
1A.3

SVR: Practical Engineering of a Fast 3D Meshing
Algorithm�

Umut A. Acar1, Benoı̂t Hudson2, Gary L. Miller2, and Todd Phillips2

1 Toyota Technological Institute
2 Carnegie Mellon University

Summary. The recent Sparse Voronoi Refinement (SVR) Algorithm for mesh generation has
the fastest theoretical bounds for runtime and memory usage. We present a robust practical
software implementation of the SVR for meshing a piecewise linear complex in 3 dimensions.
Our software is competitive in runtime with state of the art freely available packages on generic
inputs, and on pathological worse cases inputs, we show SVR indeed leverages its theoretical
guarantees to produce vastly superior runtime and memory usage. The theoretical algorithm
description of SVR leaves open several data structure design options, especially with regard
to point location strategies. We show that proper strategic choices can greatly effect constant
factors involved in runtime.

1 Introduction
At last year’s IMR conference we introduced a new meshing algorithm, Sparse
Voronoi Refinement (SVR), which provided the typical guarantees for theoretical
meshing algorithms, along with an unusual one that the algorithm ran in near-linear
time [HMP06]. The goal in designing SVR was to create a meshing algorithm that
was similar in implementation and style to many widely used meshing algorithms,
but with the added benefit of very strong worst-case bounds on the runtime com-
plexity and space usage. An additional achievement of SVR is that the algorithm can
work in any fixed dimension d. More recently, we proved that the algorithm can be
run in parallel, and we showed that the the Li-Teng sliver removal algorithm could
easily be incorporated into the SVR framework [LT01, HMP07].

The main goals of the present work are twofold. First, to show preliminary re-
sults on a new implementation of the sequential version of this algorithm. Second, to
discuss new data structures to empirically improve the run time of the point location
parts of the algorithm, which may be of more generally applicable use. We focus on
point location because both in theory and practice, the dominant cost of SVR and
most other algorithms for meshing is the point location cost.

� This work was supported in part by the National Science Foundation under grants CCR-
0122581 and Intel faculty gift.

46 Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips

Fig. 1. Left: A radius/edge quality 2.0 mesh of an assemblage of four hexagonal dumbbells
meshed by our software. Each dumbbell is described as a set of facets defining the two ends
and the connecting rod. The output is a set of tetrahedra that fill space and the barbells while
resolving the input. For visual effect we removed those tetrahedra in a standard postprocessing
step. Right: detail on the nearest approach of three of the dumbbells. Notice that the tetrahedra
grade smoothly away from the pinch point.

We compare SVR with two related codes: Pyramid by Shewchuk [She05a,
She98], which is available by request to him; and TetGen by Si [Si07, Si06],
which is available online. Our implementation of SVR compares very favorably
to them, generating meshes that are of similar quality and size in less time. Fur-
thermore, on pathological examples, prior codes run out of memory even at small
input sizes whereas SVR sees no difficulty. Our implementation is available at
http://www.sparse-meshing.com, free for the research community.

SVR produces a quality conforming mesh that is size-optimal in the number
of vertices [HMP06]. One important concern in quality meshing is how we define
the quality of tetrahedron. We use two separate measures of element quality in the
algorithm and code. Both rely on the circumball of a tetrahedron, the smallest ball
containing the tetrahedron’s vertices. We denote it’s radius (the circumradius) as
R. The first quality measure we use is the radius-edge ratio of a tetrahedron: we
we compare the circumradius R versus the shortest edge e of the tet. In a good-
radius-edge tetrahedron, R/e must be less than some value ρ. In three dimensions,
this metric is somewhat lacking, as it can admit poorly-shaped slivers. Radius-edge
is still useful however, since in a good radius-edge mesh, every vertex has bounded
degree [MTTW99].

The other quality measure is the radius/radius ratio: we compare the circumradius
R to the radius r of the largest ball inscribed by the simplex. The ratio R/r of a good
quality element must be less than some value σ. This quality criterion does not admit
slivers, and is thus the one desired for output.

In the finite element method, an element with good radius/radius ratio is known to
be numerically good under standard assumptions. The reason we use both measures
is that is it not well understood how to avoid creating slivers during the algorithm

1A.3 SVR: A Practical Implementation 47

(though we do scour them from the final output). The SVR algorithm provably never
creates excessively bad radius-edge simplices even in the intermediate stages of the
algorithm.

Time and Space Usage: Our code takes as input a Piecewise Linear Complex
(PLC) [MTTW99]. Let n be the total number of input features (vertices, segments,
polygons, etc). Let L/s be the spread of the input, i.e. the ratio of the diameter of
the input space to the smallest pairwise distance between two disjoint features of the
PLC.

SVR has worst case runtime bounded by O(n log L/s+m), where m is the number
of output vertices. This runtime bound is a vast improvement over prior meshing
algorithms for three and higher dimensions. For almost all interesting inputs, this
bound is equivalent to O(n log n+m), which is optimal (using a sorting lower bound).
SVR also has optimal output-sensitive memory usage O(m), which means that even
on pathological inputs it can process moderately large inputs entirely in memory.

2 Related Work
There have been several different approaches to the meshing problem. The idea of
generating a mesh whose size is within a constant factor of optimal was first con-
sidered by Bern, Epstein, and Gilbert [BEG94] using a quadtree approach. A 3D
extension was given by Mitchell and Vavasis [MV00], who later released an imple-
mentation under the name of QMG [Vav00].

