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Summary. A number of approaches have been suggested for the selection of the po-
sitions of Steiner points in Delaunay mesh refinement. In particular, one can define
an entire region (called picking region or selection disk) inside the circumscribed
sphere of a poor quality element such that any point can be chosen for insertion
from this region. The two main results which accompany most of the point selec-
tion schemes, including those based on regions, are the proof of termination of the
algorithm and the proof of good gradation of the elements in the final mesh. In this
paper we show that in order to satisfy only the termination requirement, one can
use larger selection disks and benefit from the additional flexibility in choosing the
Steiner points. However, if one needs to keep the theoretical guarantees on good grad-
ing then the size of the selection disk needs to be smaller. We introduce two types of
selection disks to satisfy each of these two goals and prove the corresponding results
on termination and good grading first in two dimensions and then in three dimen-
sions using the radius-edge ratio as a measure of element quality. We call the point
placement method semi-generalized because the selection disks are defined only for
mesh entities of the highest dimension (triangles in two dimensions and tetrahedra
in three dimensions); we plan to extend these ideas to lower-dimensional entities in
the future work. We implemented the use of both two- and three-dimensional selec-
tion disks into the available Delaunay refinement libraries and present one example
(out of many choices) of a point placement method; to the best of our knowledge,
this is the first implementation of Delaunay refinement with point insertion at any
point of the selection disks (picking regions).

1 Introduction

Delaunay mesh generation algorithms start with the construction of the ini-
tial mesh, which conforms to the input geometry, and then refine this mesh
until the element quality constraints are met. The general idea of Delaunay
refinement is to insert additional (Steiner) points inside the circumdisks of
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poor quality elements, which causes these elements to be destroyed, until
they are gradually eliminated and replaced by better quality elements. Tra-
ditionally, Steiner points are selected at the circumcenters of poor quality
elements [3, 6, 14, 16, 17]. Ruppert [14] and Shewchuk [17] proved that if the
radius-edge upper bound ρ̄ is greater than or equal to

√
2 in two dimensions

and ρ̄ ≥ 2 in three dimensions, then Delaunay refinement with circumcenters
terminates. If, furthermore, the inequalities are strict, then good grading can
also be proven both in two and in three dimensions. In two dimensions, in
addition to good grading, one can also prove size-optimality which refers to
the fact that the number of triangles in the resulting mesh is within a con-
stant multiple of the smallest possible number of triangles satisfying the input
constraints.

Recently, Üngör [20] introduced a new type of Steiner points called off-
centers. The idea is based on the observation that sometimes the elements
created as a result of inserting circumcenters of skinny triangles are also skinny
and require further refinement. This technique combines the advantages of
advancing front methods, which can produce very well-shaped elements in
practice, and Delaunay methods, which offer theoretical guarantees. Üngör
showed that the use of off-centers allows to significantly decrease the size of
the final mesh in practice. While eliminating additional point insertions, this
strategy creates triangles with the longest possible edges, such that one can
prove the termination of the algorithm and still produce a graded mesh.

Chew [4] chooses Steiner points randomly inside a picking sphere to avoid
slivers. The meshes in [4] have constant density; therefore, Chew proves the
termination, but not the good grading.

Li and Teng [9, 10] extended the work in [4] by defining a picking sphere
with a radius which is a constant multiple of the circumradius of the element.
They use two different rules for eliminating the elements with large radius-
edge ratio and for eliminating the slivers. In particular, in [9] the rules are
defined as follows: “Add the circumcenter cτ of any d-simplex with a large
ρ(τ)” and “For a sliver-simplex τ , add a good point p ∈ P(τ)”, where ρ(τ) is
the radius-edge ratio, P(τ) is the picking region of simplex τ , and the good
point is found by a constant number of random probes. The authors in [9]
prove that their algorithm terminates and produces a well graded mesh with
good radius-edge ratio and without slivers.

In the present work, we define Type-2 selection disks similarly to the pick-
ing region in [9]. We extend the proofs in [9] to show that any point (not
only the circumcenter) from the selection disk (picking region) can be used to
eliminate the elements with large radius-edge ratios. We do not address the
problem of sliver elimination, however, our work can be used in conjunction
with the sliver removal procedure from [9] such that the Delaunay refinement
algorithm can choose any points from the selection disks (picking regions)
throughout both the stage of the construction of a good radius-edge ratio
mesh (“almost good mesh” [9]) and the stage of sliver removal. Intuitively, the
requirement of good grading has to be more restrictive than the requirement
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of termination only, and, therefore, the definitions of the selection disk has to
be different to satisfy each of these goals. The present paper improves upon
our previous result [2] by decoupling the definitions of the selection disk used
for the proof of termination (Type-1) and the selection disk used for the proof
of good grading (Type-2). As can be seen further in the paper, the selection
disk of Type-2 is always inside the selection disk of Type-1 of the same el-
ement, and as the radius-edge ratio ρ of an element approaches the upper
bound ρ̄, the Type-2 disk approaches the Type-1 disk.

