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Summary. In many FEM applications, hexahedral meshes are necessary to get
the best results. However the automatic generation of an hexahedral mesh from an
arbitrary 3D geometry still remains a challenge. In this paper, we propose an exten-
sion of the reliable Whisker Weaving algorithm [6]. The Whisker Weaving algorithm
starts from a pre-meshed quadrilateral surface, it generates hexahedral meshes for a
large spectrum of 3D geometries successfully, but it often creates poor-shaped hex
elements. We show that considering geometric information in the shrinking loop
selection process can provide better results. We introduce criteria to handle non-
convex geometries, parallel loops and sheets bounded by several loops.
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1 Introduction

For many years, the finite element method (FEM) has been successfully ap-
plied in simulation. Such a method needs a finite element mesh model ob-
tained from a geometric CAD model and suitable for a numerical analysis.
It is known that, in many FEM applications, hexahedral meshes give bet-
ter results than tetrahedral or hex-dominant ones. Last decade showed many
attempts to automatically generate hexahedral meshes from arbitrary 3D ge-
ometries [14, 2, 18, 16, 6, 5, 10, 15, 13, 12]. However, the automatic generation
of hexahedral meshes is more complex than for tetrahedral meshes and still
remains a challenge.

For our simulation problems, high mesh quality is required more near
the boundary of the solid than deep inside. This property led us to study
advancing-front algorithms that we classify in two main categories: algorithms
which are essentially based on the geometry and algorithms which focus on
the mesh topology. The former have the advantage of capturing the boundary
very well but they are sensitive to numerical approximation and they need for
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expensive intersection calculations [14]. The latter do not have the drawbacks
of the first ones but they often do not provide a satisfying result [6]. Actually,
as authors of [6, 9, 13, 12], we think it is essential that any algorithm which
attempts to automatically generate hexahedral meshes must take both the
model topology and the model geometry into account.

In this paper, we introduce an extension of the reliable Whisker Weaving
algorithm [6]. This algorithm has the advantages of being mathematically well-
founded and successfully generating hexahedral topology for a wide spectrum
of solid geometries. Its principle consists in driving the hexahedral element
creation by introducing some complete layers of hexes in one go. The global
mesh and model topology are well considered in the reliable Whisker Weaving
algorithm but the global geometry may not be. Indeed, geometric informa-
tion is not considered to select which layer of hexes to create. We suggest
to extend the reliable Whisker Weaving by paying attention to the geomet-
ric information in the selection process. Moreover, we add new rules in order
to manage parallel loops and non-convex regions. Even though we are using
geometric information, the algorithm remains mainly topological. Note also
that we do not attempt to extend any quadrilateral surface meshes to hexa-
hedral meshes. Following [6, 9, 10], our approach is restricted to quadrilateral
surface meshes without any self-intersecting loops in the dual of the surface
mesh. Self-intersecting loops seem to be a difficulty to get a robust hexahedral
meshing algorithm without degenerated hexahedral elements.

The remainder of this paper is organized as follows. Section 2 reminds of
the notion of Spatial Twist Continuum and gives the rough lines of the reliable
Whisker Weaving algorithm. Section 3 explains why we need to extend the
reliable Whisker Weaving algorithm and thus introduces the concept of high-

level and intermediate rules. We detail these rules respectively in Sects. 4 and 5
while Sect. 6 shows how basic and intermediate rules propagate the geometric
information during the overall hex meshing process. A brief summary of this
process is given in Sect. 7. Finally, we show some examples in Sect. 8 and we
discuss future directions of this work in Sect. 9.

2 Whisker Weaving and Spatial Twist Continuum

The Whisker Weaving algorithm is based on the Spatial Twist Continuum [18],
or STC, which structures the dual of a hexahedral mesh into surfaces or sheets.
This algorithm is an advancing-front algorithm which attempts to address the
hex meshing from a purely topological approach. Geometric characteristics
are considered secondary to the overall mesh topology. This algorithm first
generates the complete dual mesh, from which the primal mesh is obtainable.
The spatial location of internal nodes is not computed until the mesh topology
is totally defined. The first version of the Whisker Weaving algorithm [18, 16]
only considered local element connectivities to create a single hex. This way,
the global mesh topology was not taken into account.
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The reliable Whisker Weaving version [6] corrects this drawback by intro-
ducing a global scheme to create some complete layers of hexes. The principle
of the reliable Whisker Weaving algorithm consists in driving the hex cre-
ation by selecting a loop of quadrilateral elements on the surface front mesh.
A loop of quadrilateral boundary elements corresponds to a layer of internal
hexahedral elements. The rules to select the shrinking loop are mainly topo-
logical. Unlike the first version of the Whisker Weaving algorithm, the reliable
Whisker Weaving algorithm starts from a quadrilateral boundary mesh with-
out self-intersecting loop. This restriction makes it possible to get a robust
algorithm that generates less wedges [3].

