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Abstract

Unstructured hexahedral mesh generation is a critical part of the model-
ing process in the Spectral-Element Method (SEM). We present some ex-
amples of seismic wave propagation in complex geological models, automati-
cally meshed on a parallel machine based upon CUBIT (Sandia Laboratory,
cubit.sandia.gov), an advanced 3D unstructured hexahedral mesh genera-
tor that offers new opportunities for seismologist to design, assess, and improve
the quality of a mesh in terms of both geometrical and numerical accuracy.
The main goal is to provide useful tools for understanding seismic phenomena
due to surface topography and subsurface structures such as low wave-speed
sedimentary basins. Our examples cover several typical geophysical problems:
1) “layer-cake” volumes with high-resolution topography and complex solid-
solid interfaces (such as the Campi Flegrei Caldera Area in Italy), and 2)
models with an embedded sedimentary basin (such as the Taipei basin in
Taiwan or the Grenoble Valley in France).
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Komatitsch4, Antonio Piersanti5, and Jeroen Tromp6
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1 The spectral-element method in seismology

Wave propagation phenomena can nowadays be studied thanks to many pow-
erful numerical techniques. We have seen rapid advances in computational
seismology at global, regional, and local scales thanks to various numerical
schemes, such as the finite-difference method (FDM) [15], the finite-element
method (FEM) [1], the spectral-element method (SEM) [12], the integral
boundary-element method (IBEM) [2], and the Arbitrary High-Order Dis-
continuous Galerkin method (ADER-DG) [8]. Spurred by the computational
power made available by parallel computers, geoscientists and engineers can
now accurately compute synthetic seismograms in realistic 3D Earth mod-
els. Among the methods previously listed, the SEM has convincingly demon-
strated the ability to handle high-resolution simulations of seismic wave prop-
agation in 3D domains.

The purpose of this article is not to give a complete description of the
SEM, but a basic introduction to the main properties of the SEM is needed in
order to understand the various constraints imposed on the meshing process.
The SEM is as a generalization of the FEM based on the use of high-order
piecewise polynomial functions. A crucial aspect of the method is its capability
to provide an arbitrary increase in accuracy by simply increasing the algebraic
degree of these functions (the spectral degree n). From a practical perspective,
this operation is completely transparent to the users, who limit themselves to
choosing the spectral degree at runtime, leaving to the software the task of
building up suitable quadrature points and the relevant degrees of freedom.
Obviously, one can also use mesh refinement to improve the accuracy of the
numerical solution, thus following the traditional finite-element approach.

Referring to the literature for further details [12], we begin by briefly sum-
marizing the key features of the SEM. We start from the general differential
form of the equation of elastodynamics:

ρ∂2
t s = ∇ · T + F, (1)

where s(x, t) denotes the displacement at position x and time t, ρ(x) is the
density distribution, and F(x, t) the external body force. The stress tensor
T is related to the strain tensor by the constitutive relation T = c : ∇s,
where c denotes a fourth-order tensor. No particular assumptions are made
regarding the structure of c, which describes the (an)elastic properties of the
medium (the formulation is general and can incorporate full anisotropy [9] or
non-linear constitutive relationships [6]).

For seismological applications, a numerical technique needs to facilitate
at least the following: (i) an attenuating medium, (ii) absorption of seismic
energy on the fictitious boundaries of the domain in order to mimic a semi-
infinite medium (the free-surface condition is a natural condition in the SEM),
and finally (iii) seismic sources. In the SEM all these features are readily
accommodated [12].
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As in the FEM, the dynamic equilibrium problem for the medium can be
written in a weak, or variational, form, and, through a suitable discretization
procedure that depends on the numerical approach, can be cast as a system
of ordinary differential equations with respect to time. Time-marching of this
system of equations may be accomplished based upon an explicit second-order
finite-difference scheme, which is conditionally stable and must satisfy the well
known Courant condition [4].

The key features of the SEM discretization are as follows:

1. Like in the FEM, the model volume Ω is subdivided into a number of
non-overlapping elements Ωe, e = 1, . . . , ne, such that Ω =

⋃ne

e=1 Ωe.
2. The expansion of any function within the elements is accomplished based

upon Lagrange polynomials of suitable degree n constructed from n + 1
interpolation nodes.

3. In each element, the interpolation nodes are chosen to be the Gauss-
Lobatto-Legendre (GLL) points, i.e., the n+1 roots of the first derivatives
of the Legendre polynomial of degree n. On such nodes, the displacement,
its spatial derivatives, and integrals encountered in the weak formulation
are evaluated.

