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Summary. We propose a new mesh refinement algorithm for computing quality
guaranteed Delaunay triangulations in three dimensions. The refinement relies on
new ideas for computing the goodness of the mesh, and a sampling strategy that em-
ploys numerically stable Steiner points. We show through experiments that the new
algorithm results in sparse well-spaced point sets which in turn leads to tetrahedral
meshes with fewer elements than the traditional refinement methods.

1 Introduction

We consider the following three dimensional geometric problem:

Problem 1. [QUALITY STEINER TRIANGULATION]| Compute a small size tri-
angulation of a given three dimensional domain such that all the tetrahedra in
the triangulation are of good quality.

The quality constraint is motivated by the numerical methods used in many
engineering applications. Among various criteria, the following two are widely
used to describe the goodness of a tetrahedron:

1. Radius-ratio. A tetrahedron is said to be good if its radius ratio (circum-
radius over inradius) is bounded from above.

2. Radius-edge-ratio. A tetrahedron is said to be good if its radius-edge ratio
(circumradius over shortest edge length) is bounded from above.

An upper bound on the former criterion implies an upper bound on the latter,
but not vice versa. Moreover, a bound on the radius ratio is equivalent to a
bound on the dihedral angles of a tetrahedron. In this paper we mainly, focus
on the former quality criterion. Point sets whose triangulation has bounded
radius-edge ratio are also known as the well-spaced point set [41]. We can
easliy meet the latter criterion using a sliver-removal algorithm [5, 12] as
a postprocessing step to our algorithm. Under the quality constraint, our



64 Ravi Jampani and Alper Ungér

objective is to make the triangulation size (the number of tetrahedra) as small
as possible for its efficient use in applications.

The quality triangulation problem has been extensively studied both in two
dimensions [1, 7, 11, 14, 28, 42] and three dimensions [3, 5, 12, 16, 19, 25, 30].
There are two main techniques that solve the mesh generation problem and
provide theoretical guarantees: (i) Delaunay refinement and (ii) quadtree re-
finement. Among these Delaunay refinement method seems to be more popular
due to its superior performance in practice. There are also a number of heuris-
tic solutions addressing the mesh generation problem, such as the advancing
front methods [20] and the sphere packing methods [18, 36]. While these
algorithmic and heuristic methods are generally effective computing quality
triangulations in two dimensions, it is hard to claim the same in three dimen-
sions. There are two main reasons for the shortcomings in three dimensional
mesh generation. First, algorithmic solutions for computing optimal triangula-
tions remain as a major open research topic. There is no known algorithm for
computing triangulations in three dimensions that maximize the minimum
dihedral angle, minimize the maximum dihedral angle, or any other useful
optimization criteria. Second, it is hard to come up with a point sampling
strategy that leads to a good triangulation. Here, we address the second issue
and give a Steiner point selection strategy effective in computing Delaunay
meshes.

Delaunay refinement method involves first computing an initial Delaunay
triangulation of the input domain, and then iteratively adding points called
Steiner points to improve the quality of the triangulation. Traditionally, cir-
cumcenters of bad simplices are used as Steiner points [28, 30]. Recently,
alternative techniques have been studied in two dimenions, with great ben-
efits both in theory and in practice. We elaborate more on this in the next
section.

In this paper, we present a new tetrahedral mesh refinement algorithm,
which relies on the following main ideas:

1. We first present a new criterion to check whether a triangulation is good
or not. We show that this new criterion is equivalent to the traditional way
(a triangulation is good if all tetrehedra have good radius-edge ratio). The
new criterion considers edges and the shape of their dual Voronoi facets.

2. Unlike the traditional algorithms, which insert one vertex at a time to fix
a bad tetrahedron, we insert multiple Steiner vertices to fix all bad tetra-
hedra incident to a “loose” edge. Moreover, Steiner points used here are
often different from the circumcenters (Voronoi vertices). The proposed
strategy results in sparser well-spaced point sets and meshes with fewer
tetrahedra.
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2 Previous Work vs. Our Focus

In our review, we mainly focus on the Delaunay based mesh generation. The
first generation of tetrahedral refinement algorithms [9, 30] came as exten-
sions of the planar Delaunay refinement algorithms [7, 28]. These algorithms
employed circumcenters of bad tetrahedra as Steiner points and provided up-
per bounds on the radius-edge ratio. Then, the tetrahedral meshing research
progressed mainly in addressing two important challenges described below.
Following those, we describe two other challenges, the latter of which is our
focus in this paper.

