lloyd iteration when all generators move less than a user-
defined distance threshold. We first define the notion of move ratio of a generator z

in its Voronoi cell as mr(z) = ||z−z∗||
size(cell(z)) , where the size of the cell is defined as

the longest distance between any pair of points of this cell. The Lloyd iteration is
stopped when maxz∈{zi}N

i=1
mr(z) < p (p is typically set to 3% during refinement,
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Fig. 3. Lloyd iteration with a uniform density. (a) Steiner points randomly inserted on a con-
strained edge, and after convergence of the Lloyd iteration. (b) Steiner points randomly in-
serted on a 2D domain, and after convergence of the Lloyd iteration. Sites are filled dots, and
centroids are outlined dots (they coincide after convergence). (c) Lloyd iterations applied both
in 1D and 2D.

and to 1% for the final relaxation step). In practice, the 1D Lloyd iteration, which
allows moving the Steiner points to the centroids of their 1D cells (along the con-
straints), plays an important role at minimizing the number of Steiner points inserted.
We could exhibit an extreme example where combining refinement with 1D Lloyd
iteration inserts half of the number of 1D Steiner points inserted by the common
recursive edge bisection of the constraints.

Our algorithm applies the Lloyd iteration both in 1D by moving Steiner points
along the input constrained edges (Voronoi cells are line segments), and in 2D by
moving Steiner points at the centroid of their bounded Voronoi cell. Figure 3 illus-
trates both 1D and 2D iterations.

Bounded Voronoi Diagram.

While the ordinary Voronoi diagram and Delaunay triangulation do not take con-
straints into account, we wish here to prevent the Voronoi regions to cross over the
constraints. To this aim we use a constrained Delaunay triangulation [4,19,20] and a
variant of its dual, the bounded Voronoi diagram (BVD), defined by Seidel [21]. The
common duality between Delaunay triangulation and Voronoi diagram links each
triangle to its circumcenter. In our context, each triangle may have its circumcenter
on the other side of a constrained edge, therefore its corresponding incident Voronoi
edge must be clipped by this constraint. The BVD is defined as follows: each cell Vi

of a generator xi is composed by the points of the domain Ω which are closer to xi



Fig. 4. Constrained Delaunay triangulation of a set of points (left) and its pseudo-dual bounded
Voronoi diagram (right).

than to any other generator. As for the constrained Delaunay triangulation, the dis-
tance incorporates visibility constraints. The distance dS(x, y) between two points x
and y of R2 is defined as:

dS(x, y) =
{
||x − y||R2 if x “sees” y,
+∞ otherwise.

In this definition, x “sees” y when no constrained edge intersects the segment [x, y].
This visibility notion can be extended to triangles. We will see later how the notion
of triangle sight, or symmetrically triangle “blindness”, is important to construct the
bounded Voronoi diagram. Figure 4 illustrates a constrained Delaunay triangulation
and its pseudo-dual bounded Voronoi diagram. Notice that constructing the standard
Voronoi diagram by joining the circumcenters of all pairs of incident triangles would
not even form a partition. The notion of triangle blindness is pivotal for constructing
the bounded Voronoi diagram.

Definition 2.1 (Blind triangle) A triangle � is said to be blind if the triangle and
its circumcenter c lie on the two different sides of a constrained edge E. Formally, �
is blind if and only if there exists a constrained edge E such that one can find a point
p in � (not an endpoint of E), such that the intersection [p, c] ∩ E is non empty.

The BVD construction algorithm initially tags all triangles of the triangulation
as being blind or not blind (Algorithm 2). It then constructs each cell of the dia-
gram independently using these tags (Algorithm 3). Finally, all cells are assembled
to build the complete bounded Voronoi diagram of a given set of points and con-
strained edges.

Algorithm 2 tags all triangles of the triangulation as being either blind or non-
blind. In addition, each blind triangle stores which constrained edge in the trian-
gulation acts as a visibility obstacle, i.e., which closest edge prevents it to see its
circumcenter. Notice how the algorithm only needs to iterate over the constrained
edges of the triangulation, as all sets of blinded triangles form connected compo-
nents incident to constrained edges (the corresponding parts of the Voronoi diagram
“hidden” by constrained edges are trees rooted from dual rays of these constraints).
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Algorithm 2 Tag blind triangles
Input: Constrained Delaunay triangulation cdt.