Chew introduced a 2D Delaunay refinement algorithm [Che89] and showed ter-
mination. The quality of the initial triangulation was improved by adding the cir-
cumcenters of poor quality triangles as extra vertices. This produced a mesh with no
small angles, but inserted many more new vertices than necessary. Ruppert [Rup95]
extended this idea of adding circumcenters for 2D meshing to produce a mesh that
was within a constant factor in size from the optimal and also handled line segments
as input features. Shewchuk implemented Ruppert’s algorithm in the very popular
Triangle code [She05b], which has since been extended with various enhancements
and remains actively maintained.

The extension of Ruppert’s algorithm to 3D has been ongoing research. Some
methods assume that that Ruppert’s local feature size function is given [MTTW99].
Others refine a bad radius-edge ratio mesh directly [She98, MPW02]. These meth-
ods by themselves do not give quality meshes because they include slivers; a large
number of other techniques have been concocted that aim to eliminate slivers while
only slightly (at most linearly) increasing the output size. A 3D version of Ruppert’s
algorithm in conjunction with a sliver-eliminating post-process produces a quality,
optimal-sized mesh. Shewchuk has implemented his higher-dimensional version of
Ruppert’s algorithm in Pyramid [She05a], but it has not yet achieved an official re-
lease and remains in alpha stage.

Of the many other algorithms for Delaunay refinement in 3D that have been pro-
posed [She98, MPW02, CP03, CD03], none except SVR have eluded nontrivial run-
time analysis. Trivial runtime bounds such as O(m3) be found in most cases. Simple
examples can usually give bad worst-case performance for naive implementations of

48 Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips

Simplified-SVR
1: while Volume Mesh is not Conforming do
2: Refine a non-conforming tet
3: while Volume Mesh is not of Quality ρ do
4: Refine a poor-quality tet
5: end while
6: end while

Refine
7: if FindWarpPoint then
8: Insert a vertex from some nearby feature
9: else if FindEncroached then

10: Recursively Refine all encroached lower-dimensional feature meshes
11: else
12: Add a circumcenter as a new vertex in this Mesh
13: end if

Fig. 2. A very loose description of a much simplified SVR. Most of the runtime work is spent
on point location in evaluating lines 7 and 9 (See Section 8). More detailed pseudo-code and
the full algorithm can be found in [HMP06].

these algorithms. As mentioned, they will all suffer from intermediate size Ω(n2) in
the worst case.

2.1 Optimal Time Meshing Algorithms

Finding refinement algorithms that have provably good run times has also been of
interest. Spielman, Teng, and Üngör [STÜ07] proved that Ruppert’s and Shewchuk’s
algorithms can be made to run in O(lg2 L/s) parallel steps. They did not, however,
prove a work bound. Miller [Mil04] provided the first sub-quadratic time bound in
2D with a sequential work bound of O((n lgΓ + m) lg m), where Γ is a localized
version of L/s (in particular, Γ ≤ L/s). In addition to an O(n lg L/s + m) sequential
runtime, the SVR algorithm has been shown to be parallelizable to run in O(lg L/s)
iterations with the same work [HMP07].

3 Overview of SVR
For a detailed description of SVR, refer to [HMP06]. Herein, we briefly review

SVR for the purpose of describing the implementation needs of the algorithm. Coarse
pseudocode for SVR is described Figure 2. The input is given as a piecewise linear
complex (polygonal faces, segments, and vertices), that we will refer to as a set of
features. Constraints on the input are described further in Section 4. Over the life of
the algorithm, SVR maintains a separate mesh for each feature. A three dimensional
volume mesh is maintained covering the entire domain.

In SVR, these feature meshes begin very coarsely, and initially do not conform
to the input at all. The meshes are then gradually refined for two reasons: to maintain
quality, and to eventually conform. Refinement is done by attempting to insert the
circumcenter of a poor quality tetrahedron or of a non-conforming tetrahedron. But
because the mesh does not yet conform, we may instead choose to Warp, and insert

1A.3 SVR: A Practical Implementation 49

a vertex from a nearby input feature instead of the circumcenter. We do this to make
sure that new points are not created to close to the features or close to input points.
Additionally, before the volume mesh can insert near a feature, we may first need to
refine the feature itself. This is accomplished by protecting the feature with protective
balls that cannot be entered by the volume mesh. If the volume mesh desires to
insert a circumcenter that encroaches upon a lower-dimensional protected ball, it first
yields to the lower-dimensional feature, and allows the latter to refine itself. After the
lower-dimensional feature has refined, the volume mesh may warp to the point that
was inserted into the lower-dimensional mesh. Facet meshes operate similarly with
respect to their bounding segments: if a facet mesh wishes to eliminate a bad triangle
(because it has poor quality, or because the volume mesh encroached upon it), it
attempts to insert the circumcenter of the triangle, possibly yielding to encroached
boundary segments and/or warping to points not yet resolved in the facet mesh. A
putative new circumcenter may encroach on many protective balls simultaneously; if
so, for good runtime we must make sure all the affected features refine themselves.

4 Input Format
The input format is that of Shewchuk’s Pyramid, which is the obvious extension of
the Triangle format to the third dimension: An input file starts with a header listing
how many inputs vertices there are, then lists their coordinates. If there are segments
to conform to, it then lists their number and describes each as a pair of vertex IDs.
Finally, if there are polygons, it lists their number and describes each as a list of seg-
ment IDs. Holes and concavities are automatically found and need not be mentioned
in the input.

For SVR to properly produce a quality mesh, users must somewhat restrict their
input. As usual, our mesher needs clean inputs: the code will report an error if a
polygon is not watertight, or if two polygons intersect each other geometrically but
no intersection is mentioned in the input. More importantly, the algorithm sometimes
also fails if two input polygons intersect at an angle less than 90◦, even on clean input:
the problem is that refinement on one of the faces may encroach on the other, which
may loop back to encroach on the former. We can tell the mesher not to refine an
element smaller than some minimum size, which will return us a mesh, albeit with
possibly some bad elements. It remains active research to solve these issues in a more
principled but practical manner.