In the next Section, we begin by reminding the vocabulary relative to the
STC before describing the reliable Whisker Weaving algorithm.

2.1 STC: the Fundamental Structure of any Hexahedral Meshes

The STC structures the dual of a hex mesh into sheets. Every sheet is dual to
a layer of hexes. For example, consider Fig. 1 which shows an hex mesh (on
the left) and its corresponding dual mesh (on the right).

sheetsvertex

chords

Fig. 1. An hexahedral mesh and the corresponding STC structure

The two green sheets in the STC are dual to the six lower hexes and the
six upper hexes in the primal mesh.The intersection of two sheets is a chord.
A chord is dual to the intersection of two layers of hexes, in other words, a
line of hexes. A sheet which intersects oneself is a self-intersecting sheet. The
intersection of three sheets is a vertex which is dual to a hex. In the primal
mesh, the intersection of a layer of hexes with the quadrangular boundary
mesh is formed by zero, one or more closed lines of quadrilateral elements.
Such lines are defined by recursively passing from an edge of a quad to the
edge opposite it. The dual of a boundary quad line is a loop which bounds a
sheet. A sheet with no loop is a blind sheet and it contains at least one blind

chord which is a chord which never meets the boundary.

2.2 A Brief Overview of the Reliable Whisker Weaving [6]

The reliable Whisker Weaving algorithm is based on a loop contraction algo-
rithm which creates a complete layer of hexes in one go. We introduce this
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algorithm in this Section, but before we recall the basic weaving operations
which are used to perform it.

Basic Weaving Operations

Three basic operations are useful for the reliable Whisker Weaving algorithm1:
the cross, the seam (or join) and the blind chord formation (see Fig. 2). The
cross operation creates an hex from three front faces which pairwise share
edges. The seam operation completes a chord, i.e. a layer of hexes. In the
primal mesh, it consists in joining two faces, which share exactly two adjacent
edges, to make one face. The blind chord formation operation creates an hex
from only two meshing front faces which share an edge. It introduces a blind
chord which traverses the new hex by the two faces which are not opposite to
an initial meshing front face in the hex. Note that every operation modifies
the meshing front, i.e. the topological loop arrangement. This property is
important and will be used in the loop contraction process.

cross

seam

blind chord

Fig. 2. The three basic rules used in reliable Whisker Weaving

Even though the Whisker Weaving algorithm is a topological advancing-
front algorithm, some geometric pre-conditions are defined for every rule. For
instance, the creation of an hex from three boundary faces is possible only if
the angles between the faces are not too flat.

Loop Shrinking

The reliable Whisker Weaving algorithm is based on the observation that
contracting a curve to a point on a sphere sweeps out a surface behind it
inside the ball [7]. For this algorithm, the curves are the loops on the dual
surface and the swept out surfaces are the sheets. In the primal mesh, shrinking
a loop creates a complete layer of hexes in an advancing-front fashion. The

1Note that other rules are defined in the initial Whisker Weaving algorithm [16].
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algorithm chooses which loop to shrink and decides to shrink it left or right.
This operation is repeated until all the loops are shrunk.

Once a direction is selected, shrinking a loop consists in crossing it with all
the other loops it came across from until it no longer intersects other loops.
At this time the loop shrinks to a point and disappears. This process can
also be interpreted as collapsing the faces which are adjacent to the loop in
the shrinking direction. Collapsing a face consists in performing some basic
weaving operations to reduce its number of vertices until it totally vanishes.
For instance, consider the 5-sided face on Fig. 3. The red curve is the curve
to shrink. The first operation to apply is a blind chord formation. It reduces
a k-sided face to a k − 1-sided face. In the example, the 5-sided face becomes
4-sided. A second blind chord formation transforms the gray face in a 3-sided
face. Applying a cross operation completes the cell collapsing.