The traditional proofs of termination and size optimality of Delaunay re-
finement algorithms [14, 17] explore the relationships between the insertion
radius of a point and that of its parent. Stated shortly, the insertion radius
of point p is the length of the shortest edge connected to p immediately after
p is inserted into the mesh, and the parent is the vertex which is “responsi-
ble” for the insertion of p [17]. The proofs in [14, 17] rely on the assumption
that the insertion radius of a Steiner point is equal to the circumradius of
the poor quality element. This assumption holds when the Steiner point is
chosen at the circumcenter of the element, since by Delaunay property the
circumdisk of the element is empty, and, hence, there is no vertex closer to
the circumcenter than its vertices. However, the above assumption does not
hold if we pick an arbitrary point inside the selection disk of the element. For
example, in Figure 2(right) the Steiner point pi within the selection disk can
be closer to the mesh vertex pn than to any of the vertices pk, pl, pm which
define the skinny triangle. Therefore, we need to extend the existing theory
in the new context, i.e., Steiner points can be inserted anywhere within the
selection disks of poor quality elements.

One of the important applications of the flexibility offered by the use of
selection disks is in conforming the mesh to the boundary between different
materials. The advantages are especially pronounced in medical imaging, when
the boundaries between different tissues are blurred, see Figure 1(left). In this
case, after the image is segmented, instead of a clear separation, we have a
boundary zone of some none-negligible width, see Figure 1(right). Then the
goal of the mesh generation step is to avoid creating edges that would intersect
the boundary, which can be achieved by inserting Steiner points inside the
boundary zone. Another use for the selection disks would be to put vertices
on a point lattice to reduce the occurrence of slivers, see [8].

In [2] we presented an example of a two-dimensional optimization-based
method which allows to decrease the size of the final mesh in practice. Here we
present a preliminary evaluation of an analogous three-dimensional method.
The three-dimensional results are not yet as good as two-dimensional and
require additional development.
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Fig. 1. The use of the selection disk for the construction of boundary conformal
meshes. (Left) An MRI scan showing a cross-section of a body. (Right) A zoom-in
of the selected area containing an artery: the inside is white, the outside has differ-
ent shades of gray and the black zone is an approximate boundary between these
regions. The standard Delaunay refinement algorithm would insert the circumcenter
c. However, in order to construct a mesh which conforms to the boundary, another
point (p) would be a better choice.

2 Delaunay Refinement Background

We assume that the input domain Ω is described by a Planar Straight Line
Graph (PSLG) in two dimensions, or a Planar Linear Complex (PLC) in
three dimensions [14–17]. A PSLG (PLC) X consists of a set of vertices, a
set of straight line segments, and (in three dimensions) a set of planar facets.
Each element of X is considered constrained and must be preserved during the
construction of the mesh, although it can be subdivided into smaller elements.
The vertices of X must be a subset of the final set of vertices in the mesh.

Let the mesh MX for the given PSLG (PLC) X consist of a set V = {pi}
of vertices and a set T = {ti} of elements which connect vertices from V . The
elements are either triangles in two dimensions or tetrahedra in three dimen-
sions. We will denote the triangle with vertices pu, pv, and pw as � (pupvpw)
and the tetrahedron with vertices pk, pl, pm, and pn as τ (pkplpmpn). We
will use the symbol e (pipj) to represent the edge of the mesh which connects
points pi and pj .

As a measure of the quality of elements we will use the circumradius-to-
shortest edge ratio specified by an upper bound ρ̄, which in two dimensions
is equivalent to a lower bound on a minimal angle [11, 15] since for a triangle
with the circumradius-to-shortest edge ratio ρ and minimal angle A, ρ =
1/(2 sinA). We will denote the circumradius-to-shortest edge ratio of element
t as ρ (t).

Let us call the open disk corresponding to a triangle’s circumscribed circle
or to a tetrahedron’s circumscribed sphere its circumdisk. We will use sym-
bols © (t) and r (t) to represent the circumdisk and the circumradius of t,
respectively. A mesh is said to satisfy the Delaunay property if the circumdisk
of every element does not contain any of the mesh vertices [5].
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Fig. 2. (Left) Encroachment in three dimensions. (Right) Selection disks of Type-
1 (light shade) and Type-2 (dark shade) of the skinny triangle � (pkplpm).

We will extensively use the notion of cavity [7] which is the set of elements
in the mesh whose circumdisks include a given point p. We will denote CM (p)
to be the cavity of p with respect to mesh M and ∂CM (p) to be the set
of boundary edges in two dimensions (or triangles in three dimensions) of
the cavity, i.e., the edges or the triangles which belong to only one element in
CM (p). When M is clear from the context, we will omit the subscript. For our
analysis, we will use the Bowyer-Watson (B-W) point insertion algorithm [1,
22], which can be written shortly as follows:

V n+1 ← V n ∪ {p},
Tn+1 ← Tn \ CMn (p) ∪ {(pξ) | ξ ∈ ∂CMn (p)}, (1)

where ξ is an edge in two dimensions or a triangle in three dimensions, while
Mn+1 = (V n+1, Tn+1) and Mn = (V n, Tn) represent the mesh before and
after the insertion of p, respectively.