Our runtime proofs also require additional properties of the polygonal features:
(1) polygons must be defined by only a constant-bounded number of points, (2) the
initial triangulation of each polygon must be of good quality, (3) the initial triangu-
lation must not self-encroach. Violating any of these requirements impinges upon
the runtime properties, but the code will still properly return an optimal-size, good-
quality mesh. Polygons with ni vertices on their boundary currently take time O(n2

i)
to preprocess; it would not be hard to reduce this to O(ni lg ni) time, though it seems
unnecessary for all inputs we have on hand since generally ni is on the order of 4–20.
The second and third condition are repaired automatically by adding more points to
the boundary and interior when creating the initial triangulation; this causes the code
to run only logarithmically slower than optimal.

50 Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips

Constant Constraints Default Value
Output Radius-Edge, ρ ρ > 2 2.0

Output Radius-Radius, σ σ >> 3 not set
Sliver Growth, B B > 2 3.0

Perturbed Insertion, δ 0 < δ < 1 0.1
Yielding Ratio, k 0 < k < 1 0.9

Fig. 3. Table of constants for SVR.

5 Algorithm Constants
Several constants for SVR are left to be chosen by the user. Figure 3 gives an
overview of these constants and their defaults in our implementation.

The first constant, ρ, determines the radius-edge quality bound on every element
in the final output mesh. For most numerical methods using the mesh, ρ will have
a strong effect on the quality and runtime of the method used, with a lower ρ (bet-
ter shaped elements) being preferred. Of course, driving ρ lower will necessarily
increase the number of elements output by any meshing software, SVR included.

Many numerical methods also require the elimination of slivers [ELM+00]. We
have extended SVR to eliminate extreme slivers using the Li Teng sliver removal al-
gorithm [LT01]. The algorithm randomly perturbs circumcenter insertions by a factor
of δ to ensure that any new slivers created must be larger by a factor of B, then re-
cursively works on the larger slivers. Eventually no larger slivers can be created, and
so the mesh is sliver-free. The constant σ gives an upper bound on the radius/radius
ratio of any output tetrahedron. Like all quality bounds, tightening σ (reducing it)
will increase output size. The published proofs [LT01, Li03] suggest the settings of δ
and B listed above; unfortunately, for σ they yield a gargantuan number. Therefore,
by default the sliver-removal code is off. However, the proof is known to be very
loose, and in practice we can eliminate much worse slivers than is provable. See the
experiments in Section 9.

5.1 Warping parameter

One of the more interesting constants to specify for SVR is the warping parameter,
k. This parameter controls the behavior of the warp operation: when we decide to
split a simplex s, we will warp to a point within distance k · R(s) of the center of s if
there is one. A higher value of k will more aggressively look for a vertex to warp to,
which intuitively would help reduce the output mesh size. However, a higher value
of k also worsens the intermediate quality bound, which allows high-degree vertices
and thus hurts runtime. This section discusses the tradeoff between k, runtime, and
output size, and aims to find a reasonable default setting for k.

First, in our original paper, we proved that if ρk3 > 2, our algorithm will termi-
nate with the aforementioned guarantees. This somewhat limits the user’s choice of
parameter settings. However, it is easy to show that we can internally use a ρ′ that
satisfies the requirement, and, once all points have been inserted into the mesh (and
therefore k is rendered irrelevant), we can improve the mesh quality up to ρ. In other
words, the user may ask for any k, and any ρ > 2.

1A.3 SVR: A Practical Implementation 51

Under this framework, we can then ask about the optimal setting of k in terms
of mesh output size, or in terms of runtime, leaving ρ fixed. We ran an experiment
on the point-cloud refinement code, tracking runtime and output size versus k. See
Figure 4. The main finding is that in practice, the output size is indeed quite strongly
affected by the value of k, whereas runtime is much less affected until k becomes
very close to 1. Based on these results, we set the default k value to 0.9 as being a
reasonable tradeoff between output size and runtime.

 0

 20000

 40000

 60000

 80000

 100000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
iz

e

 0

 1

 2

 3

 4

 5

 6

 7

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
n

ti
m

e

Fig. 4. Left: Number of vertices SVR outputs for the Stanford bunny, versus k. Right: Runtime
of SVR on the Stanford bunny in arbitrary units, versus k. Notice the tradeoff between mesh
size and runtime. Other natural and pathological examples showed similar tradeoffs.

Another experiment we ran was to see how to best choose the point to warp to.
When there are many choices, it may be that one is better than another. In particu-
lar, we expected that it would be best to choose the point closest to the prospective
Delaunay center among all available points to warp to; the intuition is that this is,
in a sense, the “median” and we are, in a sense, sorting. Whether this is a good idea
depends on the order in which valid warp points will be seen. In early implementa-
tions, the difference was substantial. However, in the current implementation, with
the Voronoi shelling approach described in Section 8.4, the first point we find is far
from any vertex, making it a good choice. Therefore, we currently report the first
point we can safely warp to.

6 Implementation in C++
We implemented our algorithm in C++, in the hopes of being most accessible to the
community, but still highly efficient. Almost all of the code is general-dimensional;
the exception is in the numerical predicates, where we use Shewchuk’s specific-
dimensional code [She97]. While the code is written in a general dimensional style,
we use the C++ template mechanism to choose the dimension at compile-time. That
is, an SVR<2> is a mesher in two dimensions, while an SVR<3> is in three dimen-
sions. This allows the compiler to unroll loops, perform constant propagation on the
dimension term, and otherwise optimize the code to achieve almost no overhead over
a specific-dimensional code. The data structures are accessible via an API; we expect

52 Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips

this will allow more easily experimenting with post-processes and variations on our
algorithm.