BB C

Fig. 3. Collapsing a cell

Now consider the overall shrinking process with Fig. 4 where we want to
shrink the black loop inward. For every face adjacent to the shrinking loop,
a figure indicates its number of sides. The idea is to begin by traversing once
about the loop to find a face with the fewest number of sides and collapse
it. Then we look again for the face with the fewest number of sides and we
collapse it. This process is repeated until the loop shrinks to a point.
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Fig. 4. An example of shrinking process

The authors of [6] claim that the best order to select the shrinking loop is
by increasing weight. Each loop has two weights, corresponding to shrinking
it left or right. Let nrp be the number of points on the right of the curve, nlp

the number of points on the left of the curve and npc the number of points on
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the curve. The left weight is defined as wl = nlp +npc and the right weight as
wr = nlp + npc. The best choice is to select the loop with the smallest weight
in a direction (left or right). This pure topological approach is balanced by
introducing some geometric constraints. Actually, local rules associated with
basic weaving operations are blended into the decision structure of the loop
shrinking process. These rules are either geometric, which only apply to hexes
near the model boundary, or topological, which apply universally. It seems
that local rules are not used to select the shrinking loop but just to help drive
the loop shrinking process. Note that, according to the authors of [6], it is
usually necessary to turn the geometric rules off to complete the weave, but
rarely necessary to turn the topological rules off.

3 Our Motivations to Extend the Reliable Whisker
Weaving

The Whisker Weaving algorithm has the advantage of being mathematically
well-founded and of successfully generating hexahedral topology in many
cases. Still, generated hexes are often poorly shaped or even inverted. Two
reasons could explain this drawback. First, the result of the Whisker Weaving
algorithm strongly depends on the initial boundary mesh, this drawback is
common to all meshing algorithms which start from a fixed boundary mesh.
Second, the choice of the layer of hexes to introduce is only driven by topo-
logical information while geometric information may be useful. For instance,
consider Fig. 5 which shows five topologically equivalent surface meshes. All
these meshes have 14 faces, 28 edges and 16 vertices.

Fig. 5. Five different solids bounded by the same topological quad mesh

An obvious solution to mesh the first boundary surface mesh is to introduce
three hexes. However this solution is not suitable for the other cases while they
are topologically equivalent. A careful loop selection process has to take the
surface geometry into account. Possible results obtained with our approach
are shown on Fig. 6. To get such results, we consider geometric properties
like convexity and particular topological configurations like parallel loops.
These examples are quite typical of our concerns considering that we use this
algorithm to create blocks in an hex meshing block-structured approach.
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Fig. 6. Hex meshes which correspond to the surface meshes shown on Fig. 5

Our choices have led us to provide an algorithm built on three rule sets.
First, we define high level rules to select which loop to shrink. These rules pay
attention to geometric and topological information. Then, basic rules which
are equivalent to the basic weaving operations are used to shrink a loop.
Finally, we introduce intermediate level rules between the high level rules and
the basic rules. They locally modify the arrangement of loops by introducing
hexes or applying particulars seams. These local changes are driven by global
geometric and topological considerations.

4 High-Level Rules to Drive the Shrinking Loop
Selection

We are currently using five high-level rules which are useful for selecting the
loop to shrink. They depend on some properties relative to each loop. As a
loop can be shrunk left or right, each property is actually associated with a
loop and a direction. Keep in mind that a difference between our approach and
the Whisker Weaving algorithm is that we work on the primal mesh and not
on the dual mesh. The convex rules (see below) and the properties necessary
to these rules are the same ones as those in [10].

4.1 The Depth Rule

In many numerical applications, high mesh quality is required closer to the
boundary than inside the mesh. In order to enforce that important character-
istic, we defined the depth rule. It requires a value is assigned to each face,
this depth value being smaller when the face is closer to the boundary.

A left depth index dl and a right depth index dr are associated with each
loop. For a direction i, we consider all the faces on the i side of the loop and
we define di as being equal to the least strictly positive depth index assigned
to one of these faces. The depth rule consists in selecting the least depth loops.

