
3A.4

pCAMAL: An Embarrassingly Parallel
Hexahedral Mesh Generator∗

Philippe P. Pébay1, Michael B. Stephenson2, Leslie A. Fortier3,
Steven J. Owen4, and Darryl J. Melander5

1 Sandia National Laboratories
P.O. Box 969, MS 9051, Livermore CA 94551, U.S.A.
pppebay@sandia.gov

2 M.B. Stephenson & Associates
2005 West 1550 North, Provo, UT 84604-2212, U.S.A
mbsteph@sandia.gov

3 Sandia National Laboratories
P.O. Box 5800, MS 0376, Albuquerque NM 87185-0376, U.S.A.
laforti@sandia.gov

4 Sandia National Laboratories
P.O. Box 5800, MS 0376, Albuquerque NM 87185-0376, U.S.A.
sjowen@sandia.gov

5 Sandia National Laboratories
P.O. Box 5800, MS 0376, Albuquerque NM 87185-0376, U.S.A.
djmelan@sandia.gov

Summary. This paper describes a distributed-memory, embarrassingly parallel
hexahedral mesh generator, pCAMAL (parallel CUBIT Adaptive Mesh Algorithm
Library). pCAMAL utilizes the sweeping method following a serial step of geometry
decomposition conducted in the CUBIT geometry preparation and mesh generation
tool. The utility of pCAMAL in generating large meshes is illustrated, and linear
speed-up under load-balanced conditions is demonstrated.

1 Introduction

The requirement for detailed numerical simulation of complex domains has
driven the research and development of parallel applications that can take
advantage of shared- or distributed-memory machines. This includes tools
for numerical simulation, post-processing as well as pre-processing tools for
mesh generation. The majority of these techniques for mesh generation have

∗This work was supported by the United States Department of Energy, Office of
Defense Programs. Sandia is a multiprogram laboratory operated by Sandia Corpo-
ration, a Lockheed-Martin Company, for the United States Department of Energy
under contract DE-AC04-94-AL85000.



270 P. Pébay, M. Stephenson, L. Fortier, S. Owen, & D. Melander

focused on the generation of tetrahedral meshes for computational fluid
dynamics. Nikos Chrisochoides [5] provides an extensive survey of parallel
mesh generation methods for triangle and tetrahedral methods. While some
techniques have been proposed for parallel quadrilateral [16, 8] and block-
structured [15, 13] meshing, parallel implementations of unstructured hexa-
hedral meshing techniques such as sweeping [7, 11] have yet to be proposed.

Sweeping is a common tool used for generating quality hexahedral meshes
in domains defined by a 21

2 -dimensional or cylindrical topology. For example,
an unstructured meshing algorithm such as paving [4] is applied to one or more
source surfaces and then extruded through the volume to generate hexahedral
elements ending with a single target surface. While some work has been done
to characterize sweepable topologies [17], the user is primarily responsible
for developing and executing a strategy for decomposing a CAD model in
order to apply the sweeping scheme. Meshing tools such as CUBIT[6] provide
extensive geometric tools to assist the user in this process. Nevertheless, the
decomposition process can sometimes take days or weeks depending on the
complexity of the solid model.

As a result of this inherently user-intensive process, the advantages of
parallel techniques for generating sweep meshes has been minimal. This has
been because the actual computation time to generate the mesh in serial
has been insignificant compared to the overall user time required for sweep
meshing. Recently, the granularity of the simulations required by many users
within the National Laboratories has been a motivating factor. Meshes of
hundreds of millions and eventually billions of elements will be required to
respond to the needs of the National Laboratories in the coming years. It is
not currently feasible to generate meshes of this size and level of detail using
a serial process. Therefore, there is a critical need to develop scalable mesh
generators.

This paper outlines the development of a distributed-memory parallel hex-
ahedral mesh generator, pCAMAL (parallel CUBIT Adaptive Mesh Algorithm
Library), that utilizes the sweeping method [11] and shows its utility in gen-
erating large meshes. It also discusses changes that have been implemented
in the geometry preparation and mesh generation tool CUBIT to enable it to
prepare the input data required by pCAMAL.