7 Mesh Data Structures
Using any reasonable data structures, SVR will be faster than its competitors on
pathological examples. However, to also be useful on more normal inputs, we must
be somewhat careful. We implemented SVR in a way that sharply separated the
implementation into four modules, so that we can easily change various pieces one
by one: (1) basic data structures and I/O, (2) the topological mesh structure; (3) the
geometry code and Delaunay structures; (4) the mesh refinement algorithm.

The basic data structures are essentially C++ Standard Templates Library (STL)
structures optimized for our usage. The STL and the Boost libraries are extremely
useful for quickly generating prototype code, but we have seen that many of their
structures are either too large or too slow for production usage in many cases. When
profiling indicated that STL libraries were limiting factors, we replaced them with
some of our own versions, in particular to have greater control over memory alloca-
tion.

For the topological structure, we currently use a standard pointer-based simplicial
complex (4 vertex pointers and 4 neighbour pointers per tetrahedron). Client code
can optionally attach additional data using a template argument; the type of vertices
is itself also specified by a template argument. Simplices are reference-counted to
avoid complications and memory bugs when simplices are destroyed yet remain in
the SVR work stack. Access is typically via a generic depth-first-search routine.

The API has changed little as we tried various types of structures; we therefore
predict that, with relatively little effort, we could scale our implementation to much
larger sizes than tested here simply by replacing the underlying structure with a com-
pressed mesh structure [Bla05]. The topological structure is also largely compatible
with the CGAL structures; one could write a thin adapter class to view one structure
as the other. We chose to write our own structure in order to have full control over
the implementation.

The Delaunay triangulation structure is a thin veneer over the simplicial com-
plex. SVR computes the circumcenter and circumradius of every simplex (to test for
quality), and does so repeatedly: simple empirical evidence shows about 10 times
per simplex in 3d. Therefore, we compute these values only once, and cache them as
data attached to each simplex. An LRU cache can easily be substituted for relatively
little runtime overhead to reduce the per-simplex memory usage; this will become
critical if we use a compressed mesh structure.

The geometric code is largely drawn from Shewchuk’s notes on geometric cal-
culations [She99] and from his public-domain library [She97, NBH01]. We use LA-
PACK for some calculations, but have found that for very low-dimensional opera-
tions, which dominate our geometric requirements, the cost of marshaling and un-
marshaling data between our code and LAPACK dwarfs the cost of the numerical
calculations, and it is thus advisable to write them by hand.

The point location structures of the mesher are the most performance-critical
ones; we describe them separately in great detail in Section 8.

1A.3 SVR: A Practical Implementation 53

8 Point Location Data Structure
A point location data for SVR provides a good deal of room for variation in imple-
mentation. SVR requires that every time a vertex is considered for addition into the
volume mesh, SVR locally searches for any lower dimensional feature meshes, so
that the volume mesh might conform to these instead. Additionally, SVR searches
for lower dimensional features that may need refinement before it can proceed with
this volume mesh insertion. Essentially, a correspondence must be maintained be-
tween the volume mesh and the feature meshes because they do not conform to one
another. In the following section, we describe implementing such a correspondence.

Recall that SVR runs in O(n lg L/s + m) time. The n lg L/s term is driven by the
cost of two operations: finding a point to warp to, and testing for encroachment. We
conflate these operations and call them both point location. The m term also includes
these operations, plus some other work. Therefore, point location is the leading term
in the asymptotics on most inputs, and even when it is not, it is a major constant
factor. Profiling information on various inputs verifies that this prediction holds in
practice in the current implementation: well over 20% of the runtime – and 33% of
the cache misses – are directly due to point location, even ignoring any ancillary costs
(malloc/free; memory overhead; cache evictions causing slowdowns elsewhere; etc).

The PLC input is described using a standard incidence poset: segments know
their endpoints and any internal vertices, polygons are described using a set of bound-
ary segments (and possible internal segments or vertices), etc. For simplicity, we
compute the transitive closure of the poset, linking facets to vertices, etc. The struc-
ture of this linking between meshes is shown in Figure 5.

To quickly handle point location queries, we need to keep track of intersections
between elements of one mesh and elements of the mesh of a lower-dimensional
feature (and vice-versa). The published SVR algorithm used the Voronoi cells of
the mesh vertices as elements, to make the proofs most succinct. Here we report
on the differences between several choices, all asymptotically equivalent but with
significant constant-factor differences.

We formalize this notion: we maintain a bipartite map between the abstract types
of an Upper container and a Lower cell. See Figure 6. At the moment, we only have
two Lower types: circumspheres (for features of dimension 1 and higher) and points
(for features of dimension 0). Points are of course merely special cases of sphere
with radius 0, but they are sufficiently special to merit distinct consideration. This
formalism involving Upper and Lower is likely to extend to more interesting inputs
such as curves.

The point location data structure will need to perform the following three opera-
tions quickly:

FindWarpPoint: Given a Delaunay simplex s in a mesh M, determine whether
there exists an point to be inserted in M (a child of M in the poset) that lies within
the warp ball B(c(s), k · R(s)).

FindEncroached: Given a point p chosen by FindWarpPoint for s, determine the
(possibly-empty) set of lower-dimensional protective balls bi that p encroaches – that
is, p lies in bi.

54 Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips

Fig. 5. The volume mesh at the top of the figure has features consisting of one facet, five
segments, and several input points. The point location structure must link all of the meshes
along the arrows shown. Note that these meshes may not all conform to each other; input
points or feature refinements may not be resolved in the volume mesh. Linking two meshes
involves tracking the intersections between every lower dimensional element and every higher
dimensional element.