4. The spatial integration is performed based upon GLL quadrature (while
most classical FEMs use Gauss quadrature).

Thanks to this numerical strategy, exponential accuracy of the method is
ensured and the computational effort minimized, because the resulting mass
matrix is exactly diagonal. The latter feature does not occur in so-called
hp FEMs, nor in SEMs based upon Chebychev polynomials.

2 Mesh design for Spectral-Element Methods

The first critical ingredient required for a spectral-element simulation is a
high-quality mesh appropriate for the 3D model of interest. This process gen-
erally requires discouraging expertise in meshing and preprocessing, and is
subject to several tough constraints: 1) the number of grid points per short-
est desired wavelength, 2) the numerical stability condition, 3) an acceptable
distortion of the elements, 4) balancing of numerical cost and available com-
puting resources. A poor-quality mesh can generate numerical problems that
lead to an increase in the computational cost, poor (or lack of) convergence
of the simulation, or inaccurate results. For example, a geological model often
includes a layered volume, and a staircase sampling of the interfaces between
the layers can produce fictitious diffractions. Therefore, a good mesh should
honor at least the major geological discontinuities of the model.

As noted in Section 1, the SEM is similar to a high-degree FEM, and
in fact these methods share the first part of the discretization process. The
present paper is focused on this first meshing step, and thus the results are
relevant to both FEMs and SEMs. In the SEM, the subsequent step is the



582 Emanuele Casarotti et al.

evaluation of the model on the GLL integration points [12]. Here we only note
that if we use Lagrange polynomials and GLL quadrature, the mass matrix is
exactly diagonal, resulting in a dramatic improvement in numerical accuracy
and efficiency. With this choice, each element of the mesh contains (n + 1)3

GLL points. Unfortunately, this approach requires that the mesh elements
are hexahedra [12]. It is worth mentioning that for 2D problems it is possi-
ble to develop a SEM with triangles keeping the diagonal mass matrix but
with an higher numerical cost [10]. The fact that we are restricted to hexa-
hedral elements complicates matters significantly. Whereas 3D unstructured
tetrahedral meshes can be constructed relatively easily with commercial or
non-commercial codes, the creation of 3D unstructured hexahedral meshes
remains a challenging and unresolved problem. For complex models, as in the
case of realistic geological volumes, generating an all-hexahedral mesh based
upon the available meshing algorithms can require weeks or months, even for
an expert user [21]. One of the features of the SEM that impacts the creation
of the mesh is the polynomial degree n used to discretize the wave field. The
following heuristic rule has emerged to select n for an unstructured mesh of a
heterogeneous medium: if n < 4 the inaccuracies are similar to the standard
FEM, while if n > 10 the accuracy improves but the numerical cost of the sim-
ulation becomes prohibitive. The choice of n is related to the grid spacing Δh:
in order to resolve the wave field to a shortest period T0, the number of points
per wavelength λ should be equal or greater than 5, leading to the constraint
expressed in Eq. 2. If n = 4, then Δh is roughly equal to λ. We note that,
for the same accuracy, a classical low-degree FEM requires a higher number
of elements. Since the material properties are stored for each GLL point and
can vary inside an element, we are able to interpolate the geological inter-
faces that our mesh is not able to follow. Nevertheless, this is an undesirable
staircase sampling of the model, which introduces non-physical diffractions.
Therefore, it is necessary that the mesh honors the major seismological con-
trasts. Furthermore, when a discontinuity is honored, the elements across the
interface share some nodes, which will have the properties of the material
below the discontinuity in one case, and the proprieties of the material above
the discontinuity in the other case. Thus, the actual behavior of the seismic
waves at the geological interface is perfectly mimicked in a way that cannot
be achieved by an interpolation solely based upon Lagrange polynomials and
the GLL quadrature.

Another constraint on the design of the mesh is the stability condition im-
posed by the adoption of an explicit conditionally stable time scheme. For a
given mesh, there is an upper limit on the time step above which the calcula-
tions are unstable. We define the Courant stability number of the time scheme
as C = Δt(v/Δh)max, where Δt is the time step and (v/Δh)max denotes the
maximum ratio of the compressional-wave speed and the grid spacing. The
Courant stability condition ensures that calculations are stable if the Courant
number is not higher than an upper limit Cmax [4], providing a condition that
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determines the time step Δt (Eq. 3). Again, an heuristic rule suggests that
Cmax is roughly equal 0.3–0.4 for a deformed and heterogeneous mesh [12].

Like any technique based upon an unstructured deformed mesh, the SEM
requires a smooth variation of the Jacobian and an acceptable distortion of the
elements. Usually, to produce an acceptable accuracy the maximum equiangle
skewness should not be greater than 0.5, although empirical tests show that
s < 0.8 can sometimes be acceptable (Eq. 4) [12].

