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Summary. The Immersive Topology Environment for Meshing (ITEM) is a wizard-
like environment, built on top of the CUBIT Geometry and Meshing Toolkit. ITEM
is focused on three main objectives: 1) guiding the user through the simulation
model preparation workflow; 2) providing the user with intelligent options based
upon the current state of the model; and 3) where appropriate, automating as much
of the process as possible. To accomplish this, a diagnostic-solution approach is
taken. Based upon diagnostics of the current state of the model, specific solutions
for a variety of common tasks are provided to the user. Some of these tasks include
geometry simplification, small feature suppression, resolution of misaligned assembly
parts, decomposition for hex meshing, and source and target selection for sweeping.
The user may scroll through a list of intelligent solutions for a specific diagnostic and
entity, view a graphical preview of each solution and quickly perform the solution
to resolve the problem. In many cases, automatic solutions for these tasks can be
generated and executed if the user chooses. This paper will discuss the various
diagnostics and geometric reasoning algorithms and approaches taken by ITEM to
determine solutions for preparing an analysis model.

Key words: geometry simplification, sweep decomposition, design through
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1 Introduction

At a cursory inspection of the computational simulation process, the creation
of a mesh may seem like a relatively trivial task. In most cases, significant
energy and thought is put into the numerics for computing the physics of the

tSandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Department of Energy under Contract
DE-AC04-94A1L85000
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system. A mesh may often be thought of as simply a means to represent the
geometric domain of the system and its significance frequently diminished.
Once the problems to be simulated advance beyond simple academic proto-
types of blocks and cylinders, the true magnitude of the meshing problem
readily becomes apparent. It is not unusual for the meshing process to take
upwards of three-quarters of the entire simulation time. At Sandia National
Labs, for instance, a survey[1] of analysts was conducted in 2005 to determine
where the bulk of their time was being spent in modeling and simulation.
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Fig. 1. Approximate percent of time taken by analysts to accomplish tasks in the
modeling and simulation process at Sandia National Laboratories

Analysts were asked to quantify the amount of time they spend in each
of 10 separate tasks. Analysts were selected from a wide variety of disciplines
including modal, linear and non-linear structural, heat transfer, fluid flow and
radiation transport. Figure 1 shows a summary of the results of this survey. Of
significant note is the relatively large amount of time devoted to building the
analysis solid model, geometry decomposition, meshing, and mesh manipula-
tion (Tasks B through E). These tasks were reported to take 73% of the total
time as compared to just 4% to actually run the simulation. These statistics
illustrate where the major bottlenecks remain in the simulation process.

With the current state of the art, these tasks are inherently very user inter-
active. Analysts at Sandia have access to almost any state-of-the-art model-
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ing and simulation tools developed within the lab and available commercially.
They often choose to use methods that perform better with a hexahedral
mesh definition. While tetrahedral methods are adequate for many situations,
specific advantages are frequently cited for using hexahedral meshes. State of
the art meshing tools, such as CUBIT? are developed to support the meshing
and geometry needs of the analysts at Sandia.

CUBIT uses a toolbox approach to providing a meshing solution. Incorpo-
rating state-of-the-art algorithms for quadrilateral, triangle, tetrahedral and
hexahedral meshing it tries to address a diverse range of mesh generation
needs from across many disciplines throughout the Laboratories. As a solid-
model based system it allows the user the flexibility of importing existing
CAD models from commercial tools such as Pro/Engineer* and Solidworks®,
but also includes many tools for generating a solid model directly within CU-
BIT. Models that have been developed in commercial solid modeling tools
are rarely created with simulation in mind and must frequently be simplified.
Geometric translation errors introduced as a result of incompatible modeling
standards between commercial tools further complicate the model prepara-
tion and can be time consuming to address. Geometry decomposition, an-
other time-consuming task, is also often needed to provide suitable topology
for hexahedral meshing algorithms.

CUBIT, first developed at Sandia in the early 1990s as a research platform
for new geometry and meshing research, has become the most used tool by
Sandia’s engineers for generating meshes for simulation on a day-to-day basis.
It is also available world-wide through a government or academic use license
as well as for commercial distribution. With CUBIT’s many sophisticated and
technically advanced tools developed for a wide range of application areas, it
can be an unwieldy endeavor to become proficient enough with the software to
quickly generate a mesh from a complex geometry. As a result, the Immersive
Topology Environment for Meshing (ITEM) was developed.

With the ultimate goal of reducing the time to generate a mesh for simu-
lation, ITEM has been developed within the CUBIT Geometry and Meshing
Toolkit to take advantage of its extensive tool suite. Built on top of these
tools it attempts to improve the user experience by accomplishing three main
objectives:

1. Guiding the user through the workflow
2. Providing the user with smart options
3. Automating geometry and meshing tasks

3http://cubit.sandia.gov
“http://www.proengineer.com
®http://www.solidworks.com/
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1.1 Guiding the user through the workflow

In software of any complexity where usage may be occasional or infrequent, the
overhead of learning the new tool to a point of proficiency may be daunting.
Given a solid model that may have been designed for manufacturing purposes,
an analyst may be faced with generating a mesh. They may not be working
with CUBIT on a daily basis, but would like to take advantage of the powerful
tools provided by the software.