Slivers

There are tetrahedra, called slivers, with bounded radius edge ratio but
unbounded dihedral angles (and radius ratio). Slivers are both undesirable
and ubiquitous in three dimensional (Delaunay) triangulations. Even when
the point set is well-spaced slivers may result. Recently, several algorithms
have been developed that are guaranteed to result in meshes with no slivers
[3, 5, 12, 16, 19]. These can be grouped in three classes (i) those that employ
weighted Delaunay triangulations [3, 5], (ii) those that rely on a perturba-
tion on the Steiner points, and (iii) those that use a more structured Steiner
point packing such as octree or lattice structures [16, 17, 25]. The theoretical
guarantees provided by the first two classes are too small to be relevant in
practice. The rigid structure of the Steiner point packing employed by the last
class of algorithms leads to dense points and hence meshes with significantly
large number of elements.

Input Constraints

Computing triangulations of three dimensional domains is a major challenge
in itself even without enforcing any quality measure or output size require-
ment. This is mainly due to the input boundary constraints. For instance,
there are polyhedra which cannot be triangulated unless Steiner points are
allowed [2, 27, 29]. Delaunay triangulation of the vertices of an input domain
may not conform the domain boundary (facets) in general. The conforming
and constrained Delaunay triangulation algorithms [8, 26, 33, 35, 39] address
this issue. These algorithms are integrated within the Delaunay refinement
framework. Earlier Delaunay refinement algorithms had strong constraints
on the input type which they can handle. For instance, the dihedral angles
between the input facets are assumed to be reasonably large [30]. Later, algo-
rithms that can handle smaller input angles and larger classes of inputs are
studied. [4, 32]

Time efficiency

The original Delaunay refinement algorithm has quadratic time complexity
[28]. This compares poorly to the time-optimal quadtree refinement algorithm
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Well-spaced points in two dimensions

(a) Packing circumcenters (b) Packing locally optimal points

Fig. 1. Vertices of the output of the planar Delaunay refinement algorithms are
shown for a constraint angle of 30°. Input in this case is a pair of points surrounded
by a large empty space. The traditional circumcenter insertion packs many more
Steiner points (a) than the locally optimal Steiner point placement strategy (b).

of Bern et al. [1] which runs in O(nlogn+m) time, where m is the minimum
size of a good quality mesh. The first improvement was given by Spielman et
al. [37, 38] as a consequence of their parallelization of the Delaunay refinement
algorithm. Their algorithm runs in O(m logm log®(L/h)) time (on a single pro-
cessor), where L is the diameter of the domain and h is the smallest feature in
the input. Later, Miller [21] further improved this describing a new sequential
Delaunay refinement algorithm with running time O((nlog(L/h) +m)logm).
Then, Har-Peled and Ungor [14] presented the first time-optimal Delaunay re-
finement algorithm, which runs in O(nlogn +m) time. This algorithm, origi-
nally presented in two dimensions has a natural extension to three dimensions
for point sets. More recently, alternative time-efficient Delaunay refinement al-
gorithms for higher dimensionsional meshing have been introduced [15]. The
implications and benefits of the time-efficient algorithms in practice have yet
to be explored. We should note that the Steiner point placement algorithm we
propose here complements the time-optimal algorithm framework proposed in
[14], and promises to be a good algorithm both in theory and practice.

Point Packing

Our focus in this study is on creating good packings of the Steiner points.
We want the output point sets to be well-spaced [41], as the Delaunay tri-
angulation of such point sets has bounded radius-edge ratio. On the other
hand, having the packing sparse leads to meshes with fewer elements. Recent
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Well-spaced points in three dimensions

(a) Packing circumcenters (b) Proposed packing

Fig. 2. A careful packing results in sparse well-spaced point sets in three dimensions.
Here input is a pair of points inside a cube. We zoomed in to illustrate the difference
in our packing strategy (b) with respect to the traditional iterative circumcenter
packing (a). See Figure 6 for the complete view of this data set.