4.2 The First Convex Rule

The first convex rule consists in selecting the loops that are not lying on a
plane surface mesh. This rule attempts to keep the algorithm from building a
sheet from one loop when it should be bounded by two loops at least.
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In order to know if a loop is lying on a plane surface mesh, geometric
information has to be assigned to the boundary. For each edge, we determine
the dihedral angle α between the two quadrilateral faces which share it. Thus
each edge is classified as being sharp if α ≤ 120, a little sharp if 120 < α < 170
and flat if 170 ≤ α ≤ 1802. Starting from an edge, a single loop l can be built
by recursively passing from an edge of a q quad to the edge opposite it in the
q quad until the initial edge is reached. For instance, on the left of Fig. 7,
starting from the e edge, the red loop is created. The edges of the quads
crossed by the loop are separated in three sets: the set sel

c contains the edges
crossed by the loop l, the set sel

l contains the edges on the left (the green
edges on Fig. 7 left) and the set sel

r contains the edges on the right (the blue
edges on Fig. 7 left). In order to know if a loop is lying on a plane surface
mesh, we count the number of sharp and a little sharp edges in the set sel

c.
The loop can be shrunk only when this number is positive.

e

Fig. 7. Left: The three sets of edges associated with a loop. Middle and right: Two
non-convex solid geometries and some unacceptable loops shrinkings

4.3 The Second Convex Rule

The second convex rule first selects the loops which are along a sharp region
of the solid. As [10], we assign a side elimination weight to each loop for both
directions. For the right side (respectively the left side), this weight is the
number of sharp edges in the set sel

r (respectively sel
l) divided by the loop

length. The second convex rule consists in selecting the highest weight loops.

4.4 The Non-Convex Rule

The goal of the non-convex rule is to keep the algorithm from shrinking a loop
towards a non-convex part of the solid. For instance, on Fig. 7 (middle and
right), red and blue loops can not be shrunk in the indicated directions.

In order to do that, we consider the fact that a non self-intersecting loop
separates the edges of the boundary mesh in two sets, sel

gr and sel
gl, which

respectively contain all the meshing front edges on the right side and on
the left side of the l loop. A loop can be shrunk to direction d only when

2Note that the limit values can be modified.
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the set sellgd contains no non-convex edges. In order to manage non-convex
property, we extend the edge classification introduced in Sec. 4.2. Consider
that boundary face normals are directed to the outside of the solid, we classify
each boundary edge e as a function of the dihedral angle α between the two
faces which share it (see Fig. 8): if α ∈]0, 120], the edge e is sharp convex; if
α ∈]120, 170], the edge e is a little sharp convex; if α ∈]170, 190], the edge e is
flat; if α ∈]190, 240], the edge e is a little sharp non-convex; if α ∈]240, 360[, the
edge e is sharp non-convex. The non-convex rule indicates that it is impossible
to shrink a loop right (respectively left) if the number of non-convex edges in
sel

gr (respectively sel
gl) is positive.

120°sharp convex

170°
190° flat

240°

a litte sharp non−convex

sharp non−convex

a little sharp convex

Fig. 8. Edge classification as a function of the dihedral angle

4.5 The Parallel Crossing Rule

Parallel loops have to be considered with attention in an hex meshing al-
gorithm which starts from a fixed quad boundary mesh. This fifth rule has
been added to manage the parallel loops separated by a sequence of sharp
convex edges. Such configurations appear in some cylindrical mesh parts. For
example, consider Fig. 9 which was already introduced on Figs. 5 and 6.

Fig. 9. A configuration where it is necessary to apply the parallel crossing rule

The meshing process must be driven so that it avoids to create a large hex
which would completely fill in the geometry. Thus we first consider the blue
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and red loops which are topologically parallel and separated by a sequence of
sharp convex edges. The idea is to introduce a layer of hexes in such a way
that the first created chord is a torus of hexes adjacent to both blue and red
loops. This result is obtained by shrinking one of the parallel loops in the
direction of the other loop. We currently select the shrinking loop as being
the loop which collapses the smallest number of faces when it is shrunk in the
direction of the other loop.

5 Intermediate Rules to Locally Modify the Mesh

In this Section, we introduce the intermediate rules which clean up the mesh
by applying a local topological modification before selecting a new loop to
shrink. They do not focus on a single loop but consider the global topology
and geometry. Currently there are only two intermediate rules. But we can
legitimately think that this number could grow to improve the algorithm.
Both rules are relative to the sheets which are bounded by two loops at least.