To address this, ITEM provides a wizard-like environment that steps the
user through the geometry and meshing process. For someone unfamiliar with
the software, it provides an interactive, step-by-step set of tools for accom-
plishing the major tasks in the process. For those more familiar with the
tools, it serves as a reminder of the major tasks, but is flexible enough to ac-
commodate a more iterative approach, allowing them to jump between major
tasks easily. Currently restricting the workflow to models requiring three-
dimensional, solid elements, ITEM uses the following steps:

1. Define the Geometric Model: Import a CAD model or create geometry
within the CUBIT environment.

2. Set up the model: Define basic information such as element shape, volumes
to be meshed and element sizes or budgets.

3. Prepare the geometry: Detect and remove unwanted geometric features on
the CAD model, resolve problems with conformal assemblies and identify
and provide suggestions to make the geometry sweepable.

4. Meshing: Perform the meshing operation and provide feedback if it is
unsuccessful.

5. Validate the mesh: Check element quality and perform mesh improvement
operations.

6. Apply boundary conditions regions: Define regions where boundary con-
ditions may be applied using nodeset, sideset and block definitions.

7. Export the mesh: Define a target analysis code format and export the
mesh.

1.2 Providing the user with smart options

Solid models used for analysis may have a huge variety of different character-
istics that could prevent them from being easily meshed. Questions such as,
“What are the problems associated with my model?”, “What are the current
roadblocks to generating a mesh on this model?” and “What should I do to re-
solve the problems?”, are constantly being asked by the analysts as they work
with models. Without an extensive knowledge of the tools and algorithms, it
may be difficult to answer these questions effectively.

ITEM addresses this issue by providing smart options to the user. Based
on the current state of the model, it will automatically run diagnostics and
determine potential solutions that the user may consider. For example, where
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unwanted small features may exist in the model, ITEM will direct the user
to these features and provide a range of geometric solutions to the problem.
Scrolling through the solutions provides a preview of the expected result. The
user can then select the solution that seems most appropriate and execute the
solution to change or simplify the geometry. This diagnostic-solution approach
is the basis for the ITEM design and is the common mode of user interaction
while in this environment. This contrasts with the more traditional hunt-and-
guess approach of providing the user with an array of buttons and icons from
which they may choose and guessing what may result. On the other hand,
ITEM serves in effect as an expert providing guidance to the user as they
proceed through the geometry and meshing process.

To illustrate the diagnostic-solution approach, Figure 2 shows an example
of one of the panels in the ITEM environment. In this panel a diagnostic is
run to determine what volumes are not yet meshable based on the criteria
for sweep meshing[19]. After selecting one of the volumes, a set of potential
operations for decomposing the model is computed and presented to the user
as a solution list. Selecting or browsing the solution list will preview the
decomposition, shown to the right of the panel. Once satisfied with one of
the solutions, the user may quickly perform the displayed operation, which
in turn will update the diagnostics and display a new set of volumes for
consideration.

1.3 Automating geometry and meshing tasks

With all of the advanced research and development that has gone into the
meshing and geometry problem, a push-button solution for any arbitrary solid
model may seem like the ideal objective of any meshing tool. Although for
many cases this would be the best solution, for others it may not even be
desirable. A push-button solution assumes a certain amount of trust in the
geometric reasoning the software chooses to provide. This may be more trust
than an occasional user who is tasked with a high consequence simulation
may be willing to give. Even if the user is willing to accept full automation,
in many cases, the geometric complexity of the model may be beyond the
capability of current algorithms to adequately resolve.

Alternatively, once users are familiar with the characteristics of the solu-
tions that the software provides, they may not be concerned with examining
and intervening on every detail of the model creation process. Instead, in the
interest of increasing efficiency, they may want the fastest solution possible.
As a result, the idea of providing the option for full user automation while still
maintaining the alternative for user control is a central objective of ITEM.

For various characteristic geometric problems that are encountered in a
solid model, ITEM can determine from the potential geometric solutions,
which may be most applicable and apply that solution without any user in-
tervention. For many configurations of geometry, a completely automated so-
lution may be available. For others, ITEM may be able to automate only
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Fig. 2. Example of a GUI panel in ITEM illustrating the diagnostic-solution ap-
proach

a portion of the process. Where an adequate solution cannot be determined
automatically, the smart options described above are available to help guide
the user. As new advances in geometric reasoning and advanced meshing al-
gorithms are developed, ITEM will incorporate these into the solutions for
automation.

