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Summary. We study methods for recovering tensor metrics from given error esti-
mates and properties of meshes which are quasi-uniform in these metrics. We derive
optimal upper and lower bounds for the global error on these meshes. We demon-
strate with numerical experiments that the edge-based error estimates are preferable
for recovering anisotropic metrics than the conventional element-based errors esti-
mates.

1 Introduction

Challenging problems in predictive numerical simulation of complex systems
require solution of many coupled PDEs. This objective is difficult to achieve
even with modern parallel computers with thousand processors when the un-
derlying mesh is quasi-uniform. One of the possible solutions is to optimize
the computation mesh. The physically motivated optimization methods re-
quire error estimates and a space metric related to these estimates. In this
article, we show that the quasi-optimal meshes or equivalently the optimal
metric can be recovered from the edge-based error estimates.

The metric-based mesh adaptation is the most powerful tool for optimal
mesh generation. It has been studied in numerous articles and books (see,
e.g. [2, 7, 1, 6] and references therein). However, theoretical study of optimal
meshes is relatively new area of research [1, 13, 15, 4, 3, 8, 11]. An optimal
metric may be derived from a posteriori error estimates and/or solution fea-
tures. Also, metric modification is a simple way to control mesh properties.
Eigenvalues and eigenvectors of the tensor metric allow to control the shape
and orientation of simplexes. The impact of metric modification on error es-
timates has been studied in [15].

In this paper, we study piecewise constant metrics recovered from edge-
based error estimates and properties of meshes which are quasi-uniform in
these metrics. We prove that these meshes are quasi-optimal, in a sense that
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the global error is bounded from above and below by |Ω|2M N−1
T , where NT is

the number of simplexes and |Ω|M is the volume of computational domain in
metric M .

We study numerically three methods for recovering a continuous piece-
wise linear metric from given error estimates. In the first method, we take
edge-based error estimates and combine ideas from [14] and [1] to build an
anisotropic metrics. In the second method, we use again edge-based error es-
timates and the least square approach to build another anisotropic metric.
Recently, we found that the least square approach has been already employed
in [5] where a particular edge-based error estimates are derived. In our method,
supported by Theorem 1, we may use any edge-based error estimates which
makes it more general. Note that the metric generated with the least-square
approach results in less sharper estimates.

Our experience shows that simple methods like the least square approach,
applied to element-based error estimates, result frequently in isotropic metrics
even for anisotropic solutions. Therefore, in the third method, we use element-
based error estimates and the ZZ-interpolation method to generate a metric.
This metric in inherently isotropic and used only for comparison purposes.
We also show that there are cases when the element-based error estimates
provide no information about an anisotropic solution, while the edge-based
estimates allow to generate optimal anisotropic metrics.

The article outline is as follows. In Section 2, we recall basic concepts
of metric-based mesh adaption. In Section 3, we present the main result for
piecewise constant metrics. In Section 4, we consider methods for recovering
continuous metrics. In Section 5, we illustrate our findings with numerical
experiments.

2 Metric-based mesh generation

Let Ω be a polygonal domain in �2, and M(x) be a symmetric positive definite
2 × 2 matrix (tensor metric) defined for every x = (x1, x2) in Ω. In metric
M , the volume of a domain D ⊂ Ω and the length of a curve � are defined as
follows:

|D|M =
∫

D

√
det M(x) dx, |�|M =

∫ 1

0

√
(M(γ(t))γ(t), γ(t)) dt, (1)

where γ(t) : [0, 1] → �2 is a parametrization of �.
Let Ωh be a conformal triangular partition (triangulation) of Ω. There are

a number of ways to generate a triangulation which is quasi-uniform in metric
M(x) (see, for example, [7, 1]). One of the robust metric-based mesh genera-
tion methods uses a sequence of local mesh modifications [2, 1]. The list of mesh
modifications includes alternation of topology with node deletion/insertion,
edge swapping, and node movement. The topological operation is accepted if
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it increases a mesh quality which is a measure of mesh M -quasi-uniformity.
Different mesh qualities may be used [2, 1, 12, 9].