Tag all triangles non-blind by default.
for each Constrained edge e of cdt do

Create a stack: faces
for each Adjacent triangle fe to e tagged non-blind do

Push fe into faces
while triangles is non-empty do

Pop f from stack triangles
if f is blinded by e (use P) then

Tag f as blinded by e
for each Adjacent triangle f ′ to f do

if f ′ is finite and non-blind
and the common edge between f and f ′ is unconstrained then

Push f ′ into triangles.
end if

end for

end if

end while

end for

end for

We define a robust predicate, called P in the sequel, to test if a triangle is blinded
by a constrained edge. More specifically, P takes as input a triangle and a segment,
and returns a Boolean indicating whether or not the circumcenter of the triangle lies
on the same side of the segment than the triangle. The circumcenter is never con-
structed explicitly in order to obtain a robust tagging of the blind triangles. Each cell
of the bounded Voronoi diagram can be constructed by circulating around vertices of
the triangulation, and by choosing as cell vertex either circumcenters or intersections
of the standard Voronoi edges with the constrained edges. Note that we do not need
to construct bounded Voronoi cells incident to input constrained vertices as the latter
are constrained and therefore not relocated by the Lloyd iteration. Algorithm 3 de-
scribes this construction, and Figure 5 illustrates the construction of a single bounded
Voronoi cell. Figure 6 illustrates a bounded Voronoi diagram.

Quadratures

The Lloyd iteration requires computing centroids of line segments in 1D and of (pos-
sibly bounded) Voronoi cells in 2D. Such computations require quadrature formulas
when a variable density function is specified, i.e., when the input sizing function is
not uniform. The density function ρ and the sizing function μ are linked by the fol-
lowing formula [22]: μ(x) = 1

ρ(x)d+2 , where d is the dimension of the domain. In
2D, we have

μ(x) =
1

ρ(x)4
.



Algorithm 3 Construct a BVD cell
Input: Unconstrained vertex z of the constrained Delaunay triangulation cdt.

Call P the polygon (cell) in construction,
Call f the current triangle and fnext the next triangle in the circulation,
Call Lf,fnext the line going through the circumcenters of f and fnext.
for each Incident triangle f to z in cdt do

if f is tagged non-blind then

Insert the circumcenter of f into P .
if fnext is blind then

Call Sfnext the constrained edge blinding fnext,
Insert point Lf,fnext ∩ Sfnext into P .

end if

else

Call Sf the constrained edge blinding f .
if fnext is tagged non-blind then

Insert Lf,fnext ∩ Sf into P .
else

Call Sfnext the constrained edge blinding fnext,
if Sf �= Sfnext then

Insert Lf,fnext ∩ Sf and Lf,fnext ∩ Sfnext into P .
end if

end if

end if

end for

Output: Bounded Voronoi cell of z.

The key idea behind a quadrature is to decompose a simple domain (be it an edge
or a triangle in our case) into smaller sub-domains (so-called quadrature primitives)
where simple interpolation schemes are devised. The number N of quadrature prim-
itives used for each element allows the user to tune the computation accuracy of the
centroids. In practice this number is increased during refinement so that a low preci-
sion is used at coarse levels (typically N = 10), and a high precision is used at fine
levels (N = 100 for the final level).

We use the trapezium rule in 1D, with N sub-segments, and the midpoint ap-
proximation rule in 2D, with a decomposition of each bounded Voronoi cell into N
sub-triangles. More precisely, an initial step triangulates the cell by joining each of
its vertices to its generator. The next step recursively bisects the longest edge of these
triangles until the number of quadrature triangles reaches N . On each quadrature tri-
angle, the midpoint approximation formula is applied:∫

�
f(x)dx ≈ |�|

3
(f(x12) + f(x23) + f(x13)),

where x12, x23 and x13 are the midpoints of a quadrature triangle edges. Finally,
we sum the integrals on each quadrature triangle in order to obtain an approximate
centroid of the whole bounded Voronoi cell.
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Fig. 5. Construction of a cell of the
bounded Voronoi diagram. The standard
Voronoi diagram is truncated on the con-
strained edge (colored triangles are blind).

