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Abstract 

A three-dimensional (3D) geometric model obtained from a 3D device or 
other approaches is not necessarily watertight due to the presence of geo-
metric deficiencies. These inadequacies must be repaired to create a valid 
surface mesh on the model as a pre-process of computational engineering 
analyses. This procedure has been a tedious and labor-intensive step, as 
there are many kinds of deficiencies that can make the geometry to be non-
watertight, such as gaps and holes. It is still challenging to repair discrete 
surface models based on available geometric information. The focus of this 
paper is to develop a new automated method for patching holes on the sur-
face models in order to achieve watertightness. It describes a numerical al-
gorithm utilizing Non-Uniform Rational B-Splines (NURBS) surfaces to 
generate smooth triangulated surface patches for topologically simple 
holes on discrete surface models. The Delaunay criterion for point inser-
tion and edge swapping is used in this algorithm to improve the outcome. 
Surface patches are generated based on existing points surrounding the 
holes without altering them. The watertight geometry produced can be 
used in a wide range of engineering applications in the field of computa-
tional engineering simulation studies. 
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1. Introduction 

Mesh-based computational technologies, such as Computational Fluid Dy-
namics (CFD) and Computational Structural Mechanics (CSM), require a 
high quality mesh to achieve numerical stability and accuracy. Most of 
mesh generators need a properly prepared underlying geometry so that a 
valid surface mesh respecting the geometry definition can be generated. 
The geometry needs to be watertight. Overlapping or gaps between geome-
try entities, for example, must be treated properly before the mesh genera-
tion process. A geometry or surface mesh is considered to be not water-
tight in two situations: 

1. It has edges shared by only one polygon, i.e., they lie on boundaries. 
The occurrences of this kind of connected edges create holes in the 
surface. 

2. It has edges shared by more than two polygons. The occurrences of 
these kinds of edges create non-manifold by virtue of hanging trian-
gles. This kind of non-manifold mostly occurs in Computer-Aided 
Design (CAD) applications due to improper stitching of surface 
patches to generate a desired geometric model.  

The surface mesh not only needs to maintain its mesh quality by achieving 
the required geometric quality measures, but it also needs to represent the 
geometry with high fidelity. It is still challenging to repair defective geo-
metric surface models automatically and robustly while maintaining high 
geometric fidelity. This is especially true for the holes and gaps found on 
discrete surface models, as we have limited information upon which to es-
timate the missing geometric information. 

Several algorithms have been proposed for filling polygonal holes [1-
11]. Most of these algorithms cater to very specific sets of problems, i.e.,
patching holes from only a particular source of geometry [1-6]. These al-
gorithms broadly fall in two main categories: volume-based repair methods 
[5-7] and mesh-based repair methods [1-4, 8-11]. 

The key to all volume based methods lies in converting a surface model 
into a volume representation and generating a sign at each voxel represent-
ing whether the particular voxel lies inside, outside or on the surface of the 
geometry. The signs are generated with the help of distance map of each 
point on the geometry using line-of-sight information, which is usually ob-
tained from range-finding devices. This crucial piece of information may 
not be available for a purely computational geometric model. The uncer-
tain voxels are assigned signs based on volumetric diffusion [5, 6]. Once 
all the voxels are assigned signs, the volume-based methods simply extract 
the contour to find a closed surface. Curless and Levoy [6] propose a hole 
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filling algorithm based on volumetric diffusion optimized for patching 
holes in models reconstructed by range-finding devices. These devices 
generally create small holes with complex topologies. However, these 
holes can be large compared to of the size of the polygons in the mesh. 
The volumetric methods are not suitable for this research because of the 
lack of line-of-sight information. Ju [7] presents a method for generating 
signs of voxels for repairing a polygonal mesh using an octree. However, 
this method is suitable only for small sized holes. 