To sum up, spectral-element simulations require an unstructured all-
hexahedral conforming mesh subject to the following heuristic constraints:

Δh = vmin T0
n + 1
f(n)

, (2)

Δt < Cmax
vmin

vmax
T0

n + 1
f(n)

, (3)

s < 0.8, (4)

where vmax and vmin are the maximum and minimum seismic wave speeds in
the element, Cmax is the Courant constant discussed above, T0 is the shortest
period that we seek to resolve, and f(n) is an empirical function related to
the number of points per wavelength and the polynomial degree n; for n = 4
f(n) = 5.

The mesh should have a similar number of grid points per wavelength
throughout the entire model (i.e., the same numerical resolution everywhere),
and since seismic wave speeds vary inside the volume, the mesh should have
a variable element density, in accordance with Eq. 1. Wave speeds increase
with depth in a typical geological model, so that the mesh should be denser
near the surface and close to low wave-speed regions, such as an alluvial
basin. In elements located at the top surface, vmin is the surface-wave speed,
which controls the resolution of the mesh. Inside the volume it is the shear
waves that have the slowest speed and thus determine Δh. From Eq. 3, we
note that the smaller the grid spacing, the smaller the time step needed to
obtain numerical stability, at the expense of computational cost. Therefore,
Δh should be carefully evaluated in order to optimize numerical efficiency
and accurate geometrical representation of the model. In the current SEM
implementation, the time step is constant for the whole model. It is evident
that a mesh that coarsens with depth accommodates a larger time step than
a mesh with a constant element size throughout the entire volume, leading to
a significant saving in computational cost.

Finally, one additional difficulty is the enormous number of elements that
a typical seismic wave propagation simulation requires, ranging from hun-
dreds of thousands of elements for local-scale simulations with low-frequency
content, to tens of millions of elements for regional-scale simulations or for
a high-frequency local-scale simulation. This implies that we need a parallel
computational approach not only for the simulation of seismic wave propaga-
tion, but also for the mesh generation process.
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The package of choice for our simulations is SPECFEM3D (geodynamics.org),
which simulates global, regional (continental-scale) and local seismic wave
propagation. Effects due to lateral variations in compressional-wave speed,
shear-wave speed, density, a 3-D crustal model, ellipticity, topography and
bathymetry, the oceans, rotation, and self-gravitation are all included, as well
as full 21-parameter anisotropy and lateral variations in attenuation. We also
present some SEM results obtained based upon the GeoELSE software pack-
age [21]. This SEM implementation is more suited for local- or small-scale
simulations of seismic wave propagation (typically the goal is the study of
soil-structure interaction problems). The main features of this kernel are the
capability of 1) dealing with externally created 3D unstructured meshes, 2)
handling the partitioning and load balancing of the computational domain by
incorporating the METIS software library [13, 21], 3) implementing complex
constitutive behavior [6] and 4) communicating with other codes through a
sub-structuring interface based upon a domain reduction method [7].

Mesh examples

In this section we present some examples of unstructured hexahedral meshes
that have been developed for simulations with SPECFEM3D.

The SPECFEM3D GLOBE software package has been created primarily
to simulate 3D seismic wave propagation on a global scale. For this purpose,
a unique optimized mesh has been generated based upon a cubed sphere de-
composition [17]. The details are described in [12]. Here we note that the
need to densify the mesh close to the surface has been resolved by introduc-
ing doubling layers. The mesh honors topography and bathymetry and the
major internal discontinuities, but not the Moho (the bottom of the Earth’s
crust) and the intra-crustal interfaces, which are interpolated based upon the
Lagrange interpolation. This approximation is justified since the shapes of
the Moho and the intra-crustal interfaces are insufficiently known to support
the increase in elements that a full description of these boundaries would re-
quire. The mesh adequately resolves broadband data with periods down to
3.5 seconds on modern computers [12]. As an example, for a simulation exe-
cuted on the Japanese Earth Simulator (JAMSTEC), the mesh was composed
of 206 million hexahedral elements, corresponding to 36.6 billion degrees of
freedom.