Fig. 6. Bounded Voronoi diagram of a PSLG.

3 Results

Our algorithm is implemented in C++, using the Computational Geometry Algo-
rithms Library CGAL [23]. The Delaunay refinement algorithm that we have used
to compare our meshes to is the terminator algorithm defined by Shewchuk [24],
implemented as a CGAL package [25].

Figures 7 and 8 show uniform meshes, and compare our algorithm with the stan-
dard Delaunay refinement algorithm. The number of Steiner points inserted are re-
spectively 22% and 23% fewer with our method, and the angle distributions are bet-
ter centered around 60 degrees, as expected. The intervals in which the angles lie
are also tighter: [33◦, 99◦] vs [20◦, 124◦] for Figure 7, and [29◦, 103◦] vs [22◦, 127◦]
for Figure 8. The distributions of aspect ratios (circumradii to shortest edge ratios)
show that our algorithm produces many more triangles with aspect ratios close to the
optimal value, which is 1/

√
3 ≈ 0.57 for an equilateral triangle. This shows that,

although our algorithm does not provide theoretical bounds on the triangle angles or
aspect ratios, the practical bounds are improved.

Obviously, any mesh generation algorithm which incorporates smoothing or opti-
mization is expected to obtain meshes of higher quality than a greedy algorithm such
as Delaunay refinement, at the price of higher computation times (10 times slower
for our algorithm in the uniform cases, and close to 100 times slower in the non-
uniform cases which involve costly quadratures). In our experiments, interleaving
refinement and optimization, similar in spirit to multilevel algorithms, consistently
leads to higher quality meshes than refining, then optimizing at the finest level. In
addition to the mesh quality obtained, the choice of the Lloyd iteration instead of the



Fig. 7. The sizing function is uniform and equals 0.02. Our method inserts 22% fewer Steiner
points than Delaunay refinement does. The angles are in [33◦, 99◦] with our method, vs
[20◦, 124◦] with Delaunay refinement. The maximum aspect ratio is lower: 0.85 vs 1.41.

Fig. 8. The sizing function is uniform and equals 0.02. Our method inserts 23% fewer Steiner
points than Delaunay refinement does. The angles are in [29◦, 103◦] with our method, vs
[22◦, 127◦] with Delaunay refinement. The maximum aspect ratio is lower: 1.00 vs 1.33.

many other mesh optimization techniques is justified by the possibilities to apply it in
1D and 2D, and to take a sizing function as input with variable precision quadratures.
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Fig. 9. The input PSLG constraints form acute angles from 5◦ to 37◦. The sizing function is
uniform and equals 0.02. Our method inserts 26% fewer Steiner points than Delaunay refine-
ment does. The angle distribution shows small angles due to the input. The angles range in
[5◦, 128◦] with our method, vs [5◦, 131◦] with Delaunay refinement. As expected the upper
bound on aspect ratios is similar with both methods (5.73).

One of the main problems in mesh generation is to limit the number of small
angles, even when small angles are part of the input [10]. The input PSLG of Figure 9
contains 17 “spin”, with inside angles ranging from 5 to 37 degrees. As depicted
by the angles distributions, small angles do not hurt our algorithm, which does not
produce more small angles than Delaunay refinement does. In addition, our algorithm
inserts 26% fewer Steiner points than the terminator algorithm does. The practical
upper bound on angles is lower, albeit the improvement is small (128◦ vs 131◦).

As already discussed in Section 2.2, optimizing the mesh simultaneously in 1D
and 2D has an important impact on the number of Steiner points inserted. For exam-
ple, when the input PSLG contains two long constraints parallel and close to each
other, the local improvement in terms of number of 1D Steiner points can be as high
as 50%. Intuitively, Delaunay refinement is restricted to recursive constrained edge
bisection, which may lead to bisect all constrained edges at the finest level, even
if they are slightly longer than the local admissible sizing. In our algorithm, each
refinement step is followed by an optimization step, which prevents the next refine-
ment step to over-refine. This behavior is illustrated by Figure 10, where our method
inserts 25% fewer Steiner points than Delaunay refinement alone.