Although ITEM utilizes a variety of common meshing algorithms for mesh-
ing surfaces and solids, a full description of these methods is beyond the scope
of this document. Instead, ITEM has primarily been designed to be meshing
algorithm independent. The diagnostics and solutions proposed in ITEM are
developed with the objective of being able to successfully utilize one or more
of CUBIT’s meshing schemes.

The remainder of this document highlights some of the key aspects of
the analysis model preparation process and describes how they are addressed
within the context of ITEM. These aspects focus primarily on preparing the
geometric model for meshing, with some focus on final mesh quality. They
include removing small features, resolving problems in a conformal assembly,
building a sweepable topology, and improving mesh quality. For each of these
aspects of model preparation, a description of the typical problems encoun-
tered will be defined along with proposed diagnotics that can detect these
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situations. Once a problem has been detected, the basic logic for determining
a list of solutions to address the specific problems are outlined.

2 Geometry Clean Up

Meshing packages have the challenge of dealing with a host of geometry prob-
lems. Many of these problems can be generalized as file translation issues.
Typically, the geometry used in a meshing package has not been created there
but in one of many CAD packages. Exporting these files out of CAD and into
a neutral file format (IGES, STEP, SAT) accepted by the meshing software
can introduce misrepresentations in the geometry. If the CAD and meshing
packages do not support the same file formats, a second translation may be
necessary, possibly introducing even more problems.

Another complication caused by file translation is that of tolerances. Some
CAD packages see two points as coincident if they are within 1e-3 units, while
others use le-6. If the meshing software’s tolerance is finer than the CAD
package’s, this disparity in tolerance can cause subsequent geometry modifica-
tion operations in the meshing package to inadvertently create sliver features,
which tend to be difficult and tedious to deal with. This tolerance problem
also causes misalignment issues between adjacent volumes of assemblies, hin-
dering the sharing of coincident geometry in order to produce a conformal
mesh.

Modeling errors caused by the user in the CAD package is another problem
that the meshing package has to correct. In the CAD package, the user may
not create the geometry correctly, or there may simply be very detailed com-
ponents causing some parts to overlap, or introduce small gaps between parts
that should touch. Many times these problems are detected in the meshing
package at a point when it is not feasible to simply go back into the CAD sys-
tem and fix the problem, so the meshing package must be capable of correcting
it.

Several approaches for addressing the geometry cleanup problem have been
proposed in the literature [2, 3, 4, 5]. They typically provide operations that
are automatically applied to the geometry once one or more topology problems
have been identified. While very effective in many cases, they generally lack
the ability for the user to have control over the resolution of these CAD issues
while still maintaining the option for automation. The proposed environment
provides tools to both diagnose these common issues and to provide a list of
solutions from which the user may select that will correct the problems. The
specific diagnostics and solutions for dealing with small features, whether
created from geometry misrepresentations or inadvertently from imprinting
are first addressed.
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2.1 Small Feature Detection and Removal

The small feature removal area of ITEM focuses on identifying and removing
small features in the model that will either inhibit meshing or force exces-
sive mesh resolution near the small feature. Small features may result from
translating models from one format to another or may be intentional design
features. Regardless of the origin small features must often be removed in
order to generate a high quality mesh.

ITEM will recognize small features that fall in four classifications: 1) small
curves, 2) small surfaces, 3) narrow surfaces, and 4) surfaces with narrow
regions. These operations may involve either real, virtual or a combination
of both types of operations to remove these features. A virtual operation
is one in which does not modify the CAD model, but rather modifies an
overlay topology on the original CAD model. Real operations, on the other
hand directly modify the CAD model. Where real operations are provided by
the solid modeling kernel upon which CUBIT is built, virtual operations are
provided by CUBIT’s CGM [6] module and are implemented independently of
the solid modeling kernel. The following describes the diagnostics for finding
each of the four classifications of small features and the methods for removing
them.

Small Curves

Diagnostic: Small curves are found by simply comparing each curve length
in the model to a user-specified characteristic small curve size. A default € is
automatically calculated as 10 percent of the user specified mesh size, but can
be overridden by the user.

Solutions: ITTEM provides three different solutions for eliminating small curves
from the model. The first solution uses a virtual operation to composite sur-
faces. Two surfaces near the small curve can often be composited together to
eliminate the small curve as shown in Figure 3(a)

The second solution for eliminating small curves is the collapse curve oper-
ation. This operation combines partitioning and compositing of surfaces near
the small curve to generate a topology that is similar to pinching the two
ends of the curve together into a single point. The partitioning can be done
either as a real or virtual operation. Figure 3(b) illustrates the collapse curve
operation.

The third solution for eliminating small curves is the remove topology op-
eration. This operation can be thought of as cutting out an area around the
small curve and then reconstructing the surfaces and curves in the cut-out
region so that the small curves no longer exist. [7] provides a detailed descrip-
tion of the remove topology operation. This operation has more impact on the
actual geometry of the model because it redefines surfaces and curves in the
vicinity of a small curve. The reconstruction of curves and surfaces is done
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using real operations followed by composites to remove extra topology intro-
duced during the operation. Figure 3(c) shows the results using the remove
topology operation.