In order not to create skinny elements close to the constrained seg-
ments and faces, sequential Delaunay algorithms observe special encroachment
rules [14–17]. In particular, if a Steiner point p is considered for insertion but
it lies within the open equatorial disk of a constrained subfacet f , p is not in-
serted but the circumcenter of f is inserted instead. Similarly, if p is inside the
open diametral circle of a constrained subsegment s, then the midpoint of s is
inserted instead. Consider the example in Figure 2(left). The new point pi is
inside the three-dimensional equatorial disk of a constrained face � (pkplpm).
In this case, pi is rejected and the algorithm attempts to insert the circumcen-
ter p′i of � (pkplpm). If p′i does not encroach upon any constrained segments,
it is inserted into the mesh. If, however, it encroaches upon a constrained
segment, which is e (pkpl) in our example, p′i is also rejected and the midpoint
p′′i of the constrained edge is inserted.
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Definition 1 (Local feature size [14, 16, 17]). The local feature size func-
tion lfs (p) for a given point p is equal to the radius of the smallest disk centered
at p that intersects two non-incident elements of the PSLG (PLC).

lfs (p) satisfies the Lipschitz condition:

Lemma 1 (Lemma 1 in [14], Lemma 2 in [17], Lemma 2 in [16]). Given
any PSLG (PLC) and any two points pi and pj, the following inequality holds:

lfs (pi) ≤ lfs (pj) + ‖pi − pj‖. (2)

Here and in the rest of the paper we use the standard Euclidean norm ‖ · ‖.
The following definitions of insertion radius and parent of a Steiner point

play a central role in the analysis in [14, 16, 17] and we will adopt them for
our analysis, too.

Definition 2 (Insertion radius [16, 17]). The insertion radius R (p) of
point p is the length of the shortest edge which would be connected to p if
p is inserted into the mesh, immediately after it is inserted. If p is an input
vertex, then R (p) is the Euclidean distance between p and the nearest input
vertex visible from p.

Here a vertex is called visible from another vertex if the straight line
segment connecting both vertices does not intersect any of the constrained
segments.

Remark 1. If p is a midpoint of an encroached subsegment or subfacet, then
R (p) is the distance between p and the nearest encroaching mesh vertex; if the
encroaching mesh vertex was rejected for insertion, then R (p) is the radius
of the diametral circle of the subsegment or of the equatorial sphere of the
subfacet [16, 17].

Remark 2. As shown in [16, 17], if p is an input vertex, then R (p) ≥ lfs (p).
Indeed, from the definition of lfs (p), the second feature (in addition to p)
which intersects the disk centered at p is either a constrained segment, a
constrained facet, or the nearest input vertex visible from p.

The following definition of a parent vertex generalizes the corresponding
definition in [16, 17]. In our analysis, even though the child is not necessarily
the circumcenter, the parent is still defined to be the same vertex.

Definition 3 (Parent of a Steiner point). The parent p̂ of point p is the
vertex which is defined as follows: (i) If p is an input vertex, it has no parent.
(ii) If p is a midpoint of an encroached subsegment or subfacet, then p̂ is the
encroaching point (possibly rejected for insertion). (iii) If p is inserted inside
the circumdisk of a poor quality element (triangle or tetrahedron), p̂ is the
most recently inserted vertex of the shortest edge of this element.
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The quantity D (p) is defined as the ratio of lfs (p) over R (p) [16, 17]:

D (p) =
lfs (p)
R (p)

. (3)

It reflects the density of vertices near p at the time p is inserted, weighted
by the local feature size. To achieve good mesh grading we would like this
density to be as small as possible. If the density is bounded from above by a
constant, the mesh is said to have a good grading property.

3 Two-Dimensional Generalized Delaunay Refinement

In this section we introduce two types of selection disks which can be used
for the insertion of Steiner points in two dimensions. The two-dimensional
results are given here for completeness and prepare the mindset for the three-
dimensional results in the following section. The Type-1 selection disk corre-
sponds to the definition of the selection disk we used in [2] which we briefly
review. Then we define the Type-2 disk and prove good grading and size-
optimality.

Definition 4 (Selection disk of Type-1 in 2D). If t is a poor qual-
ity triangle with circumcenter c, shortest edge length l, circumradius r, and
circumradius-to-shortest edge ratio ρ = r/l > ρ̄ ≥

√
2, then the Type-1 se-

lection disk for the insertion of a Steiner point that would eliminate t is the
open disk with center c and radius r −

√
2l.

For example, in Figure 2(right), e (plpm) is the shortest edge of a skinny
triangle � (pkplpm) and c is its circumcenter. The selection disk of Type-1 is
the lightly shaded disk with center c and radius r (� (pkplpm))−

√
2‖pl−pm‖.

Remark 3. As ρ (� (pkplpm)) approaches
√

2, the Type-1 selection disk shrinks
to the circumcenter c of the triangle. If, furthermore, ρ (� (pkplpm)) ≤

√
2,

the selection disk vanishes, which coincides with the fact that the triangle
� (pkplpm) cannot be considered skinny.

In [2] we proved that any point inside the Type-1 selection disk of a triangle
can be chosen for the elimination of the triangle, and that the generalized
Delaunay refinement algorithm which chooses Steiner points inside Type-1
selection disks terminates.