5.1 The Parallel Merging Rule

This rule is equivalent to the double loop elimination process introduced
in [10]. It is efficient for cylindrical-shaped meshes when some sheets are
bounded by two loops. More generally, this rule makes it possible to join
certain configurations of two sheets into one sheet. Suppose that three loops
are parallel and next to each other. Let l be the central loop, lr be its right
parallel loop and ll be its left parallel loop. If, in addition, all the edges sepa-
rating l and lr on the one hand, and l and ll on the other hand, are classified
as sharp edges, the solution consists in eliminating loops lr and ll simultane-
ously. In [10], this elimination is interpreted as removing a chord which forms
a torus of hexes, we choose rather to add the parallel merging rule shown
on Fig. 10 which merges the two parallel loops lr and ll in one single loop.
Afterward, we shrink this new loop to create a torus of hexes.

Fig. 10. Merging of two parallel loops

5.2 The Non-Convexity Seam Rule

The basic seam is performed when two faces share exactly two adjacent edges.
It joins these faces to make one new face. As a consequence, it finishes creating
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a chord of hexes. In this Section, we introduce a new seam rule, called the
non-convexity seam rule, which joins two faces sharing only one edge when
particular geometric conditions are satisfied. This rule completes some chords
in non-convex geometries. More precisely, when a chord arrives near a bound-
ary face in a non-convex region, it may be better to directly join the chord
and the boundary face. Without this rule, basic weaving rules introduce too
many hexes in the final mesh and sometimes fill in non-convex areas.

E

F1

F2

non convex

Fig. 11. Example of non-convexity seam

Consider Fig. 11 where F1 and F2 are two faces which share3 the single
edge E. There are three possibilities: both faces are boundary faces, both
faces are internal free faces or one face is a boundary face and the other one
is an internal free face. If F1 and F2 are both boundary faces, they can not be
sewed considering that their geometric positions are fixed. The case of both
internal faces is out of the scope of the non-convexity rule. Indeed the goal
of this rule is to complete chords which arrive near a non-convex boundary
region. Actually, the non-convexity seam rule is only performed in the third
case when a face is on the boundary and the other one is free. Let F2 be the
boundary face and F1 be the internal free face. Some conditions have to be
verified. The edge E has to be a convex4 edge and an edge of F2 adjacent to E
has to be non-convex. Moreover the two vertices of F2 which not belong to E
must be free internal nodes. Under these conditions, the non-convexity seam
rule can be used as illustrated on Fig. 11. Afterward, some faces adjacent to
F1 and F2 share two edges. Such a degeneracy is removed with the basic seam.

6 Propagation of Geometric Information

The high-level and intermediate rules are based on some geometric properties
of the initial surface mesh. These properties could be disposed of when the
meshing front is no longer near the boundary, but we prefer to propagate
them inside the mesh. This choice allows us to keep internal layer of hexes
as parallel to the surface mesh as possible. Consider Fig. 12 where the sharp
convex edges and the sharp non-convex edges are respectively colored in red

3If F1 and F2 share two edges, the basic seam is performed.
4If the edge E is convex by propagation, some tests are performed depending on

its initial state and the number of hexes sharing it.
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and green. We start from the left surface mesh. Creating a first layer of hexes
modifies the meshing front. We propagate the geometric properties from the
previous meshing front to the new one. In particular some front edges are now
defined as being sharp and convex while they were not beforehand. Creating
the second layer of hexes shows another characteristic of the propagation
process: a convex property and a non-convex property cancel each other out.
As a result, when a sharp convex property is propagated onto a sharp non-
convex edge, this edge becomes flat.

Fig. 12. Propagation of geometric constraints during the meshing process

Since the basic and intermediate rules modify the surface meshing front,
they have to propagate the geometric properties. The first property to propa-
gate is the depth. At the beginning, the depth of every boundary face is equal
to zero. When a rule is performed, either an hex is introduced or two faces are
sewed. In the first case, each new face belongs to the new hex. Let F1 be such
a face and F2 its opposite face in the hex. If F2 is a former front face whose
depth is equal to i, the depth of F1 is equal to i + 1. If F2 is a new front face
too, the depths of F1 and F2 are equal to −1. A seam introduces no face, so
we do not have to propagate the depth parameter.