Fig. 3. Three operators used for removing small curves (a) composite; (b) collpase
curve; (¢) remove topology

Small and Narrow Surfaces

ITEM also addresses the problem of small and narrow surfaces. Both are dealt
with in a similar manner and are described here.

Diagnostic: Small surfaces are found by comparing the surface area with a
characteristic small area. The characteristic small area is defined simply as
the characteristic small curve length squared or €2.

Narrow surfaces are distinguished from surfaces with narrow regions by
the characteristic that the latter can be split such that the narrow region
is separated from the rest of the surface. Narrow surfaces are themselves a
narrow region and no further splits can be done to separate the narrow region.
Figure 4 shows examples of each. ITEM provides the option to split off the
narrow regions, subdividing the surface so the narrow surfaces can be dealt
with independently.

Narrow regions/surfaces are also recognized using the characteristic value
of €. The distance, d; from the endpoints of each curve in the surface to the
other curves in the surface are computed and compared to e. When d; < €
other points on the curve are sampled to identify the beginning and end of
the narrow region. If the narrow region encompasses the entire surface, the
surface is classified as a narrow surface. If the region contains only a portion
of the surface, it is classified as a surface with a narrow region

Solutions: ITEM provides four different solutions for eliminating small and
narrow surfaces from the model. The first solution uses the regularize oper-
ation. Regularize is a real operation provided by the solid modeling kernel
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Fig. 4. Two cases illustrating the difference between surfaces with narrow regions
and narrow surfaces

that removes unnecessary /redundant topology in the model. In many cases a
small/narrow surface’s normal may be the same as a surface next to it and
therefore the curve between them is not necessary and can be regularized out.
An example of regularizing a small/narrow surface out is shown in Figure 5.

Fig. 5. When the small surface’s underlying geometric definition is the same as a
neighbor the curve between them can be regularized out.

The second solution for removing small/narrow surfaces uses the remove
operation. Remove is also a real operation provided by the solid modeling
kernel. However, it differs from regularize in that it doesn’t require the neigh-
boring surface(s) to have the same geometric definition. Instead the remove
operation removes the specified surface from the model and then attempts to
extend the existing adjacent surface definitions by computing new trimming
curves at their intersections to close the volume. An example of using the
remove solution is shown in Figure 6.

The third solution for removing small/narrow surfaces uses the virtual
composite operation to composite the small surface with one of its neighbors.
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Fig. 6. The remove operation extends an adjacent surface to remove a small surface

This is very similar to the use of composites for removing small curves. An
example is shown in Figure 7.

composited
surfaces

Fig. 7. Composite solution for removing a narrow surface

The final solution for removing small/narrow surfaces uses the remove
topology operation[7]. The remove topology operation behaves the same as
when used for removing small curves in that it cuts out the area of the model
around the small/narrow surface and replaces it with a simplified topology. In
the case of a small surface where all of the curves on the surface are smaller
than the characteristic small curve length, the small surface is replaced by a
single vertex. In the case of a narrow surface where the surface is longer than
the characteristic small curve length in one of its directions, the surface is
replaced with a curve. The remove topology operation can be thought of as
a local dimensional reduction to simplify the topology. The remove topology
operation can also be used to remove networks of small/narrow surfaces in
a similar fashion. Examples of using the remove topology solution to remove
small/narrow surfaces are shown in Figures 8 and Figure 9.

2.2 Resolving Problems with Conformal Assemblies

Where more than a single geometric volume is to be modeled, a variety of
common problems may arise that must be resolved prior to mesh generation.
These are typically a result of misaligned volumes defined in the CAD pack-
age or problems arising from the imprint and merge operations in the meshing
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Fig. 9. Remove topology solution for removing a network of narrow surfaces

package. [8] describes the issues and proposes an automatic solution for re-
solving the imprint/merge problem where a discrete version of the geometry
is used. ITEM addresses some of the same problems by allowing the option
for user interaction as well as full automation using the CAD geometry rep-
resentation. Two main diagnostics to detect potential problems are utilized:
the misalignment check and overlapping surfaces check. Associated with both
of these are solutions that are specific to the entity and from which the user
may preview and select to resolve the problem.