Using the definition of the selection disk, in [2] we suggested an example
of an optimization-based method which allows to improve the size of the mesh
by up to 20% over the circumcenter insertion method and up to 5% over the
off-center insertion method, for small values of the minimal angle bound. The
underlying idea of our method is that, by choosing a point within the selection
disk we can vary the set of triangles in its cavity, we simultaneously minimize
the number of deleted good quality triangles and maximize the number of
deleted poor quality triangles.
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3.1 Proof of Good Grading and Size Optimality with Selection
Disks of Type II

Definition 5 (Selection disk of Type-2 in 2D). If t is a poor qual-
ity triangle with circumcenter c, shortest edge length l, circumradius r, and
circumradius-to-shortest edge ratio ρ = r/l > ρ̄ ≥

√
2, then the Type-2 se-

lection disk for the insertion of a Steiner point that would eliminate t is the
open disk with center c and radius r(1 −

√
2

ρ̄ ).

For example, in Figure 2(right), e (plpm) is the shortest edge of a skinny tri-
angle � (pkplpm) and c is its circumcenter. The Type-2 selection disk for this
triangle is the darkly shaded disk with center c and radius r (� (pkplpm)) (1−√

2
ρ̄ ).

Remark 4. Note from Definitions 4 and 5 that the radius of the Type-2 selec-
tion disk is always smaller than the radius of the Type-1 selection disk of the
same skinny triangle because r(1 −

√
2

ρ̄ ) = r − ρ
ρ̄

√
2l and ρ > ρ̄.

Remark 5. As ρ̄ approaches
√

2 the radius of the Type-2 selection disk ap-
proaches zero, which means that the selection disk shrinks to the circumcenter
point.

As can be seen further below, the price which we pay for the gain in the
flexibility in choosing points is the increase of the constants which bound the
size of the mesh. To classify the Delaunay refinement algorithms with respect
to the theoretical bounds on mesh grading we need the following definition.

Definition 6 (δ-graded Delaunay refinement algorithm in 2D). If for
every triangle t with circumcenter c, circumradius r, shortest edge length l,
and circumradius-to-shortest edge length ratio ρ = r/l > ρ̄ ≥

√
2 a Delaunay

refinement algorithm selects a Steiner point pi within the Type-2 selection disk
such that ‖pi − c‖ < r(1 − δ), where

√
2

ρ̄
≤ δ ≤ 1,

we say that this Delaunay refinement algorithm is δ-graded.

Lemma 2. If pi is a vertex of the mesh produced by a δ-graded Delaunay
refinement algorithm then the following inequality holds:

R (pi) ≥ C · R (p̂i) , (4)

where we distinguish among the following cases:

(i) C = δρ̄ if pi is a Steiner point chosen within the Type-2 selection disk of
a skinny triangle;
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Otherwise, let pi be the midpoint of subsegment s. Then

(ii) C = 1√
2

if p̂i is a Steiner point which encroaches upon s, chosen within
the Type-2 selection disk of a skinny triangle;

(iii) C = 1
2 cos α if pi and p̂i lie on incident subsegments separated by an angle

of α (with p̂i encroaching upon s), where 45◦ ≤ α ≤ 90◦;
(iv) C = sinα if pi and p̂i lie on incident segments separated by an angle of

α ≤ 45◦.

If pi is an input vertex or if pi and p̂i are on non-incident features, then

R (pi) ≥ lfs (pi) .

Proof. We need to present a new proof only for case (i) since the proof for
case (ii) is the same as in the corresponding lemma for the Type-1 selection
disk [2], and the proofs for all other cases are independent of the choice of the
point within the selection disk and are given in [17].

Case (i) By the definition of a parent vertex, p̂i is the most recently in-
serted endpoint of the shortest edge of the triangle; without loss of generality
let p̂i = pl and e (plpm) be the shortest edge of the skinny triangle � (pkplpm),
see Figure 2(right). If e (plpm) was the shortest edge among the edges incident
upon pl at the time pl was inserted into the mesh, then ‖pl − pm‖ = R (pl) by
the definition of the insertion radius; otherwise, ‖pl − pm‖ ≥ R (pl). In either
case,

‖pl − pm‖ ≥ R (pl) . (5)

Then

R (pi) > δr (from Delaunay property and Definition 6)
= δρ‖pl − pm‖ (since ρ = r

‖pl−pm‖ )
> δρ̄‖pl − pm‖ (since ρ > ρ̄ )
≥ δρ̄R (pl) (from (5)).

Hence, R (pi) > δρ̄R (p̂i); choose C = δρ̄. ��

Remark 6. We have proven Inequality (4) only for the case which involves the
“free” Steiner points, i.e., the points which are chosen from selection disks
and which do not lie on constrained segments. The proofs for the other types
of Steiner points do not involve the definition of the selection disk and are
applicable without change from [17].

Lemma 3. If p is a vertex of the mesh produced by a δ-graded Delaunay
refinement algorithm and C is the constant specified by Lemma 2, then the
following inequality holds:

D (p) ≤ 2 − δ

δ
+

D (p̂)
C

. (6)
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Proof. If p is inside a Type-2 selection disk of a skinny triangle with circum-
radius r, then

‖p − p̂‖ < 2r − δr (from the definition of p̂ and Def. 6)
= (2 − δ)r
= 2−δ

δ δr
< 2−δ

δ R (p) (from Delaunay property and Def. 6).

If p is an input vertex or lies on an encroached segment, then

‖p − p̂‖ ≤ R (p) (by definitions of p̂ and R (p) )
≤ 2−δ

δ R (p) (since from Def. 6, δ ≤ 1).