For an input domain Ω and a sizing function μ, one can compute the minimum
number of triangles needed to cover Ω. After computing the mean edge length over
the domain: μ̄ =

∫
Ω

μ(x)dx

area(Ω) , the minimum number of triangles needed is given by

m� = area(Ω)√
3/4.μ̄2 , where the denominator is the mean area of an equilateral trian-



Fig. 10. The sizing function is uniform and equals 0.01. The input PSLG contained 248
vertices. Our method inserts 25% fewer Steiner points than Delaunay refinement does. The
closeup depicts two constrained edges, parallel and close to each other. Combining 1D and
2D optimization allows inserting fewer Steiner points in this area.

gle inside the domain. In the uniform case, we observe that our method produces
meshes with 1.60m� triangles, whereas Delaunay refinement produces meshes with
2.20m� triangles. These values are very consistent over all the examples we have
tested. In the non-uniform case, μ̄ depends too much on the gradation of μ and on
the domain geometry to be able to exhibit a representative average.

Figures 11, 12, 13 and 14 illustrate results from larger inputs and with non-
uniform sizing functions, such as the one described by Alliez et al. [26] as: μ(x) =
infs∈∂Ω [kd(s, x) + lfs(s)], where ∂Ω is the domain boundary, d the Euclidian dis-
tance, lfs the local feature size, and k a constant. This sizing function is shown [26]
to be the maximum k-Lipschitz function that is smaller or equal to lfs on ∂Ω. In the
non-uniform case, our algorithm inserts on average 28% fewer Steiner points than
the standard Delaunay refinement.

4 Conclusion

We have presented a new 2D triangle mesh generation algorithm, interleaving De-
launay refinement and optimization using the Lloyd iteration. The meshes generated
are bound to cover the input constraints provided as a PSLG, and to satisfy siz-
ing constraints provided as a sizing function. Although our algorithm comes with
no theoretical bounds on the triangle angles, we show experimental evidences that
it produces meshes with fewer Steiner points (25% on average) than the standard
Delaunay refinement algorithm, and of better quality. Another contribution of this
paper is an efficient and robust algorithm for computing bounded Voronoi diagrams.
We plan to integrate the latter into the CGAL library.

The main added value provided by the interleaved refinement and optimization
steps in a multilevel manner is to provide the Lloyd optimization step with good
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Fig. 11. The sizing function is uniform and equals 0.01. The initial PSLG contained 256
vertices. The final mesh contains 9761 vertices.

Fig. 12. Mesh generated with respect to the sizing function μ(x) = infs∈∂Ω [0.45 ∗ d(s, x) +
lfs(s)]. The initial PSLG contained 256 vertices. The final mesh contains 1440 vertices.



Fig. 13. Mesh generated with respect to the sizing function μ(x) = infs∈∂Ω [d(s, x)+lfs(s)].
The initial PSLG contained 3632 vertices. The final mesh contains 9691 vertices.

Fig. 14. Mesh generated with respect to the sizing function μ(x) = infs∈∂Ω [0.6 ∗ d(s, x) +
lfs(s)]. The initial PSLG contained 205 vertices. The final mesh contains 981 vertices.
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initial solutions, and therefore to generate meshes of higher quality than the ones
optimized once after refinement. More specifically, such interleaving not only con-
tributes to obtain lower minima for the functional energy described in Section 2.2,
but also prevents the Lloyd iteration to perform long range vertex relocations, and
therefore to converge slowly. The final number of Steiner points is (non-trivially) re-
lated to the decreasing speed of the “target sizing” parameter used by the refinement
step. The ultimate goal being to insert just enough Steiner points (and therefore to
generate large well-shaped elements), it is desirable to slow down the decreasing of
this parameter, especially when approaching the objective sizing function. Although
our experiments in this direction were satisfactory in terms of Steiner points added,
the computation times substantially increase.

As future work we plan to derive a “hill-climbing” version of our algorithm,
where the Lloyd iteration would be modified so as to move each generator toward
their centroid while staying within some fixed angle bounds. A challenging goal
would be to provide theoretical bounds greater than the ones provided by Delaunay
refinement. Finally, we plan to extend some of the ideas presented in this paper to
isotropic tetrahedral mesh generation with constraints.
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