It has been shown in [1, 12, 13] that for a particular choice of metric M ,
the M -quasi-uniform meshes provide the same asymptotic reduction of the
piecewise linear interpolation error as the optimal mesh. The objective of this
paper is to discuss how such a metric may be generated based on robust and
reliable a posteriori error estimates.

3 A posteriori error estimates and mesh quasi-optimality

In this section we assume that a robust and reliable a posteriori error estimate
ηe to a true error ξe is assigned to every mesh edge e:

C1ξe ≤ ηe ≤ C2ξe (2)

and that constants C1, C2 do not depend on Ωh. The estimates of these type
are not popular in scientific computations since they measure error in unusual
way (on mesh edges). However, we show below that these estimates are more
preferable for building anisotropic meshes.

For every triangle Δ with edges e1, e2, e3, we define a constant (tensor)
metric MΔ which satisfies the following equations:

(MΔ ei, ei) = ηei
, i = 1, 2, 3. (3)

Hereafter, we use e both for a mesh edge and for a vector from one edge-end
point to the other. Formula (3) implies that entries of matrix

MΔ =
(

m11 m12

m12 m22

)
are the unknowns of the linear system:

(m11ei,x + m12ei,y) ei,x + (m12ei,x + m22ei,y) ei,y = ηei
, i = 1, 2, 3,

where ei = (ei,x, ei,y)T . This linear system is non-singular since its determi-
nant is nonzero and equals to 16|Δ|3 [14], where |Δ| denotes the area of Δ. Let
|MΔ| be the spectral module of MΔ. The metric M is defined as the piecewise
constant metric on Ωh with values |MΔ|.

For simplicity, we assume that det(MΔ) �= 0. Otherwise, we must introduce
a perturbation of zero eigenvalues of MΔ [1] and take it into account in the
analysis.

For every element Δ, we introduce the secondary error estimator:

χ2
Δ =

∑
e⊂∂Δ

η2
e

and the global error estimator
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χ2 =
1
3

∑
Δ⊂Ωh

χ2
Δ.

Using the definition of edge length in the constant metric |MΔ|,

|e|2
|MΔ|

= (|MΔ|e, e),

and the inequality
max
e⊂∂Δ

(MΔe, e)2 ≥ C|Δ|2
|MΔ|

,

proved in [4], we can estimate χ2
Δ from both sides:

χ2
Δ =

∑
e⊂∂Δ

(MΔ e, e)2 ≤
∑

e⊂∂Δ

(|MΔ| e, e)2 ≤ |∂Δ|4
|MΔ|

and
χ2

Δ =
∑

e⊂∂Δ

(MΔ e, e)2 ≥ max
e⊂∂Δ

(MΔ e, e)2 ≥ C|Δ|2
|MΔ|

.

Here |∂Δ||MΔ| is the perimeter of Δ measured in metric |MΔ|.
Assume that triangulation Ωh with NT triangles is M -quasi-uniform, i.e.,

for any Δ in Ωh we have

|∂Δ|2M � |Δ|M and |Δ|M � N−1
T |Ω|M .

Then
χ2 ≤

1
3

∑
Δ⊂Ωh

|∂Δ|4
|MΔ|

≤ C
∑

Δ⊂Ωh

|Δ|2
|MΔ|

≤ CN−1
T |Ω|2M

and
χ2 ≥ C

∑
Δ⊂Ωh

|Δ|2
|MΔ|

≥ CNT min
Δ⊂Ωh

|Δ|2
|MΔ|

≥ CN−1
T |Ω|2M .

We proved the following result.

Theorem 1. For any edge e, let ηe be a given a posteriori error estimator

satisfying (2). Let the piecewise constant metric M be defined by (3) and

|MΔ|. If Ωh is a M -quasi-uniform triangulation with NT triangles, then it is

quasi-optimal:

cN−1
T |Ω|2M ≤

∑
Δ⊂Ωh

∑
e⊂∂Δ

ξ2
e ≤ CN−1

T |Ω|2M

with constants c, C independent of NT and Ωh.