In all cases,

‖p − p̂‖ ≤ 2 − δ

δ
R (p) . (7)

Then

lfs (p) ≤ lfs (p̂) + ‖p − p̂‖ (from Lemma 1)
≤ lfs (p̂) + 2−δ

δ R (p) (from (7))
= D (p̂) R (p̂) + 2−δ

δ R (p) (from (3))
≤ D (p̂) R(p)

C + 2−δ
δ R (p) (from Lemma 2).

The result follows from the division of both sides by R (p). ��

Lemma 4 (Extension of Lemma 7 in [17] and Lemma 2 in [14]). Sup-
pose that ρ̄ >

√
2 and the smallest angle in the input PSLG is strictly greater

than 60◦. There exist fixed constants CT and CS such that, for any vertex p
inserted (or considered for insertion and rejected) by a δ-graded Delaunay re-
finement algorithm, D (p) ≤ CT , and for any vertex p inserted at the midpoint
of an encroached subsegment, D (p) ≤ CS. Hence, the insertion radius of a
vertex has a lower bound proportional to its local feature size.

Proof. The proof is by induction and is similar to the proof of Lemma 7
in [17]. The base case covers the input vertices, and the inductive step covers
the other two types of vertices: free vertices and subsegment midpoints.

Base case: The lemma is true if p is an input vertex, because in this case,
by Remark 2, D (p) = lfs (p) /R (p) ≤ 1.

Inductive hypothesis: Assume that the lemma is true for p̂, i.e., D (p̂) ≤
max{CT , CS}.

Inductive step: There are two cases:

(i) If p is in the Type-2 selection disk of a skinny triangle, then

D (p) ≤ 2−δ
δ + D(p̂)

C (from Lemma 3)
= 2−δ

δ + D(p̂)
δρ̄ (from Lemma 2)

≤ 2−δ
δ + max{CT ,CS}

δρ̄ (by the inductive hypothesis).
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It follows that one can prove that D (p) ≤ CT if CT is chosen so that

2 − δ

δ
+

max{CT , CS}
δρ̄

≤ CT . (8)

(ii)If p is the midpoint of a subsegment s such that p̂ encroaches upon s, then
we have 3 sub-cases:
(ii-a) If p̂ is an input vertex, then the disk centered at p and touching p̂

has radius less than the radius of the diametral disk of s and therefore
lfs (p) < R (p). Thus, D (p) < 1 and the lemma holds.

(ii-b) If p̂ is a rejected point from the Type-2 selection disk of a skinny
triangle or lies on a segment not incident to s, then

D (p) ≤ 2−δ
δ + D(p̂)

C (from Lemma 3)
= 2−δ

δ +
√

2D (p̂) (from Lemma 2)
≤ 2−δ

δ +
√

2CT (by the inductive hypothesis).

(ii-c) If p̂ lies on a segment incident to s, then

D (p) ≤ 2−δ
δ + D(p̂)

C (from Lemma 3)
= 2−δ

δ + 2 cos αD (p̂) (from Lemma 2)
≤ 2−δ

δ + 2CS cos α (by the inductive hypothesis).

It follows that one can prove that D (p) ≤ CS if CS is chosen so that both
of the following relations (9) and (10) are satisfied:

2 − δ

δ
+

√
2CT ≤ CS , (9)

2 − δ

δ
+ 2CS cos α ≤ CS . (10)

If δρ̄ >
√

2, relations (8) and (9) can be simultaneously satisfied by choos-
ing

CT =
(2 − δ)(ρ̄ + δ)

δρ̄ −
√

2
, and CS =

(2 − δ)ρ̄(1 +
√

2)
δρ̄ −

√
2

.

If the smallest input angle αmin > 60◦, relations (8) and (10) can be simulta-
neously satisfied by choosing

CT =
2 − δ

δ
+

CS

δρ̄
, and CS =

2 − δ

δ(1 − 2 cos αmin)
.

��

The analysis in Lemma 4 assumes that all angles in the input PSLG are
greater than 60◦. Although such geometries are rare, in practice a modifica-
tion of the algorithm with a concentric circular shell splitting [14, 17] allows
to guarantee the termination of the algorithm even though the small angles
adjacent to the segments of the input PSLG cannot be improved.
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Theorem 1 (Theorem 8 in [17], Theorem 1 in [14]). For any vertex p

of the output mesh, the distance to its nearest neighbor is at least lfs(p)
CS+1 .

The proof in [17] relies only on Lemmata 1 and 4 here and, therefore, holds
for the arbitrary points chosen within selection disks of skinny triangles.

Theorem 1 is used in the proof of the following theorem.

Theorem 2 (Theorem 10 in [17], Theorem 14 in [12], Theorem 3 in
[14]). Let lfsM (p) be the local feature size at p with respect to a mesh M
(treating M as a PSLG), whereas lfs (p) remains the local feature size at p
with respect to the input PSLG. Suppose a mesh M with smallest angle θ has
the property that there is some constant k1 ≥ 1, such that for every point
p, k1lfsM (p) ≥ lfs (p). Then the cardinality of M is less than k2 times the
cardinality of any other mesh of the input PSLG with smallest angle θ, where
k2 = O

(
k2
1/θ
)
.