More critical from the point of view of mesh creation is the applica-
tion of the SEM to regional or local problems, especially if we are inter-
ested in wave propagation with periods below 1 second. The software pack-
age SPECFEM3D BASIN simulates seismic wave propagation in sedimentary
basins, attempting to take into account the full complexity of these models.
The solver is general and can be used to simulate seismic wave propagation
on regional or local scales, but the mesh generator is currently specifically
written for Southern California [11]. The mesh that honors the Moho, surface
topography, and the deeper parts of the basement of the Los Angeles and Ven-
tura sedimentary basins. It is coarsened twice with depth: first below the low
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wave-speed layer, and then below the basement. The mechanical proprieties
of the volume are stored at each GLL node, taking into account the 3D South-
ern California seismic model. The mesh contains approximately 700 thousand
spectral elements (corresponding to 136 million degrees of freedom). The min-
imum resolved period of the seismic waves is roughly 2 seconds [11]. The mesh
is used routinely to simulate earthquakes with a magnitude greater than 3.5
in Southern California. At periods of about 4 seconds and longer, the resulting
simulated wave motion closely matches the data recorded at the stations of
the Southern California Seismic Network. Animations of seismic wave propa-
gation are posted in near real-time at shakemovie.caltech.edu. If we want
to analyze seismic wave propagation at shorter periods, we need to refine the
mesh and constrain the mesh to honor the shape of the shallow parts of the
basins, which is currently not done. Furthermore, the mesher is designed for
this specific region. Unfortunately, generalizing the adopted meshing proce-
dure to other geographical areas requires experience, internal modification of
the code, and a significant amount of time.

For example, the SPECFEM3D BASIN mesh generator was modified by
[14] to produce a mesh for the Taipei basin (Taiwan). This work represents
the state of the art for the SEM meshing process. The SPECFEM3D BASIN
mesher was modified to take into account the notable topography around
Taipei city and the complex geometry of the underlying basin. Three new
control surfaces were introduced at various depths and one new doubling layer
was added in order to honor the main geological features of the region. The top
of the model is controlled by surface topography based upon a detailed Digital
Elevation Model. Just below the surface, a buffer layer is used to accommodate
mesh distortions induced by the steep topography. This is critical to ensure
the accurate and stable accommodation of the free surface. This layer also
defines the top of the first mesh doubling, needed to take into account the
low seismic wave speeds inside the basin. The shallow sedimentary basin is
introduced between the surface topography and the buffer layer. Seismic wave
speeds in the basin are quite low, with a sharp contrast between the basin
and the surrounding basement. Compared to the Los Angeles basin, the Taipei
basin is relatively small and shallow. The meshing strategy of [11] would result
in a basement layer honoring only a small portion of the deepest part of the
basin, and most of the basin boundaries would be not constrained by the
mesh. To overcome these limitations, the nodes were empirically adjusted close
to the sedimentary basin to redefine the basin boundary mesh [14]. Several
additional empirical criteria were used to define how and where to move the
nodes, leading to a stable and accurate mesh implementation. The resulting
mesh is composed of 4.5 million spectral elements and 900 million degrees
of freedom, and it is adequate for periods down to 1 second. As in the Los
Angeles basin example, we note that this meshing strategy is ad-hoc for this
particular application. Furthermore, the size of the hexahedra on the surface
is controlled by the speed of the surface waves inside the basin, leading to
an oversampled mesh in the surrounding regions (i.e., an enormous number
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of unnecessary elements, with a serious impact on the computational cost of
the simulation). Finally, empirical adjustment of the nodes close to the basin
basement was an attainable solution for the Taipei basin, but this approach
cannot be generalized.

Meshing in parallel

The meshes discussed in the previous section are simply too large to be built
on a single processor or even on a large shared memory machine: they require
clusters or other parallel computers with distributed memory. The approach in
SPECFEM3D is to partition the model into one mesh slice for each available
CPU. Mesh generation and the corresponding wave propagation simulation
are accomplished in parallel, the latter requiring only one communication
phase between shared slice interfaces at each simulation time step. Since the
communication map is constant throughout the simulation, it is built once
and for all at the end of the mesh generation phase. The challenge is to load-
balance the mesh, i.e., to make sure that each mesh slice contains roughly the
same number of spectral-elements as any other mesh slice. This further limits
the flexibility of the mesher, and adds further complexity to the procedure.

3 New meshing strategies: CUBIT

The aim of this article is to show examples of new approaches to the mesh-
ing process by means of the CUBIT mesh generation tool kit from Sandia
National Laboratories (CUBIT.sandia.gov), with as an ultimate goal a more
general parallel mesh generator for SPECFEM3D BASIN. From the overview
in the previous section it is clear that we are looking for software that has the
following attributes: 1) the ability to accommodate general geological models,
2) minimal user intervention, 3) high resolution, 4) conforming, unstructured
hexahedral elements, 5) a parallel, load-balanced implementation. The ex-
perience gained by the authors for various meshing problems [21] suggests
that CUBIT comes very close to fulfilling these requirements. Although it
currently lacks parallel capabilities, it incorporates a set of powerful and ad-
vanced meshing schemes developed to automatically handle the unstructured
meshing problem. However, it is worth noting that meshing a large complex
domain, such as any geological model, does not seem feasible with a desirable
“single-button” procedure, due to the shape of the interfaces, the wide range
of element sizes, and the broad range of possible geological models. A starting
point would be to mesh in a parallel and automated way some basic classes of
problems that are important in seismology. For example, a layer-cake volume
combined with a shallow sedimentary basin.