Upper

Upper

Upper

Upper

Upper

Lower

Lower

Lower

Lower

Lower

Lower

Lower

Lower

Fig. 6. We maintain a map, tracking intersections between Upper containers and Lower cells.

Update: Given a point p chosen by FindWarpPoint in a mesh M, and given the
set of simplices before (C, the cavity) and after (S , the star) inserting p, update the
point-location structures.

1A.3 SVR: A Practical Implementation 55

We compare four different choices of Upper in the following subsections. We
have experimented with all four for maintaining the point location structure for
points. For maintaining protected balls, we so far have only used the first method;
trying other techniques remains future but high-priority work.

8.1 Circumballs as Upper

The easiest way to implement FindWarpPoint and FindEncroached is to use the cir-
cumball B(c(s),R(s)) of each simplex s as the Upper elements. Indeed, any point
that we may warp to is in B(c(s), k ·R(s)), a strict subset of the circumball. Similarly,
any lower-dimensional feature encroached by a point chosen by FindWarpPoint nec-
essarily intersects the circumball.

Update is only slightly more complicated: to compute the Lower s intersecting a
new simplex s, we must find every lower-dimensional protected ball that intersects
the circumball of s. It is a standard fact that the set of circumballs of the cavity C
(the simplices before inserting p), plus the neighbours CN of the cavity, covers the
set of new circumballs. Thus, we can compute the Lower s intersecting C ∪ CN and
for each new simplex, filter this set to compute those intersecting the circumball of
s.

8.2 Tetrahedra as Upper

When maintaining the uninserted points of a mesh, the approach in the prior section
stores a point repeatedly since the circumballs of the mesh intersect. If instead we
use the simplices directly, we avoid duplicates; this is the basis for in-simplex point
location being the most traditional kind.

The lack of overlap between regions greatly speeds up the update cost on con-
tained points: we can perform about half as many intersection queries on average
since we can shortcut execution at the first simplex of the star that matches the ver-
tex. Furthermore, the star and cavity cover the same area, so we need only relocate
the Lower s intersecting C, ignoring the neighbours. Finally, computing the set of
Lower vertices interesting C is easier since we need not eliminate duplicates.

The cost of this approach is that now in FindWarpPoint(s) we must find all the
simplices that intersect the circumball of s. There are only a constant number of
these, but finding them all is still expensive. Nevertheless, note that every simplex
ever created is involved in an update call, whereas only a small minority (empirically
about one in 18, in three dimensions) ever have FindWarpPoint called on them.

For maintaining lower-dimensional features, we do not gain the benefit of not
having duplicates, which makes this technique unlikely to be useful. For uninserted
points, however, this point location structure is substantially faster than in-sphere in
our experiments.

8.3 Voronoi Cells as Upper

Traditionally, the Delaunay triangulation is the most common structure to use for
point location, which made it the natural choice for the implementation. However,
determining whether a point p is owned by a simplex s is expensive: either an in-
sphere or an in-simplex test, both of which are essentially determinants of matrices
of rank d, which becomes a major cost in Update. Another choice is to use the dual

56 Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips

Voronoi diagram, as described in the original paper. A point p is in the Voronoi cell
of a mesh vertex v if v is the nearest neighbour to p. If we know the old Voronoi
cell in which p lies (call it V(v)), then updating after the insertion of one mesh ver-
tex v′ requires only two distance calculations: the distance |p − v| and the distance
|p − v′|. Furthermore, there are many fewer vertices than simplices, by a ratio of,
empirically, 1:6 in three dimensions (both in the experiments we ran, and in prior
reports [Bla05, e.g.]). Thus, the overhead of the lists is greatly reduced compared to
using the simplices as the basic objects, which becomes important near the end of
the algorithm.

Searching the Upper Voronoi cells for FindWarpPoint has a disadvantage: we
must search every Voronoi cell that intersects the warp ball. We can do this by search-
ing the set associated with every vertex on every simplex whose circumball intersects
the warp ball. In terms of implementation, this is only a slight increase in code com-
pared to using the interior of simplices; but this is a much larger area being searched,
so we may visit many more vertices that are not in the warp ball. In practice, we
found this technique to be equal in runtime to using simplices for point location,
although the memory usage is slightly reduced.

Beware of one pitfall when using Voronoi cells: Unlike simplices, vertices have
long lifetime. Therefore, if each vertex has its own memory pool for the list of unin-
serted points in its Voronoi cell – or uses the STL std::vector class, which never
shrinks –, vertices inserted early in the run of the algorithm will reserve a large
amount of memory even when they no longer need to track many vertices. This is
easily avoidable by actually releasing memory when it is no longer needed, or by
using a single memory pool shared among all vertices.

8.4 Shelled Voronoi Cells as Upper

When looking for a point to warp to, we take a Delaunay ball and shrink it by a
factor k. Therefore, any input point that is “near” a vertex need not be examined
at all. However, the previously-described approaches take no note of this. An easy
way to implement this is to store uninserted points in the Voronoi cells, as described
above, but within each Voronoi cell, bucket the points according to distance from
the Voronoi site – that is, into concentric shells of geometrically increasing radius
(see Figure 7). Upon a FindWarpPoint query, we ignore any bucket that lies entirely
outside the query region; similarly, on Update we do not try to reassign points in
buckets that are closer to the old vertex than to the new. Asymptotically speaking,
this converts O(lg L/s) distance calculations on an uninserted point chosen very late,
into O(1) distance calculations and O(lg L/s) divide-by-two operations. Indeed, in
practice we saw the total runtime of the algorithm fall by half when we implemented
shelling of Voronoi cells as compared to either Voronoi cells or in-simplex point
location.