Smaller values of δ offer more flexibility to a δ-graded Delaunay refinement
algorithm in choosing Steiner points. However, from Lemma 4 it follows that
as δρ̄ approach

√
2, CT and CS approach infinity, which leads to the worsening

of the good grading guarantees. Therefore, along with satisfying application-
specific requirements, the point insertion schemes should try to place Steiner
points as close to circumcenters as possible.

4 Three-Dimensional Generalized Delaunay Refinement

In this section we introduce again two types of selection disks which can be
used for the insertion of Steiner points. First, we prove the termination of a
Delaunay refinement algorithm with the Type-1 selection disks. Then we give
an example of an optimization based strategy for the insertion of Steiner points
from the Type-1 selection disks. Finally, we introduce the Type-2 selection
disk (which is always inside the Type-1 selection disk of the same skinny
tetrahedron) and prove the good grading. As in [16], the proofs require that
all incident segments and faces in the input geometry are separated by angles
of at least 90◦. According to our own experience and that of other authors [16,
18, 19], the Delaunay refinement algorithm works for much smaller angles in
practice, although skinny tetrahedra adjacent to the small input angles cannot
be removed. To prevent the algorithm from creating edges of ever diminishing
length (for details, see the proofs below and the dataflow diagram in Figure 4),
one can compute the insertion radii of candidate Steiner points explicitly and
forbid the insertion of points which lead to the introduction of very short
edges [16].

4.1 Proof of Termination with Selection Disks of Type I

Definition 7 (Selection disk of Type-1 in 3D). If τ is a poor quality
tetrahedron with circumcenter c, shortest edge length l, circumradius r, and
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circumradius-to-shortest edge ratio ρ = r/l > ρ̄ ≥ 2, then the selection disk
of Type-1 for the insertion of a Steiner point that would eliminate τ is the
open disk with center c and radius r − 2l.

Following [16], the analysis below requires that the Delaunay refinement
algorithm prioritize the splitting of encroached faces. In particular, when a
Steiner point p encroaches upon several constrained faces, the encroached
face which contains the projection of p is split. The projection of a point p
onto a plane is the point in the plane which is closest to p. This requirement
allows to achieve better bounds on the circumradius-to-shortest edge ratios in
the final mesh.

Lemma 5 (Projection Lemma [16]). Let f be a subfacet of the Delaunay
triangulated facet F . Suppose that f is encroached upon by some vertex p, but
p does not encroach upon any subsegment of F . Then projF (p) lies in the
facet F , and p encroaches upon a subfacet of F that contains projF (p).

Now we can prove the following lemma which establishes the relationship
between the insertion radius of a point and its parent.

Lemma 6. If pi is a vertex of the mesh produced by a Delaunay refinement
algorithm which chooses points within Type-1 selection disks of tetrahedra with
circumradius-to-shortest edge ratios greater than ρ̄ ≥ 2, then the following
inequality holds:

R (pi) ≥ C · R (p̂i) , (11)

where we distinguish among the following cases:

(i) C = 2 if pi is a Steiner point chosen within the Type-1 selection disk of a
skinny tetrahedron;

(ii) C = 1√
2

if pi is a circumcenter of an encroached constrained face;
(iii) C = 1√

2
if pi is a midpoint of an encroached constrained segment.

If pi is an input vertex or if pi and p̂i are on non-incident features, then

R (pi) ≥ lfs (pi) .

Proof. We need to prove only cases (i) and (ii) since the proofs of all other
cases are independent of the choice of the point within the selection disk and
are given in [16].

Case (i) Without the loss of generality, let e (plpm) be the shortest edge
of the skinny tetrahedron τ (pkplpmpn) and p̂i = pl. Then

R (pi) > 2‖pl − pm‖ (from Delaunay property and Definition 7)
≥ 2R (pl) (from Definition 2 of insertion radius)
= 2R (p̂i) ;

choose C = 2.
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Fig. 3. (Left) An illustration of the relationship between the insertion radii of
Steiner points, in the case of encroachment in three dimensions. (Right) A tetra-
hedron with high circumradius-to-shortest edge ratio.

Case (ii) Consider Figure 3(left). Let p̂i be inside the selection disk (the
smaller shaded circle) of some skinny tetrahedron (not shown), such that p̂i

encroaches upon the constrained face � (pkplpm), and pi is the circumcenter of
� (pkplpm). According to the projection requirement, let � (pkplpm) include
projF (p̂i), where F is the facet of the input PLC containing � (pkplpm).
Without the loss of generality, suppose pm is the point closest to projF (p̂i)
among the vertices of � (pkplpm). Because projF (p̂i) lies inside the trian-
gle � (pkplpm), it cannot be father away from pm than the circumcenter of
� (pkplpm), i.e.,

‖projF (p̂i) − pm‖ ≤ r (� (pkplpm)) . (12)

Furthermore, because p̂i is inside the equatorial disk of � (pkplpm),

‖projF (p̂i) − p̂i‖ < r (� (pkplpm)) . (13)

From (12) and (13), as well as the fact that the triangle with vertices p̂i,
projF (p̂i), and pm has a right angle at projF (p̂i), we have:

‖p̂i − pm‖ <
√

2r (� (pkplpm)) . (14)

Since pm has to be in the mesh by the time p̂i is considered for insertion,
R (p̂i) ≤ ‖p̂i − pm‖. Then, using (14), we obtain:

R (p̂i) <
√

2r (� (pkplpm)) =
√

2R (pi) ;

choose C = 1√
2
. ��
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Subfacet
Circumcenters

Vertices
Free

Subsegment
Midpoints

Fig. 4. Flow diagram from [16] illustrating the relationship between the insertion
radius of a vertex and that of its parent in three dimensions. If no cycle has a product
smaller then one, the algorithm will terminate. Input vertices are not shown since
they do not participate in cycles. In [16] the constant C = ρ̄ ≥ 2. In our case, with
the use of Type-1 selection disks C = 2, and with the use of Type-2 selection disks
C = δρ̄ ≥ 2.