research indicated that a more careful packing strategy than the traditional
circumcenter packing has great benefits in two dimensional mesh generation
[42, 13]. Thanks to the sparsity of the generated point sets, the meshes tend
to be a factor of two or more smaller than the meshes generated by itera-
tive circumcenter insertions. This implies substantial reduction not only in
triangulation time, but also in the running time of the subsequent application
algorithms. Moreover, the new Steiner point packing strategies help us design
software that are effective for stronger constraint angles than the traditional
methods. The original Delaunay refinement algorithm of Ruppert is proven to
terminate with size-optimal quality triangulations for o < 20.7°. In practice,
it generally works for o < 34° and fails to terminate for larger constraint
angles. The new variant of the Delaunay refinement algorithm generally ter-
minates for constraint angles up to 42°. Figures 1 and 2 illustrate the benefits
of a locally optimal Steiner packing in two dimensions, and potential benefits
of the proposed packing in three dimensions. At a recent workshop, the second
author sketched ideas to illustrate the potential benefits in three dimensions
[43].
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2.1 Standard Delaunay refinement

We review the general framework of the three dimensional Delaunay refine-
ment algorithm. We refer the reader to [10, 30] for further details.

In three dimensions, a collection {2 of vertices, segments, and facets is
called a piecewise linear complex (PLC) if (i) all lower dimensional elements
on the boundary of an element in (2 also belong to 2, and (ii) if any two
elements intersect, then their intersection is a lower dimensional element in (2
[24]. We first compute the Delaunay triangulation of the set of vertices of the
input PLC (2. Then, we add new points (i) to recover the edges and facets
that are not conformed by the Delaunay triangulation and (ii) to improve
the quality of the triangulation. A point is said to encroach upon a simplex
if it is inside the smallest sphere that contains the simplex. A tetrahedron is
considered bad if its radius-edge ratio is larger than a pre-specified constant
B > 2. We maintain the Delaunay triangulation as we add new points using
the following rules.

1. If a segment is encroached upon, we add its midpoint.

2. If a facet is encroached upon, we add its circumcenter unless Rule 1 ap-
plies.

3. If a tetrahedron is of bad quality, we add its circumcenter unless Rule 1
or 2 applies.

Shewchuk [30, 31] showed that this algorithm is guaranteed to compute
tetrahedral meshes with bounded radius-edge ratio. That is, the output vertex
set is well-spaced. He also showed that the point set has good grading with
respect to input feature size distribution. The key component of the termi-
nation guarantee and the correctness of the Delaunay refinement algorithms
is that a Steiner point insertion does not introduce features smaller than the
existing ones. In this paper, we show that this property holds for the our
Steiner point packing strategy. The termination property and the correctness
of the algorithm follows, replacing the corresponding lemmas in the standard
Delaunay refinement framework. For simplicity, we do not repeat the entire
framework, and refer to [10, 30] for the structure of the complete proof of
correctness for Delaunay refinement algorithms.

3 Preliminaries for our Algorithm

We assume the user is familiar with the definitions of Delaunay triangulations
and Voronoi diagrams [10]

3.1 Edges and their Voronoi Facets

Consider a pair of points p and ¢ in the mesh that are connected to each
other in the Delaunay triangulation. (See Figure 3.) Let Vor(pq) denote the
Voronoi facet dual to the Delaunay edge pq.
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Definition 1. Let S be the set of spheres that have radius B3|pg| and go through
the points p and q. The disk formed by the centers of the spheres in S is called
the core disk of pq, denoted as CoreDisk(pq).

Note that CoreDisk(pq) is coplanar with Vor(pq).

Fig. 3. Let pg be an edge (orthogonal to the view plane) in a 3D triangulation. The
Voronoi face dual of the edge pq is shown as a polygonal region. The shaded region
represents a sphere with radius 3|pg| that goes through points p and ¢. The centers
of all such spheres form a circle, i.e. CoreDisk(pq).

Definition 2. A Delaunay edge pq is said to be short if it is the shortest edge
of a tetrahedron incident to it.

Definition 3. A Delaunay edge pq that is not on the boundary is said to be
bad if Vor(pq) ¢ CoreDisk(pq). A boundary Delaunay edge is bad if there
exists a vertex of Vor(pq) that is not in CoreDisk(pq).

We prove below that the Delaunay triangulation of a point set includes
a bad tetrahedron if and only if it includes a bad edge. We propose a local
sampling strategy which introduces several Steiner points at once to ensure
Vor(pq) C CoreDisk(pq) after the insertion for every Delaunay edge pq. Our
sampling strategy should be locally optimal maximizing the smallest new pair-
wise point distance.

Let R, denote the radius of the CoreDisk(pq). Then, R, = /3% — 1/4|pq|.