�

2 Method

Our approach is a two-stage approach that can be summarized as follows:

1. The initial domain (fully described by its watertight boundary) is decom-
posed into an assembly of sweepable subdomains. Currently, this stage is
performed serially and requires direct human intervention. The resulting
many-to-one boundary mesh is exported to a file;



3A.4 pCAMAL: An Embarrassingly Parallel Hexahedral Mesh Generator 271

2. The pCAMAL application imports the latter file, and subsequently sweeps
the interior many-to-one hexahedral meshes in an embarrassingly parallel
fashion. The resulting meshes are stored in separate files.

The proposed method for generating a swept hexahedral mesh in parallel
is the first phase in a more comprehensive plan of developing a full parallel
hexahedral meshing capability. The first phase of this project, described in
this paper, is to develop an embarrassingly parallel version of the existing
sweeping capability [11] used in CUBIT. Of necessity, this initial version of the
parallel sweeping algorithm must not require geometry interactions as it gen-
erates the 3D mesh. As a result, the proposed method relies on the two-stage
process described above that first depends on the user to provide an initial de-
composition and boundary mesh. Because decomposition and surface meshing
require significant geometry interaction, these procedures were necessarily left
to the traditional user-interactive serial process currently provided in CUBIT.

Geometry interaction, typically managed through the CGM library [14] in
the serial CUBIT tool kit, utilizes one or more third party geometry kernels
such as ACIS [1] or Granite [2]. In order to develop a hexahedral meshing system
that incorporates decomposition and surface meshing, the geometry kernel
would also need to reside on each node of a distributed machine, which in their
current form would be infeasible. Future work will involve developing a light-
weight geometry kernel that will replicate capability used in the serial CUBIT
process, but would be more efficient for use in a parallel environment. This
will provide the infrastructure for developing a more comprehensive parallel
sweeping capability that could potentially include geometry decomposition
and surface meshing.

2.1 Serial Domain Decomposition

Serial domain decomposition is performed as an extension to CUBIT, a mesh
generation tool kit developed at Sandia National Laboratories. It includes
many algorithms to mesh surfaces and solids with triangles, quadrilaterals,
tetrahedra, and hexahedra. Some of these algorithms exist in a separate li-
brary known as CUBIT Adaptive Meshing Algorithm Library or CAMAL. The
algorithms were extracted from CUBIT over several years. CUBIT now uses
the algorithms as they are implemented in CAMAL. In addition to mesh gen-
eration capabilities, CUBIT also provides geometry manipulation capabilities,
including geometry decomposition tools that prepare geometry for the mesh-
ing algorithms.

CUBIT Modifications

CUBIT normally attempts to generate a complete hexahedral mesh within
each solid. Because CUBIT is a serial application, it is limited in the size of
mesh that it can generate by the memory available on a given workstation.



272 P. Pébay, M. Stephenson, L. Fortier, S. Owen, & D. Melander

To significantly extend size limitations, the mesh must be generated in pieces
rather than in a single, serial session. If the mesh can be generated in pieces,
then it can be generated in parallel.

Thus, CUBIT was modified to generate only the boundary mesh for each
sweepable volume and then output this mesh, with additional properties, in
an Exodus II file format. Exodus II is a file format widely used by Sandia
analysts [10].

New commands

Two new commands were added to CUBIT in support of parallel hex meshing.

set parallel meshing [on|off]

export parallel <filename>

The first command instructs CUBIT to forgo hexahedra generation when
the CUBIT sweeping algorithm is applied to a volume. Instead, meshes are
only generated on the volume’s boundary surfaces. Note that only one-to-one
and many-to-one sweeping currently support this partial sweeping capability.

The second command instructs CUBIT to write an Exodus II file containing
the surface meshes of each sweepable volume, organized so that pCAMAL may
correctly interpret them to generate the full, hexahedral mesh.