Consider Fig. 13 where the red line represents the shrinking loop. The
cross rule introduces a hex and then replaces three front faces with three new
ones. As explained above, for an initial i-depth face, the corresponding new
face depth (opposite in the created hex) is i+1. The seam only removes faces.
The blind chord formation rule introduces an hex and replaces two faces with
four faces. Two new faces correspond to the initial ones. The two other faces
are not topologically parallel to a front face. Their depth values are arbitrary
fixed to −1. Note that when an initial front face is −1-depth, the parallel face
is −1-depth too. The merging rule is similar to the blind chord formation rule
and the non-convexity seam rule does not introduce any new faces.

The second property to propagate is the angle and the convex type5 asso-
ciated with every edge. As the basic rules are used to shrink a loop, they have
to consider the shrinking direction to propagate the angle. Indeed, shrinking
a loop creates a layer of hexes and the meshing front is then translated from
one side of this layer to the other side. As a result, the basic rules just propa-
gate the angle in a direction as illustrated on Fig. 14. The intermediate rules
which are not associated with a shrinking loop, act quite differently. The par-

5convex or non-convex.
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j + 1

j + 1
k + 1

Fig. 13. Rules and depth

allel merging rule propagates the properties associated with the edges which
separate the central loop and the parallel loops. The non-convexity seam rule
propagates the properties associated with the edge which is shared by the two
faces to sew.

BC S M CS

Fig. 14. Rules and convexity

7 A Brief Summary of the Algorithm

The algorithm is described in this Section and illustrated on Fig. 15. It essen-
tially defines in which order the high level rules are applied.

The first step consists in initializing geometric properties. They are com-
puted at the first time and then they are propagated inward without any other
geometric computations.

The second step consists in applying the non-convexity rule when it is
necessary. This rule is the only one which does not help to choose which loop
to shrink. Note that the parallel merging loop rule which is an intermediate
rule too implies to shrink the merged loop. This way, it contributes to choose
which loop to shrink.

Selecting the shrinking loop needs to compute every loop properties. Ac-
tually we compute the properties of every couple (l, d) with l a loop and d a
direction. Let S be the set of these couples. For a loop l, S contains the two
couples (l, l) and (l, r) which correspond to shrinking l left or right. Then the
parallel merging rule and the high-level rules allows us to select which loop
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geometric properties
Initialisation of

shrink the loop

weight filter

[S1=0]

[else]

? [S2=0] [else]

S2S1

S1

S2

S

S1

[no more loops][else]

S

S
[else]

[else]

S’

S’

[ |S’|>0]

[ |S’|>0]

Apply the non−convexity 
seam rule if necessary

Compute the loop
properties to get S

Apply the parallel
merging filter

Apply the parallel
crossing filter

Apply the depth filter

Apply the first convex filter

Apply the second convex
filter

Apply the topological

Apply the concave filter

Fig. 15. Operation Sequence to shrink loops

to shrink. We first apply the rules relative to the parallel loops. These rules
directly define the loop to shrink and the shrinking process can start. Other-
wise, the high-level rules, except the parallel merging rule, are used. Applying
such a rule r is equivalent to filter the set S in order to only keep the couples
(l, d) which verify the r rule. If S becomes void, we relax some rules.

• The first filter is based on the non-convexity rule. The case when none of
the couples (l, d) verifies this rule is currently not supported. We have not
experienced yet this very particular case.

• The second filter is based on the depth rule. It keeps the couples (l, d) with
the smallest depth. Then, among these couples, we select the couples (l, d)
which verify the convex rules.

• The third and fourth filters are based on the first and second rules respec-
tively. The first convex filter may be relaxed.

• The last filter is topological. It keeps the loops which collapse the smallest
number of faces.

Note that only two filters can void S out. Once a loop is selected, it is shrunk by
performing the same shrinking process as in the Whisker Weaving algorithm.
Note that our basic rules have the same kind of pre-conditions as in the reliable
Whisker Weaving algorithm. These pre-conditions can be turned off too.

8 Examples

The following examples illustrate the qualities and drawbacks of our approach.
The first example on Fig. 16 shows the algorithm ability to work with non-
convex geometries and to create sheets bounded by several loops.