Figure 4 shows the relationship between the insertion radii of mesh vertices
and the insertion radii of their parents. We can see that if Inequality (11) is
satisfied then no new edge will be created whose length is smaller than half of
the length of some existing edge and the algorithm will eventually terminate
because it will run out of places to insert new vertices.

4.2 An Example of a Point Selection Strategy

In two dimensions, by selecting the new Steiner point, we can construct only
one new triangle which will be incident upon the shortest edge of the existing
skinny triangle and which will have the required circumradius-to-shortest edge
ratio. The three-dimensional case, however, is complicated by the fact that
several new tetrahedra may be incident upon the shortest edge of the existing
skinny tetrahedron. The example in Figure 3(right) shows a skinny tetra-
hedron τ (pkplpmpn) with two new tetrahedra τ (pipkplpn) and τ (pipkplpm)
that are incident upon the shortest edge e (pkpl). By having to deal with mul-
tiple incident tetrahedra we face a multi-constrained optimization problem
which to the best of our knowledge has not been analyzed with respect to the
existence of the optimal solution and the construction of this solution.

A heuristic approach was suggested by Üngör [21] who proposed two types
of off-center points in three dimensions. Based on the experimental data, he
observes the following: “Use of both types of off-centers or the use of Type
II off-centers alone outperforms the use of Type I off-centers alone, which in
turn outperforms the use of circumcenters.” If a is the midpoint of the shortest
edge e (pkpl) of the tetrahedron and c is its circumcenter, than the Type II
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Fig. 5. (Left) A wireframe model of a flying bat. (Right) The bat inside a box.

Table 1. The number of tetrahedra produced with the use of different point selec-
tion methods for three models in three dimensions. The first method (CC) always
inserts circumcenters of skinny tetrahedra, the second method (OC) always inserts
off-centers, and the third method (OPT) is optimization based. The minimal values
in each cell are hilighted.

Model
Point ρ̄
position 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Points CC 1126 560 527 482 457 429 432 417 417
in OC 777 298 190 184 236 157 180 181 169

cube OPT 1723 1619 174 174 174 174 174 174 174

CC 1017 629 566 567 562 542 542 542 542

Rocket OC 1060 729 540 673 679 660 660 660 660
OPT 937 610 628 678 598 542 542 542 542

CC 24552 16561 15427 15226 15083 14923 14921 14923 14894

Bat OC 24985 21019 20781 20820 19764 19247 21058 17816 18301
OPT 24628 17599 15970 15533 15267 15053 15074 15084 14939

off-center b is computed in [21] on the segment L (ac) such that |L (ab)| =
α3

(
ρ̄ +
√

ρ̄2 − 1/4
)
, where α3 is the perturbation factor. From experimental

evidence in [21] the author suggests that a good choice for α3 is 0.6. The
insertion of Type II off-centers was implemented by Hang Si in Tetgen version
1.4.0 along with the circumcenter insertion method [18, 19]. We also added the
implementation of an optimization-based point insertion method which with
every insertion of a Steiner point within a Type-1 selection disk of a skinny
tetrahedron minimizes the signed difference between the number of deleted
good quality tetrahedra and the number of deleted poor quality tetrahedra.
As opposed to the two-dimensional case, we did not restrict the position of the
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Steiner point to a specific arc, but instead sampled 1,000 points uniformly in
spherical coordinates of the Type-1 selection disk and chose the best one. For
our experiments, we used the following three geometries. The “Points in cube”
model is the unit cube with two additional points close to its center at 10−4

distance from each other. The “Rocket” model is the example PLC supplied
with the Tetgen distribution. The “Bat” model [13] is shown in Figure 5.
Table 1 summarizes the results of our experiments. From our point of view,
these results do not provide a basis for conclusions, and further research is
required.

4.3 Proof of Good Grading with Selection Disks of Type II

Definition 8 (Selection disk of Type-2 in 3D). If τ is a poor quality
tetrahedron with circumcenter c, shortest edge length l, circumradius r, and
circumradius-to-shortest edge ratio ρ = r/l > ρ̄ ≥ 2, then the Type-2 selection
disk for the insertion of a Steiner point that would eliminate τ is the open
disk with center c and radius r(1 − 2

ρ̄ ).

Remark 7. Note from definitions 7 and 8 that the radius of the Type-2 selec-
tion disk is always smaller than the radius of the Type-1 selection disk of the
same skinny tetrahedron because r(1 − 2

ρ̄ ) = r − ρ
ρ̄2l and ρ > ρ̄.