A number of algorithms have been suggested for filling holes in a trian-
gular mesh using a surface triangulation-based approach. Leipa [8] de-
scribes a method for filling holes by a weight-based hole triangulation, 
mesh refinement based on the Delaunay criterion and mesh fairing based 
on energy minimization as used in [9]. The algorithm was confined to 
holes in an oriented connected mesh in relatively smooth region with the 
assumption that the holes are relatively small compared to the entire 
model. Barequet and Sharir [1] use a dynamic programming method to 
find minimum area of triangulation of a three-dimensional (3D) polygon in 
order to fill mesh holes. Barequet and Kumar [2] describe an interactive 
system that closes small cracks by stitching corresponding edges and fills 
big holes by triangulating the hole boundary similar in approach to Bare-
quet and Sharir [1]. Unfortunately, this method cannot provide satisfactory 
results on relatively large-sized holes with complex geometric shapes. Jun 
[4] describes an algorithm based on stitching planar projection of complex 
holes and projecting back the stitched patch. Bruno [10] attempts to fill a 
hole and blend surface based on global parameterization for complete ge-
ometry approximation and then energy minimization for surface blending 
based on the assumption that global parameterization of the complete 
model is available or possible. Branch et al. [11] suggest a method for fill-
ing holes in triangular meshes using a local radial basis function. The 
method works quite well with skinny holes, but fails miserably when the 
holes are fatter in shape. All these algorithms are limited by their assump-
tion that holes are relatively small-sized. 

In this paper, a new automated method is proposed for filling holes on a 
triangulated surface model to make it watertight [12]. The existing points 
around the holes are used to obtain a set of Non-Uniform Rational B-
Splines (NURBS) surfaces approximating the missing smooth surface 
patches. A Delaunay triangulation method is used to generate internal 
points which are then projected on to the set of NURBS surfaces to obtain 
the desired patch. The patches generated by this method are achieved 
without altering the geometric information of the surrounding geometry. 
This algorithm is currently applicable to topologically simple holes in the 
discrete geometry as a triangular mesh, while holes with more sophisti-
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cated topology will be considered in the future study. Such topologically 
simple holes are common in the geometry obtained from 3D scanners or 
geometry extraction from the medical image datasets using the marching 
cubes algorithm [14]. 

2. Hole Filling Processes 

In order to properly fill the holes presented in the geometry, we need to 
first identify the boundaries of these holes, obtain its neighboring geomet-
ric information and attempt to estimate the missing surface patches. For 
the description purpose, a generic surface with a circular hole as shown in 
Figure 1 is used as a test case. 

Figure 1. Discrete ordered points in the form of rings 

2.1. Identification of a Hole 

A hole is identified by checking the edge list to locate each boundary edge 
that is shared by only one triangle. A set of the boundary edges creates a 
hole on the surface. Once a closed edge list is identified, these edges are 
used to perform initial triangulation using the vtkTriangleFilter algorithm 
in the Visualization ToolKit [15]. Point insertion and edge swapping based 
on the Delaunay criterion are repeated on the initially triangulated mesh to 
produce a fine mesh that approximately (but not accurately) represents the 
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missing hole surface. The fine mesh will be used later in Section 2.4 to 
project onto a more accurately approximated surface. 

2.2. Identification of Neighboring Geometry into Ring Curves 

The points on the original discrete surface are selected to form rings 
around the hole identified in Section 2.1. The hole is considered as 0th ring 
and only the 2nd, 4th and 6th rings from the hole are used to avoid the 
NURBS representation of the rings crossing each other. The rings are rep-
resented by NURBS curves to form a set of NURBS surfaces approximat-
ing the missing surface in the hole region (see Section 2.3). Figure 1 shows 
part of a surface with a hole in black and the rings in blue, red and green 
around it. The approach is robust even when two holes lie in the vicinity of 
each other as the rings would simply go around the boundary of the other 
hole. 

Figure 2. A simplistic NURBS representation of a hole, rings surround-
ing it and various points lying on them 

2.3. Non-Uniform Rational B-Spline (NURBS) Surfaces 

Once the rings around the hole are obtained as described in Section 2.2, 
they are used to construct a set of NURBS surfaces approximating the 
missing region. This is first done by calculating spline curves of the rings 
to ensure that they all possess the same number of points, hence producing 
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smoother curves. Each of these closed curves is then divided into four 
segments at u values of 0.0, 0.25, 0.5 and 0.75 to form a four-sided surface 
inside, as illustrated in Figure 2, where u is the parametric value used in 
the NURBS curve formulation [13]. 