The theorem holds for any definition of error ξe. In reality, the sum of all
ξ2
e represents some norm of error, ‖u − uh‖

2
∗,Ω , where u is the exact solution,

and uh is its approximation. For instance, this is true if ξ2
e is proportional to

|σe| where σe is the union of triangles sharing e.
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The global error on the M -quasi-uniform mesh is also the sum of approxi-
mately equal element-based errors χ2

Δ ≈ |Δ|2
|MΔ|

. However, it is not clear how
to use only these element-based error estimates (without using η2

e) to recover
an anisotropic metric (see also discussion at the end of Section 4). Finally,
we emphasize that the N−1

T -asymptotic error reduction holds on anisotropic
meshes as long as |Ω|M is independent of NT .

To produce a quasi-optimal mesh, we suggest the following adaptive algo-
rithm.

Initialization Step. Generate an initial triangulation Ωh. Set χ = +∞. Choose
the final number NT of mesh elements.

Iterative Step.
1. Compute the approximate solution uh.
2. Compute the estimators ηe and χ. Stop, if χ is not reduced.
3. Otherwise, compute metric M from ηe.
4. Generate a M -quasi-uniform mesh Ω̃h with NT elements.
5. Set Ωh := Ω̃h and go to step 1.

This iterative method requires an initial mesh which may be arbitrary and
very coarse.

4 Recovery of a continuous metric

Our experience shows that continuous metrics are more beneficial in the adap-
tive metric-based generation. To this end, we suggest a simple technique to
generate a continuous piecewise linear metric M̂ first by recovering it at mesh
nodes and then by interpolating it linearly inside mesh elements.

We consider three methods to recover M̂ at mesh nodes. First, for a mesh
node ai we define the nodal tensor metric M̂i by taking |MΔ| from one of the
surrounding elements:

M̂i = arg max
|MΔ|,ai∈Δ

det (|MΔ|) . (4)

Second, for a mesh node ai, the nodal tensor metric M̂i is defined using
ηe on mesh edges e incident to ai. Let κi be the number of these edges. As in
(3), we would like to have

(M̂iej , ej) = ηej
, j = 1, . . . , κi. (5)

In algebraic terms (5) is a linear system

Am = b

where m ∈ �3 is the vector of unknown entries of matrix M̂i, and A ∈ �κi×3.
For κi > 3 this system may be overdetermined. In this case, we use the least
squares solution:
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m = argmin
m

‖Am − b‖2. (6)

We have learned recently that the least square techniques has been used in
[5]. The authors use the discrete solution and its gradient to generate vector
b. In our method, supported by Theorem 1, we may use any edge-based error
estimates which makes it more general.

Third, we recover a scalar (isotropic) metric at each triangle based on a
given element-based error estimate ηΔ:

MΔ = |Δ|−1ηΔI.

Let M̄ be a piecewise constant scalar metric composed of MΔ. Note that
arguments of Theorem 1 may be applied to M̄ -quasi-uniform triangulations
with NT elements if

C1ξΔ ≤ ηΔ ≤ C2ξΔ,

where ξΔ is the true element-based error. The definition (1) implies that
|Δ|2MΔ

= |Δ|2 det(M) = η2
Δ. Thus,∑

Δ⊂Ωh

ξ2
Δ �

∑
Δ⊂Ωh

η2
Δ =

∑
Δ⊂Ωh

|Δ|2MΔ
� N−1

T |Ω|2
M̄

.

However, these shape-regular meshes will be quasi-optimal if and only if
|Ω|M̄ � |Ω|M , that is, if the optimal mesh is shape-regular. For anisotropic
solutions, |Ω|M̄ will depend on the number of simplexes.

In order to define a nodal scalar (isotropic) metric from the element-based
metric M̄ , we consider triangles with a common mesh node ai and construct
the best (in terms of the least squares) linear function which approximates
given errors at triangle centers. The value of the linear function at node ai

defines the scalar metric M̂i. This type of interpolation is known as the ZZ-
interpolation method [16]. The use of scalar metrics represents a group of
methods which generate adaptive meshes using a size function.