Implementation

PCMLSweeper is a new class derived from the CAMAL class CMLSweepCore.
CMLSweepCore is the base-class for all CAMAL sweepers. PCMLSweeper is the
interface used by CUBIT and pCAMAL to generate the surface boundary mesh
and the hexahedral mesh respectively.

The differences in PCMLSweeper and CMLSweepCore are small but signifi-
cant. One difference is the signature of the method

PCMLSweeper::set_boundary_mesh()

The version of this method found in PCMLSweeper has a parameter list that
is more like that of the Exodus II routines than its equivalent method in the
CMLSweepCore class. This makes it easier to pass data to pCAMAL without
need for translation.

The PCMLSweeper class also includes the new method

PCMLSweeper::generate_shell()

This method generates only the boundary shell of the volume instead of gen-
erating hexahedral elements while sweeping the source surface mesh to the
target surface. If both source and target surfaces have been meshed before
this method is called, then the method only checks that the connectivity of



3A.4 pCAMAL: An Embarrassingly Parallel Hexahedral Mesh Generator 273

the target mesh matches the surface mesh and that the linking surface meshes
are consistent.

Another new method is

PCMLSweeper::get_quads_buf()

This method retrieves the boundary quadrilateral mesh from the sweeper
in a buffer. The output is buffered because of its potential size. It may be
impossible to allocate sufficient memory to return the entire mesh in a single
call if the surface mesh is huge, i.e., several million elements. The method
returns the number of elements in the buffer and is called repeatedly until the
number of elements returned is zero.

Another change made to CUBIT is the addition of a new class called
PCamalExporter. It is a subclass of ExodusExporter, the Exodus II file writer
in CUBIT. Its purpose is to gather all of the default or user specified pCAMAL
output blocks and write them to an Exodus II file with additional information
necessary for pCAMAL to generate the hexahedral mesh.

PCamalExporter writes each surface mesh for the sweepable volumes as
a unique element block. The following element block properties are added to
the file.

• Sweep Volume Identifier – Each surface is associated with a sweepable
volume with this identifier.

• Surface Type – A surface is either a source, a target or a linking surface.
• Number of Hexahedra – Each source surface has an estimate of the number

of hexahedra in the sweepable volume. Surface types other than source do
not include this property. pCAMAL uses this value in its load balancing
scheme.

• User Block Number – The block number assigned to the sweepable volume
is recorded here. If the user assigned a block number to the sweepable
volume, that block number will be found here. If not, then CUBIT will
assign a block number which is the same as the sweep volume identifier.
The user may assign many volumes to the same block in the Exodus II
format.

• Number of Hex Nodes – The number of nodes to be generated for each hex
element. The default number of nodes is eight. This number may increase
if the user desires higher-order elements.

A surface may lie on the boundary of two separate volumes. In this case,
two instances of the above element properties are added to the Exodus II file
for that surface. Because of the different context of each use of the volume,
the properties for the surface will differ in each instance.

2.2 Embarrassingly Parallel Sweeping

In the second stage of the parallel sweeping process, the specialized Exodus
II file generated in the domain decomposition stage is imported by a corre-



274 P. Pébay, M. Stephenson, L. Fortier, S. Owen, & D. Melander

sponding specialized Exodus II reader. The task of pCAMAL is to sweep all in-
terior hexahedral meshes in an embarrassingly parallel fashion on distributed-
memory machines. In order to achieve this goal, we take advantage of the fact
that mesh consistency is ensured across subdomain boundaries at the domain
decomposition stage. As long as the boundary meshes provided to pCAMAL
are consistent, the collection of hexahedral meshes are also guaranteed to
be consistent across the entire domain. Because mesh consistency is ensured
through the surface meshes, each volume can be meshed independently with
no communication required between regions.