Definition 9 (δ-graded Delaunay refinement algorithm in 3D). If for
every tetrahedron τ with circumcenter c, circumradius r, shortest edge length
l, and circumradius-to-shortest edge length ratio ρ = r/l > ρ̄ ≥ 2 a Delaunay
refinement algorithm selects a Steiner point pi within the Type-2 selection disk
such that ‖pi − c‖ < r(1 − δ), where 2/ρ̄ ≤ δ ≤ 1, we say that this Delaunay
refinement algorithm is δ-graded.

Lemma 7. If pi is a vertex of the mesh produced by a δ-graded Delaunay
refinement algorithm then the following inequality holds:

R (pi) ≥ C · R (p̂i) , (15)

where we distinguish among the following cases:

(i) C = δρ̄ if pi is a Steiner point chosen within the Type-2 selection disk of
a skinny tetrahedron;

(ii) C = 1√
2

if pi is a circumcenter of an encroached constrained face;
(iii) C = 1√

2
if pi is a midpoint of an encroached constrained segment.

If pi is an input vertex or if pi and p̂i are on non-incident features, then

R (pi) ≥ lfs (pi) .

Proof. We need to present a new proof only for case (i) since the proof for
case (ii) is the same as in Lemma 6, and the proofs for all other cases are
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independent of the choice of the point within the selection disk and are given
in [16].

Case (i) Without the loss of generality, let e (plpm) be the shortest edge
of the skinny tetrahedron τ (pkplpmpn) and p̂i = pl. Then

R (pi) > δr (τ (pkplpmpn)) (from Delaunay property and Def. 9)
= δρ(τ (pkplpmpn))‖pl − pm‖
> δρ̄‖pl − pm‖ (since the tetrahedron is skinny)
≥ δρ̄R (p̂i) ;

choose C = δρ̄. ��

Lemma 8 (Extension of Lemma 3 to 3D). If p is a vertex of the mesh
produced by a δ-graded Delaunay refinement algorithm and C is the constant
specified by Lemma 7, then the following inequality holds:

D (p) ≤ 2 − δ

δ
+

D (p̂)
C

. (16)

Proof. The proof is formally equivalent to the proof of Lemma 3. ��

Lemma 9 (Extension of Theorem 5 in [16]). Suppose that ρ̄ > 2 and the
input PLC satisfies the projection condition. Then there exist fixed constants
CT ≥ 1, CF ≥ 1, and CS ≥ 1 such that, for any vertex p inserted or rejected
by a δ-graded Delaunay refinement algorithm, the following relations hold:

(i) D (p) ≤ CT if p is chosen from the selection disk of a skinny tetrahedron;
(ii) D (p) ≤ CF if p is the circumcenter of an encroached constrained face;
(iii) D (p) ≤ CS if p is the midpoint of an encroached constrained segment.

Therefore, the insertion radius of every vertex has a lower bound proportional
to its local feature size.

Proof. The proof is by induction and is similar to the proof of Lemma 7 in [16].
The base case covers the input vertices, and the inductive step covers the other
three types of vertices: free vertices, the circumcenters of constrained faces,
and the midpoints of constrained subsegments. The constants are chosen as
follows:

CT = C0
C1 + 1 +

√
2

C1 − 2
, CF = C0

(1 +
√

2)C1 +
√

2
C1 − 2

, CS = C0
(3 +

√
2)C1

C1 − 2
,

where C0 = (2 − δ)/δ and C1 = δρ̄. As δ approaches 2/ρ̄, the constants
approach infinity. ��

Theorem 3 (Theorem 6 in [16]). For any vertex p of the output mesh, the
distance to its nearest neighbor is at least lfs(p)

CS+1 .

The proof of this theorem does not depend on the specific position of the
Steiner point inside the selection disk. Hence, the theorem holds in the context
of three-dimensional generalized Delaunay refinement.
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5 Conclusions

In this paper we presented the first to our knowledge decoupled definitions of
two types of selection disks along with the corresponding proofs of termina-
tion and size optimality, both in two and in three dimensions. The primary
goal which we pursued while developing the selection disk ideas was the de-
sign of parallel Delaunay refinement algorithms. A number of techniques have
been developed by multiple authors for the selection of Steiner points for se-
quential Delaunay refinement. The development of the corresponding parallel
algorithm for each of the sequential point selection techniques would have
been cumbersome and time consuming. Instead, we have shown that there ex-
ists an entire region for the sequential selection of Steiner points. Therefore,
if a parallel algorithm framework is designed with the assumption that the
points are chosen from this region, all sequential point placement techniques
can be used as a black box.

The additional flexibility in choosing the Steiner points can be used to
satisfy a number of diverse mesh improvement goals. For example, one can
construct the difference of the selection disk with the forbidden regions which
create slivers to find the region which does not create slivers. Then, instead
of using randomized point selection for sliver elimination like in [4, 9, 10], a
deterministic insertion of a single point is sufficient. As another example, if
a selection disk intersects a boundary between different materials, one would
like to insert the point along the boundary with the goal of constructing a
boundary conformal mesh.

Delaunay refinement algorithms can also use selection disks for the split-
ting of constrained segments and faces; we plan to address it in the future work
along with the complete generalization of point insertion in all dimensions.
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