Theorem 1. Delaunay triangulation of a point set has bad tetrahedra if and
only if there is a bad edge in the triangulation.
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Indeed we can prove the following stronger statement, which considers
only the short edges. This modification plays a role in the efficiency of the
sampling algorithm for fixing the bad edges. That is we only need to address
the short edges.

Theorem 2. Delaunay triangulation of a point set has bad tetrahedra if and
only if there is a bad short edge in the triangulation.

Proof. If there exists an edge pqg whose Voronoi cell is not contained inside
the CoreDisk then clearly there is a bad tetrahedron (which is the dual of the
Voronoi vertex that is outside the CoreDisk). For the other direction, consider
a bad tetrahedron with the shortest edge pq. Then, its dual can be shown not
to be contained.

4 Proposed Refinement Algorithm

Our algorithm should be seen as a proper extension of the offcenter algorithm
presented in two dimensions [42]. The extension, however, is not straightfor-
ward. In two dimensions, an edge is incident to two triangles. This makes it
easy to compute Steiner points such that an existing “short” edge is guar-
anteed to be neighbour to two good triangles. The main challenge in three
dimensions is there could be a varying number of tetrahedra incident to an
edge. That there are very many ways to pack points around a small feature
so that it is surrounded by good tetrahedra. Our algorithm (presented as Al-
gorithm 1) first detects a collection of consecutive bad tetrahedra incident to
a short edge and then introduces potentially multiple Steiner points so that
the edge is incident to a set of good tetrahedra (or it dissappears from the tri-
angulation). We should note that we always maintain the Delaunay property
of the triangulation.

Algorithm 1
Compute the Delaunay triangulation of the input
while 3 a bad short edge pq
Compute the connected components of Vor(pq) — CoreDisk(pq)
Select the connected component with the largest arc boundary
Sample Steiner points on this component
Recompute the Delaunay triangulation of the modified point set

Traditional Delaunay refinement algorithms and implementations consider
the triangulation as a list of tetrahedra, and maintain the list of bad tetrahe-
dra in a priority queue. We can transform Algorithm 1 to Algorithm 2 to make
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our packing strategy immediately compatible with the existing Delaunay re-
finement framework. The two algorithms are equivalent as a consequence of
Theorem 2.

Algorithm 2

Compute the Delaunay triangulation of the input

while 3 a bad tetrahedron pgrs with shortest edge pq
Compute the connected components of Vor(pq) — CoreDisk(pq)
Select the connected component with the largest arc boundary
Sample Steiner points on this component
Recompute the Delaunay triangulation of the modified point set

4.1 Connected Components

Let pg be an edge incident to a bad tetrahedron. Connected components
of Vor(pq) — CoreDisk(pg) can be computed through a linear scan on the
polygonal chain boundary of Vor(pg). (See Figure 4 (left).) Each connected
component can be characterized by the intersection points of the boundary
of Vor(pgq) and the boundary of CoreDisk(pq). In our notation, we use 9 to
denote the boundary of a region. If 9Vor(pq) N dCoreDisk(pq) = &, then
there is one connected component. Unless Vor(pg) N CoreDisk(pq) = O,
this component is a polygonal region with a hole, whose outer boundary is
OV or(pq) and interior boundary is dCoreDisk(pg). One can detect whether
Vor(pq) N CoreDisk(pg) = &. In practice this case occurs rarely, thanks to
the strategy we implement for prioritizing the handling of bad tetrahedra.
If OVor(pq) N dCoreDisk(pq) # <, then each connected component can be
represented by two intersection points a and b, and a polygonal sub-chain
v1, V2, ..., U, of OVor(pq). (See Figure 4.)

We call the angle of the arc that bounds a connected component the span
angle of the connected component. The span angle is a real number in the in-
terval (0, 27]. The span angle is 2, either when 0V or(pq) NdCoreDisk(pq) =
& or when a = b.

4.2 Sampling the Connected Components

Making sure that the sampling is sufficiently sparse is important for the termi-
nation guarantee of the Delaunay refinement algorithm. The distance between
the sampling points should be at least |pg|. On the other hand, it is desirable
to have a dense enough sampling so that the new Voronoi dual of pg is con-
tained inside the core. Here we sketch a strategy that computes the sampling
points for a given connected component specified by its spanning angle ~.
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Fig. 4. An edge pq whose Voronoi CoreDisk difference consists of a single connected
component is shown in (left). The span angle of the component is 7. A two sampling
is shown in (right) for a sampling angle of v/2. After the insertion of sample points
s1 and s2, the Voronoi dual of pg, Vor(pq), is modified to include new vertices a, b,
and v}.