In traditional serial meshing procedures, the user can display the entire
mesh and color code it to visualize mesh quality. With a final mesh distributed
across multiple processors, it is not possible to address mesh quality issues in
a similar manner. Instead, mesh quality extrema and statistical moments are
computed and reported to the user, who can choose to address them within the
CUBIT toolkit. In order to offer the user the widest existing choice of mesh
element quality functions, we have integrated the Verdict geometric quality
library (cf. [12]) in pCAMAL. Since Verdict functions are called on local data
by individual compute nodes, this does not affect the embarrassingly parallel
nature of pCAMAL: only a global update of the extrema and of the statistical
moments must be performed prior to overall termination; this represents an
entirely negligible amount of inter-processor communication as only 2 extrema
and 4 statistical moments (mean, variance, skewness, and kurtosis) must be
reported.

pCAMAL is built on CAMAL and Verdict libraries, and implemented us-
ing the single-program, multiple-data (SPMD) paradigm. Specifically, MPI is
employed so that:

• the same input data (the file containing the set of meshed surfaces that
specify the collection subdomains) is loaded on all processors that partic-
ipate in the run;

• each processor generates the interior many-to-one sweep meshes that have
been attributed to this processor by a load-balancing scheme, saving each
mesh as a separate file;

• each processor computes the desired Verdict quality function of each el-
ement of its swept meshes, summarizes them in terms of extrema and
statistical moments, and collects timing information;

• a single processor collects all local quality and timing statistics via mes-
sage passing, and aggregates them using appropriate combinations (as con-
strained by the domain decomposition) prior to reporting them.

Note that currently, only a crude load-balancing scheme has been imple-
mented in pCAMAL. We are currently developing a better strategy that makes
use of the numbers of estimated hexahedral elements to be generated for each
subdomain, as permitted by the sweeping techniques. In fact, in the case
of one-to-one sweeping, the exact number of output hexahedra can even be
known prior to mesh generation.

�



3A.4 pCAMAL: An Embarrassingly Parallel Hexahedral Mesh Generator 275

3 Examples

To demonstrate the functionality of pCAMAL, a set of examples ranging from
simple (2 subdomains involving the generation of about 7500 hexahedral ele-
ments) to very large (1024 subdomains for a maximum of 1024000 hexahedral
elements) is presented.

The parallel runs have been executed on Sandia National Laboratories’
Catalyst computational cluster, which comprises 120 dual 3.06GHz Pentium
Xeon compute nodes with 2GB of memory each. Catalyst has a Gigabit
Ethernet user network for job launch, I/O to storage, and users’ interaction
with their jobs, and a 4X Infiniband fabric high-speed network using a Voltaire
9288 InfiniBand switch. Its operating system has a Linux 2.6.17.11 kernel, and
its batch scheduling system is the TORQUE resource manager [3].

3.1 Proof Of Concept: Bisected Cylinder

The first example is that of a split cylindrical model, illustrated in Figure 1,
left. The process begins with the geometry, which in this case was created
using CUBIT’s geometry creation capabilities. In this example, although the
original cylindrical volume is sweepable, it was split into two symmetric parts
to examplify the use of pCAMAL with a simple geometry. As described in the
previous section, the volumes are meshed in CUBITon their surfaces only, and
setting the parallel mesh option on results in exporting them to two files in
the modified Exodus II format expected by pCAMAL. Executing pCAMAL with
one (in this case, the two sweeping processes are queued by the load-balancing
scheme) or two processors, two Exodus II hexahedral mesh files are generated
and saved.

These two meshes can be visualized by importing them back into CU-
BIT or using another visualization tool. Figure 1 shows the model’s surface
quadrilateral (center) and volume hexahedral (right) meshes as computed by
pCAMAL.

3.2 Algorithm Scalability: Similar Cubes

In order to assess speed-up independently of the load-balancing scheme, a se-
ries of cubic or rectangular parallelepiped models made up of varying numbers
of similar cubes is used. With these synthetic examples, we assess:

1. speed-up at constant total work (as studied for the INL reactor core model
above), and

2. speed-up at constant work per processor.



276 P. Pébay, M. Stephenson, L. Fortier, S. Owen, & D. Melander

Fig. 1. Original geometry for bisected cylinder, the surface mesh, and the resulting
volume mesh.