Resolving Misaligned Volumes

Diagnostics: The near coincident vertex check or misalignment check is used
to diagnose possible misalignments between adjacent volumes. This diagnos-
tic is performed prior to the imprint operation in order to reduce the sliver
surfaces and other anomalies which can occur as a result of imprinting mis-
aligned volumes. With this diagnostic, the distance between pairs of vertices
on different volumes are measured and flagged when they are just beyond the
merge tolerance. The merge tolerance, T, is the maximum distance at which
the geometry kernel will consider the vertices the same entity. A secondary
tolerance Ty is defined where Ty > T which is used for determining which
pairs of vertices may also be considered for merging. Pairs of vertices whose
distance d is T < d > T, are presented to the user, indicating areas in the
model that may need to be realigned. Although not yet implemented at this
writing, the misalignment check should also detect small distances between
vertices and curves on adjacent volumes.
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Solutions: When pairs of vertices are found that are slightly out of tolerance,
the current solution is to move one of the surfaces containing one vertex of
the pair to another surface containing the other vertex in the pair. Moving
or extending a surface is known as tweaking. Solutions for determining which
surfaces to tweak are generated as follows:

e Given that vertex A and vertex B are slightly outside of tolerance T by
a distance ¢ as shown in Figure 11.
e Gather all surfaces that contain vertex A. Call this group of surfaces
Group A.
e Gather all surfaces that contain vertex B. Call this group of surfaces
Group B.
e For each surface in Group A, extend it out twice its size. Call this surface
extended A
— See if extended A overlaps within a distance > T and < § to any
surface in Group B.
— If such an overlap pair is found, present two mutually exclusive solu-
tions:
tweak surface A to surface B
tweak surface B to surface A

=
]
L

fr e

Fig. 10. Example of a solution generated to correct misaligned volumes using the
tweak operator

The result of this procedure will be a list of possible solutions that will be
presented to the users. They can then graphically preview the solutions and
select the one that is most appropriate to correct the problem.

Correcting Merge Problems

The merge operation is usually performed immediately following imprinting
and is also subject to occasional tolerance problems. In spite of correcting
misalignments in the volume, the geometry kernel may still miss merging
surfaces that may occupy the same space on adjacent volumes. If volumes in
an assembly are not correctly merged, the subsequent meshes generated on
the volumes will not be conformal. As a result, it is vital that all merging
issues be resolved prior to meshing. The proposed environment provides a
diagnostic and several solutions for addressing these issues.
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Diagnostic: An overlapping surface check is performed to diagnose the failed
sharing of topology between adjacent volumes. In contrast to the misalignment
check, the check for overlapping surfaces is performed after the imprinting and
merging operations. The overlapping surface check will measure the distance
between surfaces on neighboring volumes to ensure that they are greater than
the merge tolerance apart. Pairs of surfaces that failed to merge and that
are closer than the merge tolerance are flagged and displayed to the user as
potential problems.

Solutions: If imprinting and merging has been performed and a subsequent
overlapping surface check finds overlapping surface pairs, the user may be
offered three different options for correcting the problem: force merge, tolerant
imprint of vertex locations and tolerant imprint of curves.

If the topology for both surfaces in the pair is identical, the force merge
operation can generally be utilized. The merge operation will remove one of the
surface definitions in order to share a common surface between two adjacent
volumes. Normally this is done only after topology and geometry have been
determined to be identical, however the force merge will bypass the geometry
criteria and perform the merge. Figure 11 shows a simple example where the
bounding vertices are identical but the surface definitions are slightly different
so that the merge operation fails. Force merge in this case would be an ideal
choice.

Fig. 11. Example where the merge operation will fail, but force merge will be
successful

The force merge operation is presented as a solution where a pair of over-
lapping surfaces are detected and if any of the following criteria are satisfied:

All curves of both surfaces are merged
All vertices between the two surfaces are merged and all the curves are
coincident to within 1% of their length or 0.005, whichever is larger

e All the curves of both surfaces are either merged or overlapping and a
vertex of any curve of one surface that will imprint onto any other curve
of the other surface cannot be identified

e At least one curve of one surface may be imprinted onto the other and
if both surfaces have an equal number of curves and vertices, and the
overlapping area between the 2 surfaces is more than 99% of the area of
each surface. This situation generally prevents generating sliver surfaces
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e At least one vertex of surface B may be imprinted onto surface A, and if
both surfaces have equal number of curves and vertices, and the vertex(s)
of surface B to imprint onto surface A lies too close to any vertices of
surface A

e All the curves of both surfaces are either merged or overlapping and no
vertices of any curve of surface A will imprint onto any other curve of
surface B

Individual vertices may need to be imprinted in order to accomplish a
successful merge. The solution of imprinting a position x,y,z onto surface A
or B is presented to the user if the following criteria is met

e Curves between the two surfaces overlap within tolerance, and a vertex
of curve A lies within tolerance to curve B and outside tolerance to any
vertex of curve B. Tolerance is 0.5% of the length of the smaller of the 2
curves or the merge tolerance (0.0005), whichever is greater.

curve forced
to imprint

Fig. 12. Curve on surface A was not imprinted on surface B due to tolerance
mismatch. Solution is defined to detect and imprint the curve