The surface mesh of the examples on Figs. 17 and 18 are obtained by ap-
plying a paving-like algorithm [4], followed by a sheet removing algorithm [6]
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Fig. 16. View of a non convex mesh and several sheets bounded by more than one
loop in its dual

coupled with pillowing [8]. This process guarantees to get a surface mesh
without any self-intersections. Our algorithm is then used to generate hex-
ahedral meshes. Taking care about geometric information does not prevent
our algorithm from generating hexes with negative jacobians at nodes, mak-
ing them unusable for most FEMs. In fact, far from boundary, topological
rules have priority and even if we propagate geometric information inward
our algorithm acts like the reliable Whisker Weaving one. So it has the same
drawbacks. Note that we have not used any topological smoothing 6 yet to get
a “better” mesh. Most of the meshes we have generated have an accumulation
point which contains the last introduced layer of hexes by our algorithm. In
fact, these meshes have too many sheets. Such a result tends to prove that
geometric seams are necessary to reconnect some sheets and so decrease the
number of sheets.

Fig. 17. View of a cube with a complicated surface mesh. It has 14022 elements and
681 with negative jacobians at nodes. The left picture shows the front mesh faces.
The middle and right pictures show two layers of hexes. The former surrounds an
accumulation point in the mesh while the latter goes through it

6In [6], degeneracies like through-cells, non-simplicial meets and non-distinct sup-
cells are removed to get a well-defined hex mesh.
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Fig. 18. Another mesh example. It has 2030 elements and 21 with negative jacobians
at nodes. The left picture shows the front mesh faces. The middle picture shows
a layer of hexes. The right picture shows the internal mesh structure where an
accumulation point is visible

9 Future Work

The work presented in this paper is still in progress. Several main directions
are identified to complete it. First we have to improve the algorithm robust-
ness by testing it on a wider spectrum of geometries. Especially, we will test
it on sparsely meshed boundary surfaces in order to build blocks in a block-
structured meshing approach. We will also have to work on the case when the
non-convexity filter indicates that none of the loops can be shrunk. A solution
should be to perform an incomplete shrinking process which shrinks the loop
until it reaches non-convex edges. The non-convexity seam or a new interme-
diate rule could then clean up the mesh. Such a solution would be useful for
managing the parallel loops too. Indeed, in our algorithm, these loops have
priority over the other ones and sometimes the selected shrinking loop can be
shrunk towards a non-convex area. To get a more general algorithm, we could
also attempt to manage self-intersecting loops. That would probably mean to
deeply modify our algorithm which intensively uses the fact that a loop cuts
the meshing front in two parts (left and right).

As illustrated by the previous Section, both topology and geometry are
necessary to get a valid mesh. So the next step of this work will be to adapt our
algorithm to get a classical geometric advancing-front algorithm which would
be driven by both topological and geometrical rules. In such an algorithm,
topological rules must have priority. As our algorithm works on the primal
mesh directly, it can be easily extended in such a way.

The efficiency, the robustness and the result of an advancing front method
starting from a pre-meshed boundary are strongly connected to the boundary
mesh quality. However the surface mesh is generally created without consid-
ering that it will be the starting point of a hex mesh generation algorithm. In
order to mesh the boundary of a 3D geometric solid, the traditional way con-
sists in meshing its geometric boundary curves then meshing independently
its geometric boundary surfaces with a robust quad meshing algorithm like
the Paving algorithm [4] or the Q-Morph algorithm [11]. To get an acceptable
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boundary mesh for hexahedral meshing, we think that the boundary surfaces
have to be meshed together considering the global topology and the geometry
of the 3D object. It would be equivalent to create the loops on the boundary
geometry in an element by element fashion. The loop could then be shrunk in
their creation order.

It is also important to work on the optimization step. If the Whisker
Weaving algorithm has the advantage of successfully generating hexahedral
topology for a wide spectrum of solid geometries, it has the drawback of often
creating nodes which are connected to a great number of hexes. Our algorithm
has the same drawback. To improve the quality of hexes, local topological
changes have to be performed. Few papers [17, 1] talk about this research
field which is yet important. The main difficulty is that local re-meshing in
hexahedral mesh can have severe global repercussions.

10 Conclusion

In this paper, we present an extension of the reliable Whisker Weaving algo-
rithm. The new algorithm pays more attention to the geometric information to
select the shrinking loop. It also attempts to manage non-convexity areas and
parallel loops. The implementation of this algorithm has provided first results
but it deserves to be enriched by introducing an incomplete loop shrinking
process which seems to be a solution to manage both non-convex areas and
parallel loops. Note that the algorithm structure built on different levels and
rules with specific filters eases the addition of new rules.
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