In both cases, speed-up can be visually inspected by plotting speed-up versus
number of processors using a log-log scale, as optimal scale-up is revealed
by a straight line (more precisely, this line is the angle bisector of the first
quadrant). Note however that speed-up is not defined in the same way for
the two types of studies. Let nmin denote the smallest utilized number of
processors and T (n) the wall clock time measured with n processors. Then,
speed-up at constant total work with np processors is

STW =
T (nmin)
T (np)

,

whereas speed-up at constant work per processor with np processors is

SWP =
T (np)

T (nmin)
.

Fig. 2. Several synthetic models using an increasing number of cubes.

In this demonstration, models were created containing 1, 2, 4, 8, 16, 32, 64,
128, and 1024 identical subdomains. Some of the subdomains are rectangular
volumes, others are cubes, though all subdomains in one group of tests will
contain the same number of elements when meshed. When the number of
subdomains is doubled, the total number of elements is also doubled. Figure 2
illustrates this process for the cubic steps, that is, when the number of cubes
between one step and the next differs by a factor of 8.



3A.4 pCAMAL: An Embarrassingly Parallel Hexahedral Mesh Generator 277

Table 1. Wall clock time measured on Catalyst to sweep the 1, 024, 000 elements
of a synthetic model as a function of the number of processors used.

Number of processors 1 2 4 8 16 32 64 128

Time (seconds) 140 80 49 35 27 26 24 23

Table 2. Wall clock time measured on Catalyst to sweep the 32, 000, 000 elements
of a synthetic model as a function of the number of processors used.

Number of processors 1 2 4 8 16 32

Time (seconds) 1231 669 339 170 87 48

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

lo
g
2
(S

p
ee

d
u
p
)

log
2
(Number of Processors)

Measured speedup

Theoretical linear speedup

0

1

2

3

4

5

0 1 2 3 4 5

lo
g
2
(S

p
ee

d
u
p
)

log
2
(Number of Processors)

Measured speedup

Theoretical linear speedup

Fig. 3. Speed-up at constant total work when meshing a synthetic model with
1, 024, 000 (left) or 32, 000, 000 (right) hexahedral elements.

Constant Total Work

In the first series of test runs, at constant load per processor, only the 1024-
subdomain model is used. Each cube has a uniform surface mesh consisting
of 100 quadrilaterals per face; in other words, each cubic subdomain results
in a 1000-element hexahedral mesh. Thus, the swept mesh of the entire model
contains 1, 024, 000 hexahedral elements. The results obtained on Catalyst
are provided in Table 1. In this case, speed-up is much more favorable than in
the case of the INL reactor core model, being near-optimal for the first 2 or
3 steps. As expected when decreasing the load per processor, speed-up tails
off until wall clock time eventually reaches a minimum, which is illustrated
in Figure 3, left. This is a normal behavior because a decreasing amount of
work per processor ultimately results in a situation where overheads, even
small in absolute terms, become dominant as compared to the amount of



278 P. Pébay, M. Stephenson, L. Fortier, S. Owen, & D. Melander

actual computational work. In this current example, it appears that with 128
processors, minimal wall clock time has been or is almost reached. Note that
this corresponds to a per processor load of 8, 000 hexahedra to be swept, that
is, an almost negligible amount of computational work.

Now if, instead, a much finer level of granularity is required by imposing
10, 000 quadrilaterals per face, which in turns results in 1, 000, 000 hexahe-
dra per subdomain, it is sufficient to consider 32 subdomains to generate a
fairly large mesh (32, 000, 000 hexahedral elements), with which speed-up at
constant total work (and thus decreasing work per processor) will remain near-
optimal for a while, and thus minimal wall clock time will occur for a larger
number of processors. And indeed, as indicated in Table 2 and illustrated in
Figure 3, right, speed-up remains next-to-optimal (almost 2) for several steps,
and only begins to slightly decrease (while still remaining superior to 1.8)
at 32 processors. Note that the speed-up between 1 and 2 processors is lower
(circa 1.8) than for the subsequent step; this has to be expected, since a single
processor run does not create a MPI communicator and thus eliminates the
corresponding overhead.