Let the NURBS curve representation of the hole and the 2nd, 4th and 6th

rings be represented by R0, R2, R4 and R6, respectively. Let P be the set of 
12 points found on R0 by using a set of scalar values ui (i = 1, 2,…, 12) in 
the parametric NURBS curve. A parameter, t, increases with each incre-
mental rotation of the rings around the hole. 

10
12

1,
1

10
1

,...,, 1221

titu
u

u
u

u
u

pppP

i
i

i

i

i
i

(1) 

Each of the points p2, p3, p8 and p9 is projected on the NURBS curve ap-
proximation of rings R2, R4 and R6 using nearest point projection to obtain 
three sets of four additional points designated as {r2p2, r2p3, r2p8, r2p9}, 
{r4p2, r4p3, r4p8, r4p9} and {r6p2, r6p3, r6p8, r6p9}, respectively. These points 
are used to obtain two ordered sets of control points S1 and S2:
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S1 and S2 are used to create two NURBS curves, NS1 and NS2, and they are 
used to obtain four additional points in the hole region designated as p1s1,
p2s1, p1s2 and p2s2 by varying u values of the NURBS curves NS1 and NS2.
Let u2 and u9 be the parametric positions of points p2 and p9, respectively, 
on NURBS curve NS1. Parametric positions of points p1s1 and p2s1 are ob-

tained as 292 3
1 uuu  and 292 3

2 uuu , respectively. Points p1s2

and p2s2 on NS2 are obtained in the same way. 
Let S3, S4, S5 and S6 be four sets of control points given as follows: 
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These four sets of control points are used to obtain four interpolating 
NURBS curves, which are collectively used to create a lofted NURBS sur-
face as shown in Figure 3. 

A number of lofted NURBS surfaces are obtained by varying t. In this 
paper, 18 control surfaces were created for each hole in an attempt to ob-
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tain better estimation for the missing region. When each of the ring curves 
is divided into four segments for constructing a NURBS surface, the start-
ing points are obtained by varying t corresponding to 10° of increment (t = 
0, 1/18, 2/18,…, 17/18). It can be further studied to improve the algorithm 
efficiency by reducing the number of NURBS surfaces needed while main-
taining the quality of the final surface generated. 

 (a) (b) 

Figure 3. NURBS surface and control net: (a) Control net in the hole 
region; (b) Lofted NURBS surface and underlying control surface 

2.4. Projection of Interior Points 

All interior points generated in Section 2.1 are projected on to a set of 18 
lofted NURBS surfaces to find a set of 18 coordinates. A simple average 
of these 18 projections is used to find the final coordinates and form a 
good approximation for the hole region. Figure 4 shows patches generated 
using only one projection and eighteen projections respectively. It clearly 
shows a distinct difference in the patches where the one generated with 
only a single NURBS surface tends to be very sensitive to the manner in 
which the ring curves are split, while the averaged one reflects the geomet-
ric information from the neighboring geometry more accurately. This is 
clear when the patch is placed on the original surface, as shown in Figure 
5: the ridge in the middle of Figure 4b reflects the ridge on the neighboring 
geometry. The connectivity of each point on the mesh remains the same as 
the original point after the projection. 
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Figure 4. Patches generated using (a) one projection and (b) eighteen 
projections 

Figure 5. Surface patch generated for the hole. It reflects the ridge line 
feature that is present in the neighboring geometry. 