In some cases one or more curves may not have been correctly imprinted
onto an overlapping surface which may be preventing merging. This may again
be the result of a tolerance mismatch in the CAD translation. If this situa-
tion is detected a tolerant imprint operation may be performed which will
attempt to imprint the curve onto the adjacent volume. Figure 12 shows an
example where a curve on surface A is forced to imprint onto surface B
usign tolerant imprint, because it did not imprint during normal imprinting.
The solution of a curve of surface A to be imprinted onto surface B may
be presented to the user if all 3 of the following conditions are satisfied:

e there are no vertices to imprint onto the owning volume of either surface
e curve of surface A is not overlapping another curve of surface B
e curve of surface A passes tests to ensure that it is really ON surface B
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3 Building a Sweepable Topology

The hex meshing problem presents a number of additional challenges to the
user that tetrahedral meshing does not. Where a good quality tetrahedral
mesh can generally be created once small features and imprint/merge prob-
lems have been addressed, the hexahedral meshing problem poses additional
topology constraints which must be met. Although progress has been made in
automating the hex meshing process, the most robust meshing algorithms still
rely on geometric primitives. Mapping [9] and sub-mapping [10] algorithms
rely on parametric cubes and sweeping [11, 12] relies on logical extrusions.
Most real world geometries do not automatically fit into one of these cate-
gories so the topology must be changed to match the criteria for one of these
meshing schemes. ITEM addresses the hex meshing topology problem through
three primary diagnostic and solution mechanisms.

1. Detecting and suggesting decomposition operations

2. Recognizing nearly sweepable topologies and suggesting source-target
pairs

3. Detecting and compositing surfaces to force a sweep topology.

3.1 Decomposition for Sweeping

Automatic decomposition has been researched and tools have been developed
which have met with some limited success [13, 14]. Automatic decomposition
requires complex feature detection and sub-division algorithms. The decom-
position problem is at least on the same order of difficulty as the auto-hex
meshing problem. Fully automatic methods for quality hexahedral meshing
have been under research and development for many years [15, 16, 17]. How-
ever, a method that can reliably generate hexahedral meshes for arbitrary
volumes, without user intervention and that will build meshes of an equiv-
alent quality to mapping and sweeping techniques, has yet to be realized.
Although fully automatic techniques continue to progress [18], the objective
of the proposed environment is to reduce the amount of user intervention re-
quired while utilizing the tried and true mapping and sweeping techniques as
its underlying meshing engine.

Instead of trying to solve the all-hex meshing problem automatically, the
ITEM approach to this problem is to maintain user interaction. The ITEM
algorithms determine possible decompositions and suggest these to the user.
The user can then make the decision as to whether a particular cut is actually
useful. This process helps guide new users by demonstrating the types of
decompositions that may be useful. It also aids experienced users by reducing
the amount of time required to set up decomposition commands.

Diagnostics: The current diagnostic for determining whether a volume is map-
pable or sweepable is based upon the autoscheme tool described in [19]. Given
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a volume, the autoscheme tool will determine if the topology will admit a map-
ping, sub-mapping or sweeping meshing scheme. For volumes where a scheme
cannot be adequately determined, a set of decomposition solutions are gener-
ated and presented to the user.

Solutions: The current algorithm for determining possible cut locations is
based on the algorithm outlined in [13] and is described here for clarity:

e Find all curves that form a dihedral angle less than an input value (cur-
rently 135°)
Build a graph of these curves to determine connectivity
Find all curves that form closed loops
For each closed loop
— Find the surfaces that bound the closed loop
— Save the surface
— Remove the curves in the closed loop from the processing list
e For each remaining curve
— Find the open loops that terminates at a boundary
— For each open loop
Find the surfaces that bound the open loop
Save the surfaces
e For each saved surface
— Create an extension of the surface
— Present the extended surface to the user as a possible decomposition
location.

This relatively simple algorithm detects many cases that are useful in de-
composing a volume. Future work will include determining symmetry, sweep,
and cylindrical core decompositions. These additional decomposition options
should increase the likelihood of properly decomposing a volume for hexahe-
dral meshing.

Figure 13 shows an example scenario for using this tool. The simple model
at the top is analyzed using the above algorithm. This results in several dif-
ferent solutions being offered to the user, three of which are illustrated here.
As each of the options is selected, the extended cutting surface is displayed
providing rapid feedback to the user as to the utility of the given option.
Note that all solutions may not result in a volume that is closer to being suc-
cessfully hex-meshed. Instead the system relies on some user understanding
of the topology required for sweeping. Each time a decomposition solution
is selected and performed, additional volumes may be added, which will in
turn be analyzed by the autoscheme diagnostic tool. This interactive process
continues until the volume is successfully decomposed into a set of volumes
which are recognized as either mappable or sweepable.
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Fig. 13. ITEM decomposition tool shows 3 of the several solutions generated that
can be selected to decompose the model for hex meshing

3.2 Recognizing Nearly Sweepable Regions

The purpose of geometry operations such as decomposition is to transform
an unmeshable region into one or more meshable regions. However, even the
operations suggested by the decomposition tool can degenerate into guesswork
if they are not performed with a specific purpose in mind. Without a geometric
goal to work toward, it can be difficult to recognize whether a particular
operation will be useful.