Constant Work Per Processor

Table 3. Timing results of testing constant load per processor.

Number of Number of Time

elements processors (seconds)

1,000,000 1 41

2,000,000 2 43

4,000,000 4 44

8,000,000 8 47

16,000,000 16 46

32,000,000 32 48

In order to assess speed-up at constant work per processor, the latest
model is used, i.e., each subdomain is a cube whose boundary consists of
10, 000 quadrilaterals per face and thus its swept mesh contains 1, 000, 000
hexahedral elements. Increasingly large models with 1, 2, 4, 8, 16, and 32 such
subdomains are then meshed with pCAMAL utilizing a number of processors
equal to the number of sudomains. Corresponding wall clock times measured
on Catalyst are given in Table 3, and illustrated in Figure 4; these clearly
exhibit near-optimal speed-up, thus experimentally validating the embarrass-
ingly parallel nature of pCAMAL. Note that the same caveat as previously
descibed regarding the base (1 processor) case, which does not incur MPI
overheads, holds.



3A.4 pCAMAL: An Embarrassingly Parallel Hexahedral Mesh Generator 279

0

1

2

3

4

5

0 1 2 3 4 5

lo
g
2
(S

p
ee

d
u
p
)

log
2
(Number of Processors)

Measured speedup

Theoretical linear speedup

Fig. 4. Speed-up at constant work per processor when meshing a synthetic model
with 1, 2, 4, 8, 16, or 32 processors.

3.3 Benefits for a Real-Life Model: Nuclear Reactor Core

A model of a reactor core developed by Idaho National Laboratories (courtesy
of Scott Lucas and Glen Hansen), illustrated in Figure 5, is used to demon-
strate the benefits of pCAMAL when dealing with real-life multi-volume mod-
els.

Fig. 5. Left: the INL reactor core with its casing, right: visualization of the inner
portion contained within the casing.

This model contains about a thousand parts, and using serial meshing
capabilities would take a considerable amount of time to generate a hexahedral
mesh at the desired level of detail. If the element granularity is set to be small
enough, mesh generation of this model with CUBIT is not even possible using
serial processing due to memory constraints.



280 P. Pébay, M. Stephenson, L. Fortier, S. Owen, & D. Melander

Fig. 6. Details of the mesh of the INL reactor core model.

Table 4. Wall clock time measured on Catalyst to sweep a 10, 459, 575-element
hexahedral mesh of the INL reactor core model with pCAMAL as a function of the
number of processors used.

Number of processors 1 3 4 10 20 40 80

Time (seconds) 745 393 363 265 259 246 232

Fig. 7. Wall clock time measured on Catalyst to sweep a 10, 459, 575-element
hexahedral mesh of the INL reactor core model with pCAMAL as a function of the
number of processors used.

With a desired level of resolution that results in the creation of 10, 459, 575
hexhaedral elements, the wall clock time measured on Catalyst to sweep the
mesh with pCAMAL as a function of the number of processors utilized is
indicated in Table 4 and shown in Figure 7. These results allow assessment,
by definition, of speed-up at constant global work, and thus with a decreasing
load per processor. Although some level of speed-up is achieved, it is evidently



3A.4 pCAMAL: An Embarrassingly Parallel Hexahedral Mesh Generator 281

sub-optimal as a few of the subdomains are very large in comparison to the
other ones, and thus, wall clock time has a lower bound that is constrained by
the time it takes to generate the largest swept mesh. This illustrates the need
to further develop the domain decomposition step in conjunction with the
load-balancing scheme. Nonetheless, with a higher level of detail, it becomes
impossible to generate the mesh with a serial mesher, no matter what platform
is used, and the capability of pCAMAL becomes a necessity. For instance,
Figure 8 illustrate different levels of detail of the interior of a much finer mesh
of the same model: this mesh contains 33, 580, 500 hexahedral elements, and
cannot be generated by CUBIT on any currently existing platform.