3. Benchmark 

In order to evaluate the errors of this algorithm, ellipsoids are chosen as 
benchmark cases to calculate the average errors in terms of radius and the 
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standard deviation of errors. An ellipsoid of semi-axes a, b and c is defined 
as: 
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Error in the location of points on the ellipsoids can be quantified as 
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The average error can be measured as: 
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The standard deviation is the measure of the spread in a set of values. The 
standard deviation in the error of coordinate position on the patches can be 
obtained as follows: 
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Figure 6. Patches on a sphere 
with a = b = c =1 

Figure 7. Patches on an ellipsoid 
with a = 1, b = 0.5 and c =1 

Figure 8. Patches on an ellipsoid with a = 1, b = 0.2 and c =1 
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A sphere is a special case of an ellipsoid when a = b = c. The sphere with a 
radius of 1 is shown in Figure 6. Figures 7 and 8 show two ellipsoids ob-
tained by changing b values. Each of these three ellipsoids has 26,826 
nodes and four holes that have been filled by patches (green) using the 
proposed algorithm. Table 1 shows average errors and standard deviations 
in the position of points on the patches generated for the three cases. It 
shows that the average errors lie within 0.35%, while the standard devia-
tions are within 0.5%. We can also notice that the standard deviation in-
creases with the increasing curvature of the surfaces surrounding the hole. 
This can be seen by comparing Figure 6, which has the lowest curvature, 
with Figure 8, which has the highest curvature. 

Table 1. Average errors and standard deviations in the position of 
points on the patches 

Cases # of new nodes E
a = b = c =1 (sphere) 8,500 -3.16299 x 10-3 2.71724 x 10-3

a = 1, b = 0.5, c =1 8,607 -2.91879 x 10-3 3.52282 x 10-3

a = 1, b = 0.2, c =1 11,838 -2.97327 x 10-3 4.84794 x 10-3

4. Applications 

This section aims to demonstrate the proposed algorithm with several 
complex geometric models. Section 4.1 shows a model of white matter of 
a human brain with 13 holes of various sizes punched on its surface. Sec-
tion 4.2 shows a human pelvis mesh with 10 holes. These models were 
chosen to demonstrate the robustness of the algorithm in patching holes in 
areas of high curvature as well as larger-sized holes in the manner that the 
patches reflect the neighboring surface characteristics. 

4.1. Brain White Matter Model 

Figure 9 shows a simplistic model of white matter of a human brain with 
holes on its surface [16]. The model was obtained after segmentation of a 
series of Magnetic Resonance Imaging (MRI) data [17]. Once the segmen-
tation was done, the marching cubes algorithm was used to obtain the tri-
angulated surface. Thirteen holes were punched on the white matter 
model—some of them in regions of very high curvature—to test the ro-
bustness of the algorithm. The proposed algorithm successfully generated 
smooth patches to fill all the holes. The resulting surface is shown in 
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Figure 10. This test case emphasized the capability of this algorithm to 
generate smooth patches for holes with challenging geometry and curva-
ture without smoothing out the local features of the geometry. 

Figure 9. White matter model with 13 holes on its surface 

4.2. Pelvis 

Figure 11 shows a surface rendering of a patched unstructured surface 
mesh of a human pelvis [16]. The pelvis model is made of 1,090,700 trian-
gles and 546,093 nodes with ten holes. The patches for the ten holes are 
made of 31,099 triangles and 16,331 nodes in total. Upon looking closely, 
it can be noticed that the three patches in dark green, red and yellow pro-
vide patches conforming to the surrounding geometry. Although they must 
be flat surfaces, the proposed method does not have a capability to identify 
such surfaces. A graphical user interface (GUI) will be added to exclude 
these holes beforehand. 

5. Conclusion and Future Work 

A new fully-automated hole-filling algorithm was proposed for triangu-
lated surface models and was applied to several cases successfully. It util-
izes the neighboring geometric information by identifying rings of curves 
around the holes to create a set of NURBS surfaces, which are subse-
quently used for projection of the triangulated surface patches. The 18 sets 
of projected coordinates are then averaged to obtain the final point coordi-
nates for the hole region. Several benchmark cases are studied to assess the 
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accuracy of the algorithms with satisfactory results. Finally, complex bio-
medical geometries are used to test the robustness of the algorithms. Fur-
ther investigation will improve the algorithm in terms of computation effi-
ciency and applicability to topologically complex holes. 
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Figure 10. Patches for 13 holes on the white matter model 
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Figure 11. Human pelvis model with 10 holes patched on its surface 
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