8.5 Further Refinements

As noted earlier, using the Voronoi diagram has the disadvantage that uninserted
points rather far from the query ball can be accessed. Shelling does not reduce this
tendency: shelling only means that uninserted points very close to a vertex will be

1A.3 SVR: A Practical Implementation 57

Query Ball

Shelled Voronoi Cell

Fig. 7. Illustration of shelling and of a query on a shelled Voronoi cell. The shells are concen-
tric around the Voronoi site, with radius halving at each step toward the center. While all the
shells exist mathematically, in the implementation we only store those that include at least one
uninserted point. During FindWarpPoint, the uninserted point marked by an X is not visited
because the annulus that contains X does not intersect the query ball.

ignored. Another view of the problem is that we now understand well how to store
points near the mesh vertices, but the best strategy for storing point far from vertices
is not yet clear. One possibility is a hybrid, using shelling for points close to mesh
vertices, and in-sphere or in-simplex for points far from the vertices. Another pos-
sibility is to locate in the Voronoi cells of both the mesh vertices and the element
circumcenters.

We have identified three times when we can completely avoid calling FindWarp-
Point. Clearly, if there are no uninserted vertices remaining anywhere, we can sim-
ply skip the call. This occurs in about 10% of the insertions on the bunny dataset,
30% on the pathological input, and merely requires keeping a global or per-mesh
counter. If we are retrying an insertion that caused a small sliver, we know we will
not warp since the previous iteration would have warped if needed. How often this
occurs depends on the sliver parameters. Finally, when we insert a point due to a
crowded Steiner point, we can blindly insert any uninserted vertex in the Steiner
point’s Voronoi cell. This happens 5% percent of the time on the bunny dataset, al-
most never on the pathological input. Together, then, we see that about 15-30% of
split operations can avoid this call.

9 Experiments
We performed some experiments on our implementation to determine the runtime
and output size of our algorithm as compared to a few other equally-available codes.
The experiments are on point-cloud inputs: as of this writing, the point-cloud code
of both SVR and Pyramid is more mature than the feature-set code. We ran the ex-
periments on a desktop 3.2 GHz Pentium D with 2 GB RAM running Linux 2.6. We
compiled all applications using the gcc compiler version 4.2.1 with compiler flags
-m32 -O2 -g -fomit-frame-pointer -mtune=native -DNDEBUG for both C
and C++, except for one file in TetGen which cannot be optimized and had to be
compiled -m32 -O0. All three codes currently assume 32-bit pointers, though this
should be easy to fix in all cases. We compare our implementation (SVR) to Pyra-
mid 0.50 [She05a] and to TetGen 1.4.2 [Si07]. For all meshes here, we required an

58 Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips

output radius/edge quality of 2.0; unless otherwise noted, SVR did not perform sliver
removal in these experiments. SVR used a value of 0.9 for its k parameter (see Sec-
tion 5); Pyramid and TetGen use default values. We measure time by using the UNIX
‘time’ utility and summed “user” (cpu) and “system” times. All reported times are
averaged over five runs.

9.1 Point cloud results

Input SVR Pyramid TetGen SVR Pyramid TetGen
Stanford Bunny (n = 34890) 4.62 6.35 12.4 59702 59040 74269

Line & Circle (n = 2000) 0.80 4.79 6.5 12119 14003 14573
Line & Circle (n = 20000) 7.62 N/A N/A 120933 N/A N/A

50 × 50 × 50 Grid (n = 125000) 11.30 15.96 45.9 129839 129929 130140
100 × 100 × 100 Grid (n = 106) 97.71 179.04 400.3 1016262 1017799 1018684

Table 1. Comparison of the SVR, Pyramid, and TetGen codes on a few point-cloud inputs.
Both Pyramid and TetGen ran out of memory on the n = 20000 Line & Circle example, and
could not complete; otherwise, all examples fit in memory. Left: Execution times (seconds of
CPU plus system time) versus inputs. Average of 5 runs. Right: Output size, in vertices. All
three methods produce meshes of approximately the same size.

Table 1 shows a comparisons of timings and output sizes for TetGen, Pyramid,
and SVR on three inputs: (1) the Stanford Bunny, (2) line-and-circle (a pathological
quadratic example), and (3) points on a grid. All these inputs are then bounded by a
6× 6× 6 bounding box to avoid all boundary effects. SVR is the fastest on all inputs,
increasingly so as complexity increases. Furthermore, as predicted by theory, both
Pyramid and TetGen crash on very modestly-sized pathological inputs. Even with
inputs of just 20,000 points, they can be made to try to allocate more memory than
can be addressed with 32-bit pointers.

TetGen has a performance bug for meshing point clouds: it requires the user first
invoke TetGen to produce and output a Delaunay mesh; then invoke TetGen again
to load that mesh and refine it. On non-pathological input, this is a low-order effect.
However, on pathological input the reloading of the mesh runs in time cubic in the
number of vertices. This is a front-end issue and is not fundamental, so we subtract
out the time of the intermediate output and reload in the TetGen times we report.

The number of vertices and tetrahedra output by all three codes is similar. During
the development of SVR, we found that relatively minor changes in the code can
often change the output size by 20% in either direction (often in opposite directions
for different inputs), but not reliably so. As noted by Har-Peled and Üngör [HPU05],
one of the few consistently useful heuristics is to work on the smallest simplex first,
as measured by its shortest edge; in our algorithm, this happens to also improve cache
efficiency since the smallest simplex is usually the most recently-create one.