The sampling angle

We choose an angle called the sampling angle, denoted by . If v < w/2 then
6 = v and we use only one sample point. Otherwise, we use | = |4y /7| sample
points. In this case we subdivide the arc ab of the connected component into
equal pieces of angle § = 7/l. So, whenever v > /4, we have 0 € [r/4,7/2).

Location of the sampling points

The number of points and the sampling angle determines the exact loca-
tion of where we expect the new Voronoi vertices of Vor(pg). These will be
a,vl,...,v,_y,b, where [ is a positive integer. See Figure 4 (right). For each
expected Voronoi edge, there is a unique point in the plane of Vor(pg) which
leads to the formation of the edge. We take each such point as the sampling
points. The sampling point is on a ray originating from the midpoint of pqg and
orthogonal to the projected Voronoi edge. It is of distance (x 4 cos(6/2)R.)
from the midpoint of pg, where z = \/(cos2(0/2)(8% — 1/4) + 1/4 |pq|. This
calculation is given in Lemma 1 in more detail.

Numerical errors and perturbation

Roundoff errors in the calculation of the sample point coordinates might lead
to undesired result, e.g., the projected Voronoi vertices might fall slightly out-
side the CoreDisk(pq). To avoid this we perturb the sample point coordinates
toward the midpoint of pgq.
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Sampling points outside the connected components

It is also possible that sample points might land outside Vor(pg). To prevent
inserting points outside the Vor(pq), we compute the intersection e of the ray
ms; and the OVor(pq). If e is far enough from the CoreDisk(pq), we can stil
use this sample point together with the other sample points and guarantee
that distance in between the sampling points is sufficiently large. Otherwise,
we choose to use one sample point at a time.

Fig. 5. The exact locations of the sampling points depend on the span angle sam-
pling angle and the radius-edge ratio constraint 3.

5 Analysis

Lemma 1. Let sq,...,s; be the set of sampling points inserted at the same
iteration. The distance between each of the sampling points s;, i = 1,...,1,
and existing vertices is at least B|pq]|.

Proof. Each sampling point belongs Vor(pg). The nearest neighbours of a
point in this region are p and ¢. Moreover, the sampling points are in Vor(pq)—
CoreDisk(pq). Observe that for all z € (Vor(pq) — CoreDisk(pq)), we have
xp > B|pq| Hence, |ps;| > B|pq| for every sampling point s;.

We can indeed specify the distance |ps;| in terms of sampling angle 6, and
3. Recall that R, = /3% — 1/4|pq|. Let x be the distance of p to the new
Voronoi edge dual to pgs;. See Figure 5. By the Pythagoras Theorem,

= \/(cos?(6/2)(8% — 1/4) +1/4 |pgl.

Then, applying the same theorem once more, we get
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psi = /(& + cos(8/2)R.)? + |pal?/4.

It is easy to verify that this value is greater than |pq| for sufficiently large
and 0 values. 0O

Lemma 2. Let sy1,...,s; be the set of sampling points inserted at the same
iteration where | > 2. The distance between any two sampling points s;, and
sj, where i, € {1,...,1} and i # j, is at least B|pq|.

Proof. The distance between any two sampling points is at least s;s; =
2sin(0/2)(x + cos(6/2)R.). (Note this is the case when either j = i + 1,
ori=1and j=1)For 0 = [r/4,7/2) and 3 > 2, it is easy to verify that
sis; > Blpql.

Integrating the above Lemmas with the Delaunay refinement analysis
framework [10, 30] we conclude with the following theorem.

Theorem 3. The proposed Delaunay refinement algorithm outlined in Algo-
rithm 2 terminates with a guaranteed quality tetrahedral mesh.

6 Experiments

Our implementation of the proposed algorithm relies on a beta version of the
Pyramid software (provided by Jonathan Shewchuk). The current version is
not very robust and was a limitation conducting comprehensive experimen-
tal study. We should emphasize that the results presented in this section are
quite preliminary. Nevertheless, we believe the study is representative of the
strength of the new packing strategy. We give a comparison with the circum-
center insertion algorithm as implemented in the Pyramid software. In our
implementation, we handle bad tetrahedra starting with the ones with the
shortest edges first.

Data Sets

We ran our experiments on various data sets including the following:

1. Heliz data set consists of 1008 points forming a double helix. The two
helices are very close to each other forming small features. See this model
in Figure 7.