Let us show that there are cases when the element-based error estimates
provide no information about solution anisotropy. Let u(x1, x2) = x2

1 and

ηΔ =
∫

Δ

(u − uI)2 dx

where uI is the continuous piecewise linear interpolant of u on a structured
triangular mesh. The triangular mesh is obtained from a square mesh by
dividing each square into two triangles. The direct calculations show that ηΔ

is the same for all elements. On the other hand, ηe = 0 on vertical edges which
indicates the direction of solution anisotropy. More complicated examples are
consider in the next section.



1B.4 Generation of Quasi-optimal Meshes 145

5 Numerical experiments

In this section we consider a model problem of piecewise linear interpolation of
an anisotropic function and three nodal metrics. For the first two metrics, we
assume that the edge-based error estimates ηe are given. The anisotropic met-
ric M̂ (1) is recovered by (3) and (4). The anisotropic metric M̂ (2) is recovered
by (5) and (6). The isotropic metric M̂ (3) is defined with the ZZ-interpolation
method using given element-based error estimates ηΔ.

To generate a M̂ -quasi-uniform mesh, we use the algorithms described in
articles [1, 10] and implemented in the software package ani2d (http://source-
forge.net/projects/ani2d). In all experiments, we start with a quasi-uniform
unstructured mesh with 2792 triangles. We request that the final adaptive
mesh must have 1000 triangles. Depending on the mesh quality, the final
number of elements in the quasi-optimal mesh may deviate from the requested
number [10]. In the experiments, the target mesh quality was 0.7 on a scale
from 0 to 1, where quality 1 corresponds to an ideal mesh.

Let us consider the function

u(x1, x2) = exp(2(xα
1 + xα

2 )), α > 0,

in the unit square. The function is constant along curves xα
1 +xα

2 = const and
becomes one-dimensional when α → 1. We expect that the optimal mesh be
shape-regular for α = 2 and strongly stretched for α = 1.01. For simplicity, we
choose the edge-based, ηe, and element-based, ηΔ, estimators as the properly
scaled exact interpolation errors:

η2
e = max

(x1,x2)∈e
|u − uI |

2|σe|, η2
Δ = max

(x1,x2)∈Δ
|u − uI |

2|Δ|.

We consider two cases, α = 1.01 (see Fig. 1) and α = 2 (see Fig. 2). For
both values of α, the adaptive iterative method converged in 2 iterations for all
metrics. According to Table 1, the tensor metrics results in sharper estimates
for the interpolation error. The mean interpolation error on the anisotropic
meshes in 10 times smaller then on the isotropic mesh. Fig. 2 shows that
the shape-regular quasi-optimal mesh corresponding to M̂ (1) is aligned better
with the function u.

Table 1. Mean interpolation errors for different metrics.

α metric M̂ (1) metric M̂ (2) metric M̂ (3)

2.00 1.48e-2 1.54e-2 3.38e-2
1.01 1.99e-3 2.08e-3 2.25e-2
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(a) (b)

(c) (d)

Fig. 1. Adaptive meshes for anisotropic function with α = 1.01: (a) Initial mesh

with 2792 triangles. (b) M̂ (1)-quasi-uniform mesh with 1042 triangles. (c) M̂ (2)-

quasi-uniform mesh with 1018 triangles. (d) M̂ (3)-quasi-uniform mesh with 1006
triangles.

Conclusion

We showed that the robust and reliable edge-based a posteriori error estimates
may be used for generation of quasi-optimal (possibly anisotropic) meshes. We
considered three methods for recovering a continuous piecewise linear tensor
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(a) (b)

Fig. 2. Adaptive meshes for isotropic function with α = 2: (a) M̂ (2)-quasi-uniform

mesh with 1073 triangles. (d) M̂ (3)-quasi-uniform mesh with 941 triangles.

metric and demonstrated with numerical experiments efficiency of two of them
for generating meshes which minimize the interpolation error.
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