Incorporated within the proposed ITEM environment are algorithms that
are able to detect geometry that is nearly sweepable, but which are not fully
sweepable due to some geometric feature or due to incompatible constraints
between adjacent sections of geometry. By presenting potential sweeping con-
figurations to the user, ITEM provides suggested goals to work towards, en-
abling the user to make informed decisions while preparing geometry for mesh-
ing.

Unlike the decomposition solutions presented in the previous section, the
purpose of recognizing nearly sweepable regions is to show potential alterna-
tive source-target pairs for sweeping even when the autoscheme tool does not
recognize the topology as strictly sweepable. When combined with the decom-
position solutions and the forced sweep capability described later, it provides
the user with an additional powerful strategy for building a hexahedral mesh
topology.

Diagnostics: In recognizing nearly sweepable regions, the diagnostic tool em-
ployed is once again the autoscheme tool described in [19]. Volumes that do
not meet the criteria defined for mapping or sweeping are presented to the
user. The user may then select from these volume for which potential source-
target pairs are computed.
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Solutions: The current algorithm for determining possible sweep configura-
tions is an extension of the autoscheme algorithm described in [19]. Instead
of rejecting a configuration which does not meet the required sweeping con-
straints, the sweep suggestion algorithm ignores certain sweeping roadblocks
until it has identified a nearly feasible sweeping configuration. The suggestions
are presented graphically, as seen in Figure 14(a). In most cases, the source-
target pairs presented by the sweep suggestion algorithm are not yet feasible
for sweeping given the current topology. The user may use this information
for further decomposition or to apply solutions identified by the forced sweep-
ability capability described next. The sweep suggest algorithm also provides
the user with alternative feasible sweep direction solutions as shown in Figure
14(b). This is particularly useful when dealing with interconnected volumes
where sweep directions are dependent on neighboring volumes.

(a) (b)

Fig. 14. (a) ITEM displays the source and target of a geometry that is nearly
sweepable. The region is not currently sweepable due to circular imprints on the
side of the cylinder. (b) Alternative feasible sweep directions are also computed

3.3 Forced Sweepability

In some cases, decomposition alone is not sufficient to provide the necessary
topology for sweeping. The forced sweepability capability attempts to force a
model to have sweepable topology given a set of source and target surfaces.
The source-target pairs may have been identified manually by the user, or
defined as one the solutions from the sweep suggestion algorithm described
above. All of the surfaces between source and target surfaces are referred to
as linking surfaces. Linking surfaces must be mappable or submappable in
order for the sweeping algorithm to be successful. There are various topol-
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ogy configurations that will prevent linking surfaces from being mappable or
submappable.

Diagnostics: The first check that is made is for small curves. Small curves
will not necessarily introduce topology that is not mappable or submappable
but will often enforce unneeded mesh resolution and will often degrade mesh
quality as the mesh size has to transition from small to large. Next, the interior
angles of each surface are checked to see if they deviate far from 90° multiples.
As the deviation from 90° multiples increases the mapping and submapping
algorithms have a harder time classifying corners in the surface. If either
of these checks identify potential problems they are flagged and potential
solutions are generated.

Solutions: If linking surface problems are identified ITEM will analyze the
surface and generate potential solutions for resolving the problem. Composit-
ing the problem linking surface with one of its neighbors is a current solution
that is provided. ITEM will look at the neighboring surfaces to decide which
combination will be best. When remedying bad interior angles the new interior
angles that would result after the composite are calculated in order to choose
the composite that would produce the best interior angles. Another criterion
that is considered is the dihedral angle between the composite candidates.
Dihedral angles close to 180° are desirable. The suggested solutions are pri-
oritized based on these criteria before being presented to the user. Figure 15
shows an example of a model before and after running the forced sweepability
solutions. The top and bottom of the cylinder were chosen as the source and
target surfaces respectively.

Fig. 15. Non-submappable linking surface topology is composited out to force a
sweepable volume topology

4 Mesh Quality

Advancements in the mesh generation algorithms have significantly reduced
the amount of quality problems seen in the initially generated mesh. Fur-
ther, ITEM generally relies on the most robust meshing algorithms available



5B.3 An Immersive Topology Environment for Meshing 573

in CUBIT, specifically sweeping for hexahedral mesh generation[12] and the
Tetmesh-GHS3D[20] meshing software®. However, some problems can still ex-
ist, and therefore ITEM has integrated quality diagnostics and solution op-
tions.

Diagnostics: After the mesh has been generated, the user may choose to per-
form element quality checks. ITEM utilizes the Verdict[21] library where a
large number of mesh quality metrics have been defined and available as a
modular library. If no user preference is specified, ITEM uses the Scaled Ja-
cobian distortion metric to determine element quality. This check will warn
users of any elements that are below a default or user-specified threshold,
allowing various visualization options for displaying element quality.