2. Cubel consists of ten points two of which are located unit distance from
each other and at the center of a cube of side length 10° units. See this
model in Figure 6.

3. Cube8is a cube that has eight small features, each one is close to a corner
of the cube. See this model in Figure 6.

4. Random Points consists of 10,000 points spread uniformly at random
inside a cube.
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Circumcenters Packing New Packing

Fig. 6. Output mesh vertex set of the previous and the new Delaunay refinement
algorithm for the Cubel (top row) and Cube8 (bottom row) data sets. Delaunay
triangulation is also shown for the Cubel data set (middle row). See Table 1 for the
statistics.

5. Ellipsoid consists of 10,000 points spread uniformly at random on an el-
lipsoid which is inside a cube formed by 8 additional points. See this data
set in Figure 7.
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| Circumcenters Packing [ New Packing

Fig. 7. Output of the previous and the new Delaunay refinement algorithm for the
Helix (zoomed in) and the Ellipsoid data sets. The radius-edge ratio constraint in
all triangulations is 4. See Table 1 for the statistics.

Table 1 presents a summary of our experiments on two data sets. The first
block of four columns provide information about the input data sets. The
fifth column shows the imposed radius-edge ratio constraint 5. Columns six
and seven list the output size of the circumcenter insertion algorithm in the
number of vertices and in the number of tetrahedra, respectviely. Columns
eight and nine list these quantities for the new algorithm. The last column
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Data Set “Quality“ CC algorithm “ New algorithm H[mp.
name v| e| f R/1 v t v t %
Cubel 12| 12| 6 1.5 596| 3,420 570/ 3,280| 4.3

2 265 1,440 220 1,196|| 16.9
4 153 730 79 330( 48.3
8 133 607 51 195|| 61.6
Cube8 32| 12| 6 1.5\ 2,164| 12,016/ 1,952 10,803| 9.7
2| 1,042 5,531 881| 4,537| 15.4
4 610 2,836 360 1,605|| 40.9
8 483 2,074 233 924| 51.7
Ellipsoid| 10,008| 12| 6 1.5|| 69,075 431,908|| 60,861| 379,718| 11.8
2| 39,710| 247,031 32,394| 200,960| 18.4
4|| 21,396| 131,553|| 17,256| 103,380| 19.3
8|l 15,202| 89,501 13,328 75,238| 12.3
Helix 1,008| 12| 6 1.5|| 50,527| 310,743|| 38,965| 239,330|| 22.8
2|| 26,259| 157,163|| 16,596 99,521|| 36.7
4| 12,763| 71,812| 5,938| 37,738| 53.4
8| 8,727| 49,998| 3,923| 37,738| 55.0
Random| 1,008| 12| 6 1.5 27,851| 176,846| 25,884| 164,301| 7.0
2|| 17,743| 113,743|| 16,572| 106,420|| 6.5
4| 11,463| 75,257| 11,118 73,484 3.0
8|| 10,377| 68,595| 10,326| 68,202| 0.4

Table 1. The number of vertices (v) and the number of tetrahedra (t) in the output
is listed for the proposed algorithm in comparison to the circumcenter insertion (CC)
algorithm. The last column reports the percentage improvement in the number of
output vertices.

lists the percentage improvement in the number of output vertex size. In some
cases, the percentage improvement listed seems insignificant. Note that in such
cases, the input size is very large compared to the Steiner vertices inserted
by each of the algorithm. If we report the improvements in the number of
Steiner points, the percentages listed would be much larger. For instance, the
last entry would be 13.7% instead of 0.4%. We get similar improvements for
other data sets that are not listed here.

7 Discussions

We proposed a new Delaunay refinement algorithm for computing quality-
guaranteed three dimensional tetrahedral meshes. It differs from previous al-
gorithms on several fronts:

e Unlike the traditional algorithms, we handle potentially more than one
bad tetrahedra at a time.

e We insert multiple Steiner points at each iteration. While this seems to
be a good match within a parallel Delaunay refinement framework such
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as [38], our sequential strategy should not be confused with a parallel
algorithm.

The point set of the output is not only well-speced but also significantly
sparse compared to the output of the previous algorithms.

Further research is needed to fully utilize the benefits of the approach

proposed here. We plan to complete a robust implementation of the three
dimensional meshing software and run more comprehensive experiments. We
would like to explore the potential benefits of our approach on computing
sliver-free meshes.
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