3.1 Layer-cake geological volumes

The first step in interfacing CUBIT with the SPECFEM3D workflow is to
reproduce the mesh that the current mesher creates. Since SPECFEM3D is
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written in Fortran90, we have developed a Fortran code that takes advan-
tage of the journal scripting capabilities of CUBIT. The adopted strategy
is valid for all the geological models that can be described by a layer-cake
volume, consisting of a stack of non-degenerate heterogeneous quasi-parallel
horizontal layers. The volume is split into rectangular slices of equal size,
one slice for each processor following the original MPI map of SPECFEM3D.
We use a serial Fortran routine to build a journal file for each slice, creating
and storing all the commands that drive the meshing process inside CUBIT.
Schematically, we can summarize each journal file in five steps: 1) creation
of the geological geometry by means of a bottom-up approach (i.e., vertices
→ splines → surfaces → volumes) and geometry healing, 2) definition of the
meshing intervals along the curves based upon Eqs. 2 and 3, 3) definition
of the meshing schemes and meshing, 4) refinement and smoothness, and 5)
blocks and sidesets definition and export (Figure 1). One of the main advan-
tages of using CUBIT is that the entire process can be fairly well automated
both for mesh creation and quality checking. The user is only asked to pro-
vide the shape of the topographic and geological surfaces and a good choice
of intervals based upon Eqs. 2 and 3. Furthermore, it is possible to add or
subtract geological discontinuities and refinement layers, and to correct mesh
details in an easier way than in the current workflow. Unfortunately, some
constraints on the meshing scheme are needed. As we will see later, due to
the conformity requirements for the whole mesh and at the MPI interfaces
(i.e., the surfaces that are shared by two adjacent slices), the vertical surfaces
must be structured, while the horizontal surfaces can be meshed with struc-
tured or unstructured schemes. The so-constructed volume has a 2.5D logical
symmetry, therefore, the sweep algorithm [19] can be directly applied without
any further decomposition. As explained in the previous section, generally the
profiles of seismic wave speeds demand a mesh coarsening with depth. Since
the mesh resulting from the approach described above is structured along
the vertical direction, the only way to produce a vertical densification of el-
ements is the refinement algorithm included in CUBIT [5], which produces
a transition between 1 to 27 hexahedra, tripling the elements along a linear
direction in only one hex sheet 1b. It is more efficient than the refinement
used in [11] (i.e., a transition from 1 element to 8 in 2 hex sheets) and it is
perfect for a sharp high-contrast in seismic wave speeds. Nevertheless, where
the variation of seismic wave speeds is smoother, the higher transition ratio
in CUBIT’s refinement produces a larger difference between the number of
points per wavelength across the mesh (i.e., an unevenly sampled mesh). For
this reason, the possibility of introducing a refinement with a lower transition
ratio is under development. In this respect, let us mention that a refinement
with linear ratio of 2, gping from two elements to four in one sheet has suc-
cessfully been implemented in SPECFEM3D GLOBE V4.0. After the creation
of the journal files, a second Fortran routine provides the MPI environment
needed to build the mesh in parallel. CUBIT is executed on each processor
(slice) and it plays back the related script file, meshing its portion of vol-
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ume. A quality analysis of the skewness is then performed. Since each slice is
meshed independently, we carefully check that each corresponding node in the
surfaces shared by two adjacent independent slices has the same coordinates.
The “refined-structured” scheme imposed in the vertical direction guarantees
that the number of elements in each surface is the same; nevertheless, the
possibility of a discrepancy in location between two corresponding nodes is
not negligible, due to the applied smoothness algorithm and the influence of
the background elements. The routine communicates the nodes to the adja-
cent MPI slice following the map in Figure 1c. If the nodes in the slices show
a numerically significant location discrepancy compared to the correspond-
ing neighboring nodes, they are adjusted accordingly. Then, the GLL points
are evaluated for each element and the material proprieties are assigned. The
GLL node numbering follows the same procedure as in [11]. Consequently, the
resulting GLL mesh can be written in order to follow the format required by
the SPECFEM BASIN solver, so that simulation can be performed directly.