Solutions: If the current element quality is unacceptable, ITEM will present
several possible mesh improvement solutions. The most promising solutions
are provided through ITEM’s interface to two smoothers: mean ratio optimiza-
tion and Laplacian smoothing. These are provided as part of the Mesquite[22]
mesh quality improvement tool built within CUBIT. The user has the option
of performing these improvements on the entire mesh, subsets of the mesh de-
fined by the element quality groups, or on individual elements. The Laplacian
smoothing scheme allows the users to smooth just the interior nodes or to
simultaneously smooth both the interior and boundary nodes in an attempt
to improve surface element quality.

5 Conclusion

A new approach to presenting the problem of preparing a finite element mesh
to an intermittent user of modeling and simulation technology has been pro-
posed. The Immersive Topology Environment for Meshing (ITEM) addresses
a wide range of problems and issues commonly encountered during this pro-
cess. Its intent is to reduce the learning, and re-learning often associated with
complex software tools and to ultimately reduce the time to mesh. This is
accomplished through a step-by-step wizard-like approach where users may
address common problems by using built-in diagnostics and are then presented
with specific intelligent solutions to these problems.

Table 1 summarizes the problems addressed by the proposed environment
along with associated diagnostics and solutions. Details of each of the diag-
nostics and solutions are discussed within the body of the paper.

At this writing the proposed ITEM environment is still under development
with plans for release shortly. The current set of diagnostics and solutions
defined in Table 1 represent a reasonable set of tools for preparing models for
analysis, however it is recognized that these tools will be modified, tuned and
expanded based on user feedback and experience and as new technology is
developed.

Shttp://www.distene.com
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Problem Diagnostic Solutions
1. composite surfaces

Small Curves Curve length < € 2. collapse curve
3. remove topology

Small Surfaces Surface area < €2 1. regularize
2. remove/extend surfaces

Narrow Surfaces d; < € for all curves on surface |3. composite surfaces
4. remove topology
1. split off narrow region

Surfaces with Narrow Regions

d; < € for some curves on surface

and treat as narrow

surface

Misaligned volumes

Near coincident vertex or

misalignment check

. tweak surf A to surf B
. tweak surf B to surf A

Unmerged surfaces

Overlapping surfaces check

. force merge
. imprint vertices

. imprint curves

Non-sweepable /mappable
topology

Autoscheme tool

W N =N =

. cut locations based upon

dihedral angles and

connectivity graph

Nearly sweepable

Autoscheme tool

+ sweep suggestions

. suggested source/target

pairs

Linking surfaces

not mappable

Linking surfaces:
1. Curve length < €
2. Interior angles deviate

significantly from 90°

. composite surfaces

Poor mesh quality

Quality metric < threshold

Mean Ratio or Laplacian
smoothing applied to:

1.
2.
3.

entire mesh

element quality group

individual elements

Table 1. Summary of problems and associated diagnostics

addressed with ITEM

and solutions that are
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Prior to release, extensive user testing will be performed in order to de-
termine the impact that ITEM has on the time to mesh. This will include a
series of prescribed models that will be meshed by several intermittent users
of meshing software. Metrics will be gathered comparing times to complete
the mesh in ITEM compared with previous technology. Understanding the
difficulty of accurately measuring the time to mesh, the testing and metrics
gathering procedure will attempt to control for factors including learning, user
expertise and model complexity. These factors are outlined as follows:

1. Learning: Much of the meshing procedure involves a trial and error process
of learning a strategy for model cleanup and decomposition. The second
time a user attempts to mesh a model, they will very likely be able to be
more efficient regardless of which system they use. As a result, a single
tester will not attempt the same model more than once regardless of which
system they use. The order in which they use ITEM and the previous
technology will also be interspersed to randomize the effect of learning
one system over the other.

2. User Expertise: Depending on how much experience a particular user has
with a specific software system will effect how quickly they can complete
a task compared to others with much less experience. An attempt will
be made to enlist analysts with equivalent experience, however the timed
results for any one particular model will be averaged across all users to
reduce the effect of user expertise.

3. Model Complezity: Very complex models will inherently take longer to
prepare and mesh than models of less complexity. Averaging the time
taken for all models for any one user should reduce the effect of model
complexity.

Since many diverse human factors may be involved, it is clear that any solu-
tion to gather metrics to guage improved time to mesh will be flawed in some
way. It is however healthy and important to implement these measurements
to independently measure the effectiveness of ITEM or any proposed system
claiming to reduce the time to mesh. The results will ultimately provide in-
sights and new input for further improvement.

While it is recognized that it is still a work in progress, the main contri-
bution of the current work includes the infrastructure proposed for presenting
and managing the model preparation process and its potential impact on re-
ducing the time to generate analysis models.
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