Fig. 8. Different levels of detail of the interior of a 33, 580, 500-element hexahedral
mesh of the INL reactor core model generated by pCAMAL.

�



282 P. Pébay, M. Stephenson, L. Fortier, S. Owen, & D. Melander

4 Conclusions and Perspectives

An approach to embarrassingly parallel hexahedral sweep mesh generation
has been proposed. While the objective of improving computational efficiency
for generating large models has clearly been met, the main objective for this
work has been to address the scalability problem. The sweep meshing problem
continues to be an inherently user-intensive procedure, requiring detailed user
knowledge of the CAD model in order to apply an appropriate decomposition
strategy. While the advantages of improved computational efficiency demon-
strated here are dramatic compared to the traditional serial process, the over-
all user time required to prepare the geometry still overwhelmingly dominates
the process. Instead, the advantages demonstrated here by the improved scal-
ability of the hexahedral meshing process represent the main contributions
of this work, permitting complex simulations where meshes of hundreds of
millions and potentially billions of elements are required to understand local
physical phenomena.

The presented work is an initial phase of a more comprehensive plan to
build a general parallel code for hexahedral meshing. Future work will include
improving geometric load balancing, integration of element quality metrics,
addition of a geometry query kernel, implementation of a parallel surface
meshing process and integration with simulation tools as a component library.

The geometric load balancing solution proposed here for parallel sweep
meshing takes advantage of the natural sweep direction of the individual vol-
umes. The ability to decompose the volume at appropriate layer boundaries
will address most of the load balancing problem. The problem arises, however
when the number of processors will require a decomposition at a resolution
smaller that a single layer. This implies a decomposition strategy that will im-
pose a subdivision of individual layers. Future work will address this issue and
should provide a more general load balancing strategy for parallel meshing.

The ability to mesh the geometric surfaces in a parallel environment is one
of the significant issues to be addressed in the future. This will necessarily in-
volve the integration of a geometry query engine within pCAMAL. The serial
solution currently used by CUBIT[1, 2] will likely prove to be overly heavy-
weight to include on every compute node. Instead a light-weight facet-based
geometry kernel is proposed. [9] describes a G1 continuous surface definition
based on a quartic triangular Bézier representation. It is clear that an exact
NURBS representation of the original CAD model would provide a more accu-
rate representation; however, for the applications that are currently intending
to utilize pCAMAL, an interpolated definition will likely be sufficient.

Once a geometry kernel is available within pCAMAL, surface meshing al-
gorithms [4] may then be incorporated within the parallel meshing procedure.
This will initially involve meshing each geometric surface on separate com-
pute nodes prior to invoking the sweep meshing procedure. Inter-processor
communication will be necessary to distribute the shared surface meshes to
the appropriate processors for hexahedral meshing. An open question, yet to



3A.4 pCAMAL: An Embarrassingly Parallel Hexahedral Mesh Generator 283

be resolved is a method for load balancing for individual surface domains.
For example, the ability to effectively decompose a surface for quadrilateral
meshing in a manner where the final quad mesh will be independent of the
number of subdivisions will need to be addressed.

pCAMAL is currently implemented as a stand-alone application that ac-
cepts input of a boundary quad mesh and exports a full hexahedral mesh via
Exodus II files. Future work will involve integrating pCAMAL as a component
library callable from a simulation code. The objective will be to eliminate
the need to export the full finite element mesh to disk, but rather provide an
API to objects in memory. Future work will include exploring the necessity to
generate the entire mesh. Instead, a method where only the required portions
of the mesh are generated real-time as they are requested by the API would
be developed.

Finally, future work will involve more targeted mesh quality assessment: in
addition to reporting global extrema and statistical moments, pCAMAL will
offer the ability to define lower and upper bounds, below and above which
elements IDs will be stored for inspection and/or modification of the input
geometry prior to re-meshing.

�

Acknowledgments

The authors would like to thank:

• David Evensky (Sandia National Laboratories) for his help with the
Catalyst computational cluster, and for having allowed us to use much
time as needed on this system;

• David C. Thompson (Sandia National Laboratories) for having set up
parallel visualization capabilities to post-process pCAMAL’s outputs.