(a) (b) (c)

CPU0 CPU1 CPU2

CPU3 CPU4 CPU5

CPU6 CPU7 CPU8

Fig. 1. Basic sketch for the mesh creation of a layer-cake geological model: (a)
Step 1 of the strategy: creation of the geological geometry by means of a bottom-
up approach. (b) Final result with a detailed zoom showing the tripling refinement
layer in the upper part of the model. (c) The routine communicates the nodes to
the adjacent MPI slices (up and right) following the map

Benchmark

In order to investigate the impact on the simulations of the coupling between
SPECFEM3D and CUBIT in terms of both numerical dispersion and non-
physical diffractions, we have performed some benchmarks for seismic wave
propagation associated with a moderate earthquake using meshes produced
by CUBIT and by the current SPECFEM3D BASIN mesh generator. Table
1 summarizes the various benchmarks, which have been performed on 64 pro-
cessors of CITERRA (a high-performance computing cluster in the Division
of Geological & Planetary Sciences at Caltech [3]). The meshed volume covers
part of the Taipei basin mesh described in Section 2.
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Table 1. Summary of performed benchmarks

ID model mesh differences

1 homogenous regular mesh no
2 homogenous 1 refinement no
3 2 heterogeneous layers 1 refinement no
4 homogenous regular mesh & topography negligible
5 2 layer & basin 2 refinement & topography see Figure 2

Fig. 2. Taipei basin CUBIT mesh used in the benchmark Test 5. Comparison
between two seismograms obtained through two simulations of the seismic wave
propagation produced by a M 6 earthquake (star): one simulation is performed with
the mesh obtained by the current SPECFEM3D BASIN mesher (dotted line) and
one with the mesh created by CUBIT (solid line). The seismogram are recorded on
bedrock (black circle) and soft soil basin deposits.

The goal of these benchmarks is not only to test the MPI communica-
tion capabilities of SPECFEM3D CUBIT, but also to provide information
about the impact of the tripling refinement layers and the topography on
the quality of the simulation. Tests 1–3 shows that there is no significant
impact due to the distorted elements in the refinement layer (smax = 0.63).
Test 4 indicates that negligible differences in the seismograms are due to the
different spline representation of the topography (Figure 1a). In Test 5 we
applied the procedure for the Los Angeles basin [11] to the Taipei basin. The
mesh honors the Moho interface, the topography and the deeper parts of the
basin. The outcrop and the outline of the basin are interpolated by the La-
grange polynomials. Due to the different transition ratios for the refinement in
SPECFEM3D BASIN and SPECFEM3D CUBIT, the resolution on the sur-
face is better for SPECFEM3D CUBIT (70 m vs 80 m). As shown in Figure
1b, if we consider the synthetic seismograms for a station on the bedrock,
the two seismograms match almost perfectly, despite the different sampling.
However, if we consider a station in the basin, some differences appear due
to the interpolation of the discontinuity. Since no analytical solution exists
for such a 3D seismological model, it is impossible to determine the seismo-
gram that is closer to the exact solution of the problem, therefore we can only
say that the results are globally in agreement for seismic waves with wave-
lengths greater that the dimension of the basin outcrop. Nevertheless, in order
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to resolve shorter wavelengths we would need a mesh that would honor the
boundary of the basin better.

Campi Flegrei Caldera

The first application of SPECFEM3D CUBIT is to simulate seismic wave
propagation in the Campi Flegrei caldera (Italy). It is an active 13-km wide
quaternary volcanic caldera whose history is dominated by two eruptions that
produced widespread ash-flow deposits about 34,000 years and 12,000 years
ago. Intense activity has been recorded, although it is limited to small erup-
tions and dramatic uplift and subsidence of the terrain. Particularly notewor-
thy is the subsidence episode of 1982–1984 and the contemporaneous seismic
crisis. The caldera is located just a few kilometers west of the city of Naples.
Because of the high population density, it is considered a highly dangerous
volcanic area and a challenging civil protection problem faced by authorities
and scientists in case of imminent eruption.

Volcanic structures represent a challenge for seismic wave simulations due
to the high level of heterogeneity and topographic variations, and the pres-
ence of fractures, magmatic intrusions, and low wave-speed regions. For our
simulation, we adopted a 3D model for Campi Flegrei [18], composed of 3
layers with a P-wave speed ranging from 2.7 to 6.5 km/s. The interfaces have
a resolution of 250 m, while the topography is a based upon a 60 m Digital
Elevation Model. The dimensions of the volume are 40 km×40 km×9 km.
Both the mesh generation and the simulation are performed on 256 proces-
sors of CITERRA. The mesh contains 6.2 million hexahedral elements and
1.2 billion degrees of freedom. The resolution at the surface is 60 m and the
mesh is numerically accurate down to the maximum frequency content of the
seismic source (6 Hz). The mesh is created in 5 min of user-time: 60% of this
time is dedicated to geometry creation, and only 20% to evaluation at the
GLL points and assignment of material properties. Figure 3 shows the mesh
and synthetic seismograms with a duration of 20 s for the main seismic event
of the 1983 caldera unrest.