Finally, we investigated the issue of slivers. On the bunny, radius/edge refinement
using either SVR or Pyramid created several thousand simplices with dihedral an-
gles flatter than 175◦; in both, dihedral angles ranged from 0.01◦ to 179.98◦. TetGen

1A.3 SVR: A Practical Implementation 59

has a separate mesh optimization post-process which produced dihedral angles from
4.64◦ to 168.56◦. In our implementation of SVR with Li-Teng sliver removal, we
find we can achieve angles ranging only between 12.09◦ to 154.21◦ on the bunny
when asking for radius/radius quality of 9.0 (recall from elementary geometry that
an equilateral tetrahedron has radius/radius ratio 3.0) . Unfortunately, Li-Teng only
provably works with very weak guarantees: at the best quality we demanded, the
technique is very brittle and often fails depending on small changes in the param-
eter settings. This suggests two avenues for improvement: tweaking Li and Teng’s
algorithm to produce more practical bounds so that we need never go beyond the
provable envelope, and/or the addition of a mesh optimization post-process to the
SVR code.

9.2 PLC results

The vast majority models available in mesh repositories – even those that use the
Pyramid input format we adopt – are triangulated surface meshes. Unfortunately,
this is automatically an illegal input: the edges of a triangle obviously do not all meet
at non-acute angles. TetGen merges adjacent triangles that are (nearly) coplanar; time
did not permit us to implement this type of input grooming. Instead, we ran SVR on
several PLC examples provided to us by Jonathan Shewchuk. None are strictly legal
according to our input restrictions (see Section 4); in particular, they all have facets
meeting at acute angles. Nevertheless, we were able to produce quality meshes of
about the same size as Pyramid’s output. We also synthesized our own examples,
such as the ten-barbells example shown in the introduction, which satisfy all the
theoretical requirements. On these examples, we were also able to remove slivers
with dihedrals worse than about 5◦ or 175◦, albeit not entirely reliably. The major
outstanding issues in the feature-set SVR code come down to implementing some of
the tricks that TetGen has to work with input that is, strictly speaking, illegal; and to
speed up the provably correct code using many of the techniques we have discussed
and used in the point-cloud code.

9.3 SVR profiling

We made heavy use of profiling (particularly using the Valgrind toolset) while opti-
mizing the underlying data structures for point-cloud refinement. Similar optimiza-
tion of the feature-set refinement code remains future work. On various examples,
we find the following trends. First, a large fraction (about 20%) of the time is spent
writing the output to an ASCII file. Applications for which time is critical will out-
put in a faster and smaller format, so let us ignore this cost. On the platforms we
tested on (Intel, AMD, and PowerPC), we find the processor issues about 0.7 to 1.0
instructions per clock cycle, which is in line with what we would expect from an
unstructured code. The cache performance was good: essentially no I-cache misses,
while 1.5% of data reads reach to L2 and only 0.3% to main memory. This can be ex-
plained by the fact that SVR is fundamentally parallel [HMP07]. Therefore, merely
by using a work stack instead of a work queue, we achieve good data locality. An-
other illustration of this is that SVR could maintain about 4% CPU utilization in
tests where the mesh did not fit in memory. By contrast, Pyramid under the same

60 Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips

conditions suffers a 0.6% miss rate to main memory, and achieves less than 1% CPU
utilization when it hits swap.

On the Stanford bunny example, the code issues about 5.5 billion instructions.
Three major components each take almost exactly one billion instructions each. (1)
Calls to Shewchuk’s numerical predicates library, mostly in-sphere tests. (2) Com-
puting circumcenters, and performing distance calculations for point location. (3)
Topologically updating the Delaunay triangulation. The remainder of the time is
taken up traversing the mesh to perform point location queries, maintaining the work
queues, allocating memory and maintaining reference counts, and reading the input.
We note that it is critical that we use memory pools to allocate small objects (list
nodes, simplices, and so on).

Major improvements in point-cloud meshing time will require three improve-
ments. Most prosaically, we need to make our code run on 64-bit architectures to
take advantage of large memories; as the mesh size grows, we expect our lead over
previous codes to widen. Next, using a compressed mesh structure [Bla05] would
improve cache performance and allow us to mesh much larger examples entirely in
memory. Finally, we cache circumcenters because we would otherwise repeatedly
recompute the circumcenter; but the same effect is true of in-sphere tests. It is highly
likely we could substantially reduce the cost of category (1) above by merging it with
category (2). Major improvements in feature-set meshing time are low hanging fruit
at the moment. After some more work to eliminate any remaining factors of two in
sequential runtime, we expect eventually to look to parallelize the code, as we have
theoretically proved can be done.

10 Conclusions
We have shown that it is possible to implement the theoretically described SVR algo-
rithm to achieve practical robust software. The strong asymptotic runtime guarantees
underlying the SVR algorithm are clearly evident on simple examples. Performance
is competitive with existing codes on relatively well shaped inputs. For pathological
inputs, the superiority of SVR is unquestionable.

In the SVR implementation, we have combined strong theory with a great deal
of software engineering. Devising and implementing appropriate data structures was
crucial to implementing practical software. As well, attention to geometric predicates
is necessary for any robust code.

10.1 Extensions

The most obvious extension of the SVR code is to handle a richer set of input descrip-
tions. Modern geometries require a mesher that can handle curved input surfaces and
sharp corners; SVR on the other hand requires input to come from a highly restricted
class (as do the algorithms underlying Pyramid and TetGen).

One of the elegant features of our SVR implementation is that although it is tuned
for performance in three dimensions, the data structures are versatile enough for use
in four or more dimensions, which is of possible use in emerging space-time meshing
applications. The only routines we need for a higher dimensional implementation
are fast yet robust in-sphere predicates in higher dimensions. Automated techniques

1A.3 SVR: A Practical Implementation 61

for generating these predicates are known [NBH01], but the implementation is not
currently available. Using exact arithmetic kernels such as are available with CGAL
is a possibility, for small problems where the runtime is not critical.