• Scott Lucas and Glen Hansen (Idaho National Laboratories) for the INL
reactor core model.

References

1. 3D ACIS modeler. URL http://www.spatial.com/products/acis.html.
2. GRANITE interoperability kernel. URL http://www.ptc.com/appserver/mkt/

products/home.jsp?k=369.
3. TORQUE resource manager. URL http://www.clusterresources.com/pages/

products/torque-resource-manager% .php.
4. T.D. Blacker and M.B. Stephenson. Paving: A new approach to automated

quadrilateral mesh generation. International Journal for Numerical Methods in
Engineering, 32:811–847, 1991.

5. Nikos Chrisochoides. A survey of parallel mesh generation techniques. Techni-
cal report, Brown University. URL http://www.andrew.cmu.edu/user/sowen/

pmesh_survey.pdf.



284 P. Pébay, M. Stephenson, L. Fortier, S. Owen, & D. Melander

6. Computational Modeling Science Dept., Sandia National Laboratories. CU-
BIT 10.2 User Documentation, October 2006. URL http://cubit.sandia.

gov/help-version10.2/cubithelp.htm.
7. P. M. Knupp. Next-generation sweep tool: A method for generating all-hex

meshes on two-and-one-half dimensional geometries. In Proceedings of the 7th

International Meshing Roundtable, pages 505–513. Dearborn, MI, October 1998.
URL http://www.imr.sandia.gov/papers/imr7/knupp_sweep98.ps.gz.

8. Randy Lober, T.J. Tautges, and R.A. Cairncross. The parallelization of an
advancing front, all-quadrilateral meshing algorithm for adaptive analysis. In
Proceedings of the 4th International Meshing Roundtable, pages 59–70. Albu-
querque, NM, October 1995.

9. Steven J. Owen, David R. White, and Timothy J. Tautges. Facet-based sur-
faces for 3d mesh generation. In Proceedings of the 11th International Meshing
Roundtable, pages 297–312. Ithaca, NY, September 2002. URL http://www.

imr.sandia.gov/papers/imr11/owen.pdf.
10. Larry A. Schoof and Victor R. Yarberry. Exodus II: A finite element data model.

Technical Report SAND92-2137, Sandia National Laboratories, November 1995.
URL http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf.

11. Michael A. Scott, Matthew N. Earp, Steven E. Benzley, and Michael B. Stephen-
son. Adaptive sweeping techniques. In Proceedings of the 14th International
Meshing Roundtable, pages 417–432. San Diego, CA, September 2005. URL
http://www.imr.sandia.gov/papers/imr14/scott.pdf.

12. C. Simpson, C. D. Ernst, P. Knupp, P. P. Pébay, and D. C. Thompson. The
Verdict Library Reference Manual. Sandia National Laboratories, April 2007.
URL http://www.vtk.org/Wiki/images/6/6b/VerdictManual-revA.pdf.

13. Moitra Stuti and Anutosh Moitra. Considerations of computational optimality
in parallel algorithms for grid generation. In Proceedings of the 5th International
Conference on Numerical Grid Generation in Computational Field Simulations,
pages 753–762, 1996.

14. Timothy J. Tautges. The common geometry module (CGM). In Proceedings of
the 9th International Meshing Roundtable, pages 337–348. New Orleans, LA, Oc-
tober 2000. URL http://www.andrew.cmu.edu/user/sowen/abstracts/Ta758.

html.
15. Joe F. Thompson, Bharat K. Soni, and Nigel Weatherill. Handbook of Grid

Generation. CRC Press, 1999.
16. B.H.V. Topping and B. Cheng. Parallel adaptive quadrilateral mesh generation.

Computers and Structures, (73):19–536, 1999.
17. David R. White and Timothy J. Tautges. Automatic scheme selection for toolkit

hex meshing. International Journal for Numerical Methods in Engineering, 49
(1):127–144, 2000.