In summary, we have developed a parallel, semiautomatic mesher for a
general geological layer-cake structure, capable of accommodating surface to-
pography and the main internal discontinuities. The user provides only the
shapes of the interfaces and the desired numerical resolution (balanced against
the time step, i.e., against the numerical cost). The mesher includes some For-
tran routines taken from the SPECFEM3D BASIN solver and which allow the
execution of CUBIT in an MPI environment. The main limitation is due to
the requirement that each slice has the exact same number of hexahedra. It is
likely that in the next version of the solver this limitation will be overcome,
opening new possibilities for simulating seismic wave propagation in complex
geological volumes. The ultimate goal is to mesh sedimentary basins fairly
automatically. Another considerable limitation of this meshing strategy is the
use of Fortran as the language to create the journal files, an approach that does
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Fig. 3. CUBIT Mesh adopeted for the simulation on Campi Flegrei caldera. The
seismograms show 20 s of ground motion associated with the main event of the 1982–
84 crisis. The mesh is composed of more than six million elements and is accurate
for the propagation of seismic waves with frequencies up to 6 Hz. The close up
highlights the single refinement layer.

not provide the possibility to “interact” with the mesh during its creation. A
significant step towards major flexibility is using the Python Interface, which
is contained in the CUBIT package and provide the user with access to CUBIT
commands from a python program. To take advantage of this versatility, we
have developed some Python routines wrapping the fortran codes. In this case,
the MPI environment is provided by PyMPI, a parallel interpreter of Python
[16]. First, we have reproduced the same kinds of meshes for the layer-cake
model class that we have presented in this subsection. The flexibility of CU-
BIT Python Interface enables us to handle fairly automatically more complex
cases, such as sedimentatary basins.

3.2 Sedimentary basins

Our interest in modelling alluvial basins is related to the seismic properties of
these regions. Since they involve high wave-speed contrasts between alluvial
deposits and bedrock, seismic waves are trapped inside the basin, producing
reverberations that are stronger and longer than in the surrounding areas,
consequently involving higher seismic hazard.
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In this section we introduce a serial CUBIT meshing strategy for basins.
The technique is based upon two standard steps: 1) webcut the entire volume
in small slices, and 2) mesh each slice with a standard scheme (e.g., the pave
meshing scheme applied on one of the surfaces and swept along towards the
opposing surface). Since the entire process is executed on one processor, we do
not have to take extra care to check the conformity of the mesh. This technique
allows us to decompose the basin into hexahedra, honoring the geometrical
interfaces, but worsens the quality of the resulting mesh with respect to the
strategy developed in the previous section.

As an example, we consider a mesh of the Grenoble valley (France) in
the framework of a numerical benchmark of 3D ground motion simulations
(EGS06, [22]). The webcutting decomposition is performed by creating a tran-
sition belt of slices around the outline of the basin, both externally and in-
ternally to the basin (Figure 4). These transition zones should accommodate
any quality problems that arise after the refinement of the elements inside
the basin. The resulting mesh is composed of 220 thousand elements with a
resolution of 21 m inside the valley, and up to 900 m in the bedrock. The mesh
is designed to propagate seismic waves accurately up to frequencies of approx-
imately 3 Hz. The last step involves partitioning the global mesh in order to
assign the corresponding part of the mesh to each processor for seismic wave
propagation. The velocity snapshots shown in Figure 4 are produced by the
spectral-element software package GeoELSE [21], which resolves the problem
of partitioning and load balancing by incorporating the METIS software li-
brary [13]. This task is completely independent of the meshing process. The
creation of the mesh requires detailed knowledge of CUBIT and its meshing
schemes. In particular, the webcut decomposition is a long and tedious step
that can take days. The entire process requires one or two weeks of dedicated
time for an experienced user.

This strategy forms the basis of an automated way to handle mesh gener-
ation for a sedimentary basin in parallel. The logical scheme of the problem is
depicted in Figure 5a. The procedure takes advantage of the Python Interface
to have access to CUBIT. The strategy is based upon the idea of creating a
so-called partitioner from a coarse mesh on the surface. This is the tool we will
use to decompose the model and create the MPI communication map between
the slices. To understand how the mesh is built in practice, we show the pro-
cedure for a conceptual model in Figure 5. Before proceeding with the actual
meshing process, the user should prepare in a general XYZ ASCII format: 1)
the topography (labeled S) and the interfaces of the layer-cake volume (one
of these is a surface that accommodates the deeper parts of the basin), 2)
the internal outline curve (labeled I) of the part of the basin that is honored,
and 3) the outline curve (labeled B) of the basin, surrounded by 4) a transi-
tion curve (labeled T) (Figure 5a). Let us emphasize that the creation of the
transition curve is the only intervention required from the user in this fairly
automatic process. Furthermore, the user can add to the process some per-
sonal commands by means of a standard CUBIT journal file in order to adapt
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Fig. 4. (a) 3D numerical model used for the simulations of ESG06 “Grenoble Bench-
mark” with the GeoELSE code. The computational domain is subdivided into small
chunks and each one is meshed starting from the alluvial basin down to the bedrock.
(b) Snapshots of the velocity component for the Strong case 1, ESG06 “Grenoble
Benchmark” [22].