Finally, we close by noting that SVR is known to be parallelizable [HMP07]. At
the moment we feel there are still large constant factors to attack in the sequential
implementation of the code; but as soon as those have been vanquished, the next
obvious step will be to implement a multi-core version of this code. The current
implementation has been explicitly geared toward leaving open that possibility.

Acknowledgments
We wish to acknowledge the help of Jonathan Shewchuk in offering many useful tips
for the code and geometric predicates, for making available to us pre-release version
of Pyramid, and for sending us some sample PLC inputs. We also acknowledge Hang
Si’s help in understanding TetGen; mesh drawings and mesh quality statistics were
generated by TetGen.

References
[BEG94] Marshall Bern, David Eppstein, and John Gilbert. Provably good mesh generation.

J. Comput. Syst. Sci., 48(3):384–409, 1994.
[Bla05] Daniel K. Blandford. Compact Data Structures with Fast Queries. PhD thesis,

Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, October 2005. CMU CS Tech Report CMU-CS-05-196.

[CD03] Siu-Wing Cheng and Tamal K. Dey. Quality meshing with weighted delaunay
refinement. SIAM J. Comput., 33(1):69–93, 2003.

[Che89] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report TR-89-
983, Department of Computer Science, Cornell University, 1989.

[CP03] Siu-Wing Cheng and Sheung-Hung Poon. Graded Conforming Delaunay Tetra-
hedralization with Bounded Radius-Edge Ratio. In Proceedings of the Fourteenth
Annual Symposium on Discrete Algorithms, pages 295–304, Baltimore, Maryland,
January 2003. Society for Industrial and Applied Mathematics.

[ELM+00] Herbert Edelsbrunner, Xiang-Yang Li, Gary L. Miller, Andreas Stathopoulos,
Dafna Talmor, Shang-Hua Teng, Alper Üngör, and Noel Walkington. Smooth-
ing and cleaning up slivers. In Proceedings of the 32th Annual ACM Symposium
on Theory of Computing, pages 273–277, Portland, Oregon, 2000.

[HMP06] Benoı̂t Hudson, Gary Miller, and Todd Phillips. Sparse Voronoi Refinement. In
Proceedings of the 15th International Meshing Roundtable, pages 339–356, Birm-
ingham, Alabama, 2006. Long version available as Carnegie Mellon University
Technical Report CMU-CS-06-132.

[HMP07] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Parallel Delaunay Re-
finement. In 19th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pages 339–347, San Diego, June 2007.

[HPU05] Sariel Har-Peled and Alper Üngör. A Time-Optimal Delaunay Refinement Algo-
rithm in Two Dimensions. In Symposium on Computational Geometry, 2005.

[Li03] Xiang-Yang Li. Generating well-shaped d-dimensional Delaunay meshes. Theor.
Comput. Sci., 296(1):145–165, 2003.

[LT01] Xiang-Yang Li and Shang-Hua Teng. Generating well-shaped Delaunay meshes
in 3D. In SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium

62 Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips

on Discrete algorithms, pages 28–37, Philadelphia, PA, USA, 2001. Society for
Industrial and Applied Mathematics.

[Mil04] Gary L. Miller. A time efficient Delaunay refinement algorithm. In SODA ’04:
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 400–409, Philadelphia, PA, USA, 2004. Society for Industrial and
Applied Mathematics.

[MPW02] Gary L. Miller, Steven E. Pav, and Noel J. Walkington. Fully Incremental
3D Delaunay Refinement Mesh Generation. In Eleventh International Meshing
Roundtable, pages 75–86, Ithaca, New York, September 2002. Sandia National
Laboratories.

[MTTW99] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. On the
radius–edge condition in the control volume method. SIAM J. Numer. Anal.,
36(6):1690–1708, 1999.

[MV00] Scott A. Mitchell and Stephen A. Vavasis. Quality Mesh Generation in Higher
Dimensions. SIAM Journal on Computing, 29(4):1334–1370, 2000.

[NBH01] Aleksandar Nanevski, Guy E. Blelloch, and Robert Harper. Automatic Genera-
tion of Staged Geometric Predicates. In International Conference on Functional
Programming, pages 217–228, Florence, Italy, September 2001.

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. J. Algorithms, 18(3):548–585, 1995.

[She97] Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic
and Fast Robust Geometric Predicates. Discrete & Computational Geometry,
18(3):305–363, October 1997.

[She98] Jonathan Richard Shewchuk. Tetrahedral Mesh Generation by Delaunay Refine-
ment. In Proceedings of the Fourteenth Annual Symposium on Computational Ge-
ometry, pages 86–95, Minneapolis, Minnesota, June 1998. Association for Com-
puting Machinery.

[She99] Jonathan Richard Shewchuk. Lecture notes on geometric robustness, 1999.
[She05a] Jonathan R. Shewchuk. Pyramid, 2005. Personal communication.
[She05b] Jonathan R. Shewchuk. Triangle, 2005. http://www.cs.cmu.edu/˜quake/

triangle.html.
[Si06] Hang Si. On refinement of constrained Delaunay tetrahedralizations. In Proceed-

ings of the 15th International Meshing Roundtable, 2006.
[Si07] Hang Si. TetGen, 2007. tetgen.berlios.de.
[STÜ07] Daniel Spielman, Shang-Hua Teng, and Alper Üngör. Parallel Delaunay refine-

ment: Algorithms and analyses. IJCGA, 17:1–30, 2007.
[Vav00] Stephen A. Vavasis. QMG, 2000. http://www.cs.cornell.edu/home/

vavasis/qmg-home.html.