the general case to a specific problem (e.g., the presence of a fault). Curves I
and T are projected and imprinted on surface S, which is subsequently parti-
tioned in three surfaces SI , SE , and ST . The first two, SI and SE , are meshed
with quadrilaterals using the pave scheme. The quad size is defined by the
user and is related to the number of available processors. Each quadrilateral
that shares at least one side with curves I and T is transformed into a curved
element as in 5b. The group of these elements is the partitioner; one proces-
sor is assigned to each quad and the MPI map, with all the communication
addresses, is created. In the MPI environment provided by PyMPI, each pro-
cessor webcuts the volume V with the assigned element of the partitioner and
keeps only its corresponding part, which it meshes independently following the
procedure described for the layer-cake model (Figure 5c). In accordance with
the MPI map, it sends (and receives) the position of the nodes on the lateral
surface at the neighboring slices, so that a conforming mesh can be assured by
the adjustment mentioned above. The hexahedral elements of the mesh that
are inside the basin are refined in accordance with the constraints imposed by
the wave speeds. Surface ST is created in order to facilitate horizontal refine-
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ments around the outline of the basin B. We construct this surface as a single
slice without any partitioning so that the entire transition refinement sheet
is built inside a single chunk (i.e., by a single processor). Consequently, we
can avoid propagating the information of the refinement to some independent
adjacent chunks, resulting in a higher quality mesh and a simpler MPI com-
munication map. The resulting mesh honors the deep sections and the outline
of the basin, concentrating horizontal refinement only where it is needed, thus
saving a huge number of elements. Nevertheless, with respect to the serial
procedure, the outcrop of the basin is generally not honored. This is possible
only if the outcropping angle is fairly constant (with respect to the hexahe-
dral dimensions of the simulation). On the contrary, if the outcropping angle
changes along curve B (as in the case of the Taipei basin), a better solution is
to use the spectral polynomial interpolation, since a robust fully 3D unstruc-
tured algorithm for hexahedra is still not available (the plastering meshing
scheme that is currently under development [20] should be very useful in this
context). Further study is required in order to understand when the interpo-
lation is acceptable. The Python code that drives the meshing process is also
applicable if more than one basin is present in the volume. Since each slice is
different both in terms of the number of elements and in terms of the number
of vertical side surfaces, the mesh is not well balanced. Therefore, before the
simulation of seismic wave propagation METIS/ParMETIS should be used
to partition the global graph, as is done in the GeoELSE package, thereby
producing a load-balanced mesh and minimizing MPI communications.

4 Conclusion

In the coming Petaflops era, the SEM should become a standard tool for the
study of seismic wave propagation, both for forward and inverse problems.
The more the power provided by computer clusters, the higher the resolution
that is available for the simulations. Consequently, the definition of a good
geological model and the creation of an all-hexahedral unstructured mesh
are critical. While a full 3D unstructured algorithm is still awaited, we have
presented some meshing examples for typical seismological problems, such as
layer-cake volumes and sedimentary basins. The adopted strategies are valid
for classes of models that have the same logical geometrical representation.
The procedures work automatically (or with minimal user intervention) em-
bedded in a parallel MPI environment, thereby easily creating unstructured
meshes with hundreds of millions of elements.
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Fig. 5. Mesh of a conceptual model composed of a basin embedded in a layer-
cake volume. For visual simplicity, we assume that all the surface are planar. (a)
The “ingredients” that the user should provide are: interfaces, outline of the basin,
internal outline corresponding to the part of the basin basement honored by the
mesh, and a transition curve. (b) The creation of the “partitioner”: from left to right,
1) the imprinting of the curves on the topography, 2) quad mesh of SE and SI , 3)
transformation of the quads into curved elements (we note that ST is a single slice),
4) the partitioner with respect of the mesh that should be meshed. (c) Each element
of the partitioner is assigne to a processor and it is used as tool for the webcut.
(d) The resulting mesh obtained reassembling the slices meshed by the independent
processors; note the refinement in both the vertical and horizontal directions. The
latter (lighter gray) is entirely included in the transition zone.



596 Emanuele Casarotti et al.

were performed on Caltechs Division of Geological & Planetary Sciences Dell